
This paper is born in the framework of the European H2020 project AfriCultuReS:
Enhancing Food Security in African agricultural systems with the support of Remote
Sensing. The project aims at provide a decision support system for improved decision
making in the field of food security in Africa. An accurate and timely crop-type map
based on remote sensing data is essential for many applications, such as agro-
ecological analysis to support agricultural policy and economic growth.

Agricultural areas are naturally affected by significant variations within relatively short
time intervals, in accordance with the growing season. These dynamics could, in
principle, be exploited to classify different types of crops. Vegetation indices (VI)
retrieved from Sentinel-2 imagery are evaluated to track the year-round vegetation
behavior. Starting from a multi-temporal image series of the same scene, the
phenological profiles can be extracted and introduced into a supervised classification
process to detect crop fields, discriminating among different species. Following this,
we propose a cross-correlation based model that, using a priori information from
ground training data, searches for the best matching phenology.
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Selecting the least cloudy NDVI images over the period, a multi-
image edge detection and a subsequent watershed algorithm
were applied to get the image segmentation. Firstly, Canny edge
detection Algorithm was performed on multiple images and then
aggregated into one field boundary image, using as input more
than one index or band: NDVI, NDWI, and Blue band reflectance.

This crucial step can be improved in the pre-watershed processing
phase with morphological transformations on the edge detection,
such as small objects removal, filling holes, dilation and thinning
to clean the noise and closing polygon edges. Combining them
was necessary to obtain a cleaner edge detection to use as the
input for the watershed approach, avoiding over-segmentation
and noise.

• Region of interest (ROI): Bothaville, South Africa

• Downloading and processing 36 Sentinel 2-A and 2-B
images of one entire year: 3 per month for tile T35JMK,
the least cloudy. A total of 36 Level-2A bottom of
atmosphere (BOA) reflectance images in cartographic
geometry (UTM/WGS84 projection) of Sentinel-2A/B
Multispectral Instrument (MSI) were collected,
extracting cloud free NDVIs.

• Extract the RED and NIR bands (B04 and B08)

• Extract the SCL bands (Scene Classification Map)

• Data cleaning : Removing all the pixels saturated,
shadow or cloudy using SCL’s

• Calculate the NDVI’s ∶ 𝑵𝑫𝑽𝑰 =
𝑩𝟖−𝑩𝟒

𝑩𝟖+𝑩𝟒

(Original) (Edge Detection) (Watershed Algorithm) (Object Classification)

Therefore, using Watershed Algorithm to close the polygons. Starting from user-defined
markers, the watershed algorithm treats pixels values as a local topography (elevation). It
consists in calculating the distance transform of the edge detection binary image, inverting it,
finding the local minima, the darkest parts of the image, that will be the objects centers, using
them as markers and then applying watershed on it using the original image as mask.

Beans Phenology(Reference Dataset)

Maize Phenology

Sorghum Phenology

The actual validation results for the Bothaville region (Nala County, South Africa)
demonstrates a good user accuracy on the main crop type, 89.19 % for maize crops.
The validation was performed comparing the total number of pixels belonging on
138 fields polygons of maize of the ground campaign data available in 2021. For
beans and sorghum, even if the accuracies are good, their statistics are not as
significant as the maize ones because of their limited number of available ground
validation data. The confusion matrix attests 93.48% of accuracy for beans and
73.66% for sorghum.

• Building a reference dataset extracting phenology for each ground data object/point
• Masking the entire NDVI collection with a Crop-No Crop Mask derived from ESA World

Land Cover mask
• Image Segmentation step: discriminating polygon-like fields, boundaries and centroids
• Object Statistical analysis: performing a statistical analysis on each polygon-like crop

field and extracting for each polygon the mean value and standard deviation with the
aim of extrapolate a single characteristic and representative phenology profile for the
whole crop field

• Phenology extraction step: extracting time series NDVI for each centroid, building
phenology curve with outliers' removal and noise time filtering (rolling mean), and
finally interpolating.

• Comparison with the ground data phenologies: Cross-correlation
• Discrimination rule: best matching with minimum cross-correlation coefficient of 0.90

and maximum lag of 15 days

Sigma Threshold

NDVI 4,0 0,170

NDWI 2,5 0,200

BLUE 3,5 0,035

(Canny Algorithm Parameters)
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