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This thesis proposes a deterministic static assignment model which can compute UE for
large-scale networks in case of passengers mingling at stops and high-frequency or low-
reliability transit service, considering also congestion phenomena.
More precisely, the model represents the following phenomena are represented by introduc-
ing additional costs (in terms of time) for the affected trip legs: 1) Overcrowding Congestion
(i.e. passengers discomfort due to overcrowding on-board of a vehicle or at platforms); 2)
Queuing congestion (i.e. passengers queuing at platforms); 3)Dwelling Delay (i.e. passengers
waiting on-board of a vehicle, due to limited door capacity and overcrowding).
In addition, the model represents other two congestion phenomena: the availability of seats
(both for boarding passengers and dwelling passengers) and the waiting process at stops.
This is achieved by using the concept of strategies and hyperpaths, i.e. plans adopted by the
passengers to reach the desired destination at a minimum expected cost.

As the congestion phenomena in transit networks are non-separable (i.e. cost of an arc de-
pends also on the flows of other adjacent arcs), the uniqueness of equilibrium is not guaran-
teed and the UE cannot be found through convex optimization.
Thus, this thesis model adopts an assignment algorithm which solves the fixed-point formula-
tion of UE, based on the circular dependency between arc flows and congested costs, through
the following iterative process: 1) computing costs depending on flows; 2) updating users
choice according to the shortest hypertree computed though an extension of Dijkstra algo-
rithm; 3) finding the new distribution of flows; 4) using the new distribution of flow to
compute the new costs. The iterative process is repeated until UE is found (i.e. flows result-
ing in the previous iteration converge with the ones computed in the current iteration).
As UE assignment function is not a contraction, to find UE convergence an innovative Re-
duce Gradient Projection method which performs convergence search over arcs, avoiding
the enumeration of hyperarcs (i.e. implicit hyperarcs), was implemented. Relative gap crite-
rion is adopted as stop condition.

The model was implemented in Visual Basic 15 and tested by using text files and the soft-
ware PTV Visum 17 as I/O source. During the various tests, it was shown that the algorithm
converges quickly and with high precision when the single congestion phenomenon is stud-
ied, while it takes more than 100 iterations where these phenomena are combined or more
than on line is present. However, solution time for medium-size networks is still in the order
of seconds.

Finally, the model implemented in this thesis performs static assignment and, thus, it is
not suitable for real-time simulation and incident management. However, it can be seen
as an early stage for the implementation of a real-time incident management software for
public transport networks based on the Transit Link Transmission Model (TLTM) proposed by
Gentile (2017), which is a fast-macroscopic model that performs a dynamic assignment from
the results of a static assignment.
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1

1 Introduction

According to the WHO/Europe (World Health Organization), European countries are fac-
ing conflicting demands for transport policies. On the one hand, transport has a positive key
role in the economy, on the other hand, its policies can harm human health and the environ-
ment.
In the European region alone, about 100 000 premature adult deaths occur each year due to
air pollution, which is mostly caused by emissions from road traffic. In addition to these,
road accidents result in about 127 000 deaths and 2.4 million injuries per year, killing more
young people aged 5-29 than any other causes. Moreover, transport is the fastest grow-
ing source of fossil-fuel CO2 emissions, which is one of the main factors of climate change.
Finally, traffic noise and congestion damage health, psychological adjustment, work perfor-
mances and overall life satisfaction (Dora and Phillips, 2000).

Therefore, one of the greatest challenges cities are facing is the creation of sustainable trans-
portation solutions, where private transport gives way to different means of public trans-
port, which are more sustainable and have a larger capacity.
Governments have been investing huge capitals on public transport, attempting to attract
more users by increasing the quality of service and comfort. Nevertheless, this sustainable
transport mode must still compete with private transport, as users’ experience is influenced
negatively by congestion and service reliability.

Indeed, passengers in many countries around the world experience congestion problems on
public transport (e.g. buses, underground and trains), which make travelling during peak
hours a stressful experience.
Over saturation of vehicles makes access/egress a difficult operation, causing significant
delays, and the stress of overcrowding on public transport reduces people’s productivity at
work. For instance, in London transit network, crowding and delays cost the population
around £230 million per year (Oxford Economic Forecasting, 2003).
Overcrowding also has consequences in safety and risk on platforms. For instance, in Rome,
the main subway operator (ATAC) sometimes blocks access to escalators and stairs, to allow
platforms to be cleared of passengers who failed to board overcrowded trains.

Hence, sustainable urban mobility requires the increase in capacity to compete with private
transport, reducing congestion. This can be done through careful planning of the public
transport service, where decision-makers need to answer in a rational and transparent way
the following key question: “How big is the total benefit of a proposed investment?” (Gentile and
Noekel, 2016).
To answer this question, different transit assignment models have been introduced in the
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last 60 years.

Finally, congestion and overcrowding are not only due to wrong strategic and tactical plan-
ning but also to the lack of operational and real-time planning. And yet, a system which can
predict the network response to incidents and propose a solution to keep congestion levels
acceptable does not yet exist.
For example, it may happen that a bus breaks down and a passenger needs to decide whether
to wait for the next bus or to alter their route altogether. In both cases, the incident causes a
redistribution of passengers’ flows and may cause a congestion increase either on the mal-
functioning bus line or to the rest of network, causing overcrowding and delays.
To contain congestion and keep the level of service high, public transport operators should
use a system able to predict congestion development and guide users’ choices. However,
a software fast enough to forecast real-time passengers’ congestion in public transport net-
works while considering a wide range of congestion phenomena, does not exist yet.

This thesis focuses on the simulation of transit networks, including passengers’ congestion
phenomena, as a tool for strategic and tactical planning. More precisely, a model able to con-
sider the following peculiarities of transit assignment was implemented and tested: a) Tran-
sit vehicles have finite capacity and demand may exceed this capacity during peak-hours; b)
when timetables are not published, passengers consider multiple routes and choose among
them only when the first vehicle arrives; c) passengers’ choices also depend on the seat avail-
ability of the vehicle.
Simulations were executed implementing the model in Visual Basic 15 (VB "14"), and results
were visualized with the software PTV Visum 17 (Visum) of the company PTV (Planung
Transport Verkehr) Group, which allows GIS-based data management in the field of private
and public transport. To simplify the input process, data regarding networks and demand
were imported from Visum.
Moreover, to validate simulation results, comparisons between results obtained by the im-
plemented software and Visum transit assignment feature were made.

This thesis can also be seen as an early stage for the implementation of a real-time incident
management software for public transport networks. Indeed, outcomes of the implemented
model can be used as inputs of the Transit Link Transmission Model (TLTM) introduced by
Gentile (2017), which is a fast model able to propagate flows affected by congestion on any
network for given route choices.

This paper is organized as follows. Chapter 2 reviews some of the existing approaches to
transit assignment modelling and Visum approach, while chapter 3 illustrates the theoret-
ical background of the implemented model. Chapter 4 describes how the model was im-
plemented in using a software, and finally, chapter 5 contains some numerical tests, key
findings and future research plans.
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2 Existing Approaches to Transit
Assignment

The main aim of transit assignment is to find the set of routes which will be chosen by users
according to the demand and supply of the transit network.
Existing algorithms are based on the so-called Wardrop’s first principle, which states that, at
network equilibrium, the journey time of routes that are used is less or equal to those that
would be experienced by a single user taking any of the unused routes (Wardrop and White-
head, 1952). According to this principle, the so-called user equilibrium (UE) is found when no
user finds convenient to unilaterally change the path.
Assumptions beyond this principle are that users are rational decision makers and have
perfect knowledge of journey cost, which often implies some unrealistic results such as ag-
gregation of choices (i.e. users going from the same node to the same destination will have
the tendency to take the same path, even if they come from different origins).
Even if the UE principle results in sub-optimal system performance, it is used by the majority
of transit assignment approaches as it represents how individual users realistically behave,
with some limitations due to the assumptions introduced before.

Since Dial (1967) presented one of the first transit assignments, different models of public
transport networks and transit services have been proposed. They can be usually divided
into two main categories: frequency-based (FB) models and schedule-based (SB) models.

The so-called schedule-based (SB) models are adopted to simulate low-frequency or high-
reliability services, which usually have published timetables. These models introduce a di-
achronic graph to represents every single run of the service, making the models inherently
dynamic. Indeed, the assignment results (travel times and passenger flows of transit lines)
are always referred to a specific run and to a certain time of the day.
SB models can represent in details passengers’ crowding due to vehicle capacities but are
not suitable to simulate the delays of vehicles due to alighting and boarding passengers at
stops, as the diachronic graph must vary with the flow pattern.
Moreover, this framework cannot be used to model high-frequency services. Indeed, SB
models assume that users would choose specific runs and try to synchronize their arrival at
stops with the scheduled passage of carries. This is not true for densely connected urban
networks, where passengers usually do not consider timetables as they perceive runs of the
same transit line as a unitary supply facility.
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To simulate high-frequency or low-reliability service, frequency-based (FB) models are usu-
ally preferred. These models can simulate services where vehicles are not able to follow
timetables and the service is perceived by passengers in terms of probabilistic departure
events.
However, also the frequency-based approach is insufficient to simulate all the passengers’
congestion phenomena. Indeed, frequency-based models simulate the behaviour of public
transport lines without considering single runs and, consequently, they can simulate vehi-
cles delays but cannot consider vehicle capacity constraints.

Another differentiation that can be done among models regards the assignment of passen-
gers’ priority in the stop waiting process. In general, when passenger congestion occurs, the
queuing protocol followed by travellers is determined by the stop layout. Usually, passen-
gers do mingling in stations and stops with large platforms, while on urban bus networks
they tend to respect the boarding priority of anybody who has arrived before them.

The model adopted in this thesis is based on FB approach with passengers mingling at stops.
Hereafter, previous works carried out to solve the transit assignment with FB approaches are
reviewed, and the transit assignment algorithm used by Visum is illustrated in detail.

2.1 Overview of Frequency Based Models

This section overviews the state of the art of the FB UE transit assignment framework and
models, starting from a brief description of the early models.

As introduced before, the development of transit assignment models can be traced back to
a contribution by Dial (1967). The modeller proposed an adaptation to public transport of
the already existing private transport shortest path algorithm. This new algorithm was able
to include in the computation of costs the waiting times of passengers at stops, which is
the main phenomenon that distinguishes public transport from private one, but it neglected
congestion.
De Cea and Fernandez (1989) developed the concept introduced by Dial into an efficient al-
gorithm for large networks.

Chriquì and Robillard (1975) introduced the common line dilemma. This phenomenon hap-
pens when users going from an origin to a destination can choose among a set of lines, that
can have different travel times. In this case, it was observed that passengers apply strategies
to choose between boarding the first line approaching the stop or keep waiting for a more
convenient service. Chiriquí and Robillard also suggested a heuristic algorithm to find the
set of routes that minimize the expected travel time.

To solve the common line dilemma, Nguyen and Pallottino (1988) stated that strategies (or
hyperpaths) are chosen pre-trip by users, and that the realization of the same travel strategy
may change due to events at the stop (which vehicle arrives first). They also proposed a
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heuristic method to assign passengers to lines according to the nominal frequencies.
Spiess and Florian (1989) showed that passengers can often significantly reduce their travel
time when they consider several paths to their destination, and Cominetti and Correa (2001)
used the concept of hyperpath to adapt Dijkstras shortest-path algorithm to a shortest hyper-
path algorithm.

Spiess and Florian (1989) discussed the extension of their model to the case where link costs
are depending on link flows, which often happens in transit networks (e.g. dwelling time
at stops depends on passengers boarding and alighting). Their model, however, had three
main limitations: 1) cost-function must be continuously and monotonously increasing; 2)
all passengers on board the vehicle suffers the same inconvenience, independently of where
they boarded; 3) service frequencies are assumed to not be affected by crowding, so that
waiting time at stops is only a function of nominal frequencies.
Spiess and Florian suggested that these limitations could be overcome with the effective fre-
quency approach, namely the line frequency perceived by the waiting passengers. The idea
behind the effective frequency is that the more buses arrive full, the higher the waiting time
will be as it will be harder to get onto the vehicle.

De Cea and Fernandez (1993) introduced a model that applied the effective frequency con-
cept. They also proved that the set of attractive lines monotonically increases with conges-
tion and that the set of attractive lines in uncongested situations is a subset of the attrac-
tive lines in congested situations. However, in their model, De Cea and Fernández did not
consider that a high number of passengers wishing to board will reduce the chance for an
individual to board.
According to Cominetti and Correa (2001), other shortcomings of De Cea and Fernández’s
model were: 1) the functional form used to represent congestion was only justified heuristi-
cally and caused an overload of lines; 2) a heuristic method was used to compute common
lines between transfer nodes, not guaranteeing the fulfillment of Wardrops first principle (in
some congestion situations, cost can be minimized by combining two strategies).

An example for the second shortcoming of De Cea and Fernández’s model is the following.
Given a network with one OD pair and two direct lines l1 and l2, with l1 faster than l2, pas-
sengers can choose between the two following strategies: 1) wait for l1; 2) take whichever
line arrives first (waiting for only l2 is not an option as it is more “expensive”). In De Cea and
Fernandez (1993)’s model assigned all the passengers to strategy number two, but Cominetti
and Correa (2001) shown that if in highly congested situations some passengers stick to Strat-
egy 1 as this would reduce overall travel time.

More recent models have added rigour to the analysis and efficiency of the above-introduced
algorithms, also addressing the issue of congestion in transit networks and its consequences
on discomfort and queuing (e.g. overcrowding discomfort on board, queuing of passengers
at stops, provision of information at stops, etc.).
Nowadays, most of the existing FB models include the concept of hyperpaths and assume
that passengers mingle at stops (e.g. Leurent et al., 2012). This implies that no priority is
satisfied in the waiting process, and, in case of over-saturation, all passengers have the same
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probability to board the next attractive arriving carrier.
Alternatively, when assuming FIFO queues in FB models the problem becomes more chal-
lenging. In this case, the stability condition usually adopted to find equilibrium is that
passengers waiting at a stop consider an attractive set that is never completely saturated
(Bouzaïene-Ayari et al., 1998). As congestion increases, more and “worse” lines are included
in the attractive set and, when all lines are congested, passengers decide to walk even if the
extra waiting time due to congestion is short (Trozzi et al., 2013).

The state of the art in transit assignment is summarized in Gentile and Noekel (2016), which
provides a collection of recent transit assignment frameworks and models.

The model implemented in this thesis derives from the transit assignment approach intro-
duced by Gentile et al. 2016b. The new approach integrates passengers’ congestion in UE
modelling framework introducing some coefficients in the disutility function to represent
crowding discomfort. Further details will be discussed in chapter 3.

2.2 Visum Transit Assignment

This section is a resume of the transit UE assignment algorithm used by Visum. All the sec-
tion is referenced to PTV Visum 17 Manual (PTV AG, 2017).

Visum provides three types of UE assignment for the public transport case, called procedures:

• Transport system-based (TSB) procedure. It is based on “all or nothing” assignment
and provides an approximate “ideal line network”, where passengers choose the fastest
route without considering any existing line network constraints. It is usually used in
the initial planning phase when line service is not yet existing.

• Headway-Based (HB) procedure. It is a frequency-based framework, which is ideal
for urban networks with high service frequency and low reliability. It is usually used
for long-term conceptual planning when timetables are still unknown.

• Timetable-based (TB) procedure. It is a schedule-based framework, which is ideal for
networks with long headways services and where timetable coordination is important
for transfers.

As the purpose of this section is introducing Visum assignment methods to compare them
with the model implemented in this thesis, only the FB approach will be analysed.

2.2.1 Headway-Based Procedure

For the HB procedure, each line is described by the line route, the run times between line
stops, and the headway. In the following sections, the term line is used for the sake of con-
venience.
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The HB assignment procedure of Visum determines the optimum routes and those that are
close to optimum, and follows three operational steps:

1. headway calculation;

2. route search and route choice;

3. route loading.

In these procedures, transfer wait times are analysed globally and departures of different
lines are independent of each other.
This means that in this type of assignment a timetable coordination is not possible and that
results, such as the number of transfers, journey time and ride time, can be estimated with
sufficient accuracy only when all lines have short headways.
On the other hand, this procedure is not suited for transit network planning hence long
headways occur (i.e. urban area or long-distance transport) as usually providing connections
is important.

Headway Calculation

The headway τ of a line for HB assignment can be defined in three different ways:

1. as a line attribute (in this case timetables are completely ignored);

2. as the mean headway τ̃a,b of each time interval t = [ta, tb) in the assignment time
interval, according to the number of departures n of the timetable (τ̃a,b = tb−ta

n );

3. as the mean wait time δ̃a,b according to the timetable and the set of departures xi in the
time interval [ta, tb) ( ˜δa,b = 1

tb−ta
∑n

i=0 ∆i
1).

Each of the three methods can be applied separately by time interval, which means the Vi-
sum user can model supplies that vary within the assignment period and do a semi-dynamic
assignment (i.e. dividing the study period in several time intervals and computing static
network equilibrium for each of them, while also considering the flow propagation between
periods).

The second approach is a simplified approximation of the third one. This approximation is
acceptable only in case of networks with short headways and sufficiently broad time inter-
vals. Indeed, two main problematics are connected to this approach: 1) the definition is too
sensitive to the shifting of individual departures across the interval limits, causing a discon-
tinuity in the results; 2) for passengers that arrive randomly, trips spread evenly throughout
the time interval, causing less waiting time than trips that are piled up.
The third approach solves these shortcomings defining the headway of a line in case of ran-
dom access as double the expected waiting time for the next departure.

The following example illustrates the difference in approximation of the two approaches,
considering two lines with the timetables illustrated in table 2.1.

As it can be seen from table 2.1, the distance between departures is the 40 minutes for both
lines. Consequently, the headways computed should be the same.

1∆0 = (x1 − a)2, ∆i = (xi+1 − xi)
2,∆n = (xn+1 − xn)2 − (xn+1 − xb)

2
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TABLE 2.1: Example for headway calculation, input timetables

Line Departure Times
1 05:55, 06:35, 07:15
2 06:05, 06:45, 07:25

Applying method 2 to compute the headway as the mean headway of time interval t =

[06 : 00, 07 : 00), results differ from each other, as they are sensitive to the shifting of depar-
tures across the interval limits. Indeed, using formula 2.1 and 2.2 and considering that the
number of departures in interval t are respectively 1 and 2 for line 1 and line 2, headway of
line 1 results twice the one of line 2.
On the other hand, applying method 3 for the same interval t and lines and computing the
headway as mean of the waiting time in the time interval (equation 2.3 and 2.4), results are
the same.
Overall results are shown in table 2.2.

TABLE 2.2: Example for headway calculation, results

Line Headway Method 2 [min] Headway Method 3 [min]
1 60 43.33
2 30 43.33

τ̃t
1=

tb−ta
n = 07:00−06:00

1 =1h. (2.1)

τ̃t
2=

tb−ta
n = 07:00−06:00

2 =30min. (2.2)

δ̃t
1 =

1
tb−ta

∑1
i=0 ∆i=

=
1

07:00−06:00 ·
[
(06:35−6:00)2+((07:15−6:35)2−(7:15−7:00)2)

]
=43.33min.

(2.3)

δ̃t
1 = 1

tb−ta
∑2

i=0 ∆i=

=
1

07:00−06:00 ·
[
(06:05−6:00)2+(06:45−06:05)2+((07:25−6:45)2−(7:25−7:00)2)

]
+

+((07:25−6:45)2−(7:25−7:00)2) ]=43.33min.

(2.4)

Route Search and Route Choice

In this step, paths are assessed minimizing their generalized cost, computed through the so-
called impedance functions. Headway-based assignment procedures in Visum does not take
into account capacity constraints.

Impedance function computation

Impedance functions represent the disutility of taking a specific path. Impedance is com-
posed of times and fares and assigns malus or bonus to specific connection properties through
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a combination of user-defined skims. Generally, the lower the impedance of a connection is,
the higher its share of transport demand.
The general form of impedance function is represented by the following equation:

IMP = PJT · αPJT + n f · α f , (2.5)

where PJT is the perceived journey time, αPJT is its weight factor, n f is the number of fare
points (or fares) and alpha f is the fare-based component weight.

The perceived journey time PJT, used in equation 2.5, is computed in minutes with the
following deterministic formula (journey times, cost, etc. are deterministic):

PJT [MIN] = tIVT · αIVT · βl + tAXT · αAXT+

+tACT · αACT + tEGT · αEGT + tWT · αWT + tOWT · αOWT+

+tTWT · αTWT · βs + NTR · αNTR + pb + pbAUX + d̃.

(2.6)

In equation 2.6, the first seven factors depend directly on times. More precisely, tIVT is the
in-vehicle time, tAXT the aux-ride time, tACT the access time, tEGT the egress time, tWT the
transfer walk time, tOWT the origin wait time, and finally tTWT is the transfer wait time.
Factors α are the corresponding general penalty factors, while βl and βs represent weights
associated to a specific line l (to model the vol/cap ratio or other aspect of usability) and
stop s (to model the users’ preference for some stops, e.g. stop close to shops).
Origin and transfer wait time result from the headway of lines and they depend randomly
on the relative position of the transfer lines.
The last four terms of the equation 2.6 represent additional penalties. More precisely, NTR
and αNTR are the number of transfers and its weight factor, pb and pbAUX are the boarding
penalties associated respectively to line and auxiliary transport system 2 and d̃ is the mean
delay of the line.

For what concerns the non-temporal component of equation 2.5, the variable n f represents
either the total of all fare points that are traversed along the route or a fare derived from the
Visum fare model. Of course, fare must be applied to each path leg separately, so that, for
instance, each boarding passenger has to purchase a new ticket.

Passengers make choices in different situations:

1. they are at a stop and must choose which line to board;

2. they are starting their journey (origin zone) and must choose where to board;

3. they are on board of a line and have to choose when to alight;

4. they are choosing between transfer stops, which may be reachable by a foot-path.

These choices can be based on observations or on estimations, depending on the situation.

Generally, Visum models passengers’ decisions as a sequence of separate decisions, each of
them based either on estimations (discrete choice model) or observations (model 1, 2, 3 and

2Auxiliary transport system is e.g. public transport plus car for park and ride
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4), as introduced before. More precisely, the result of the decision made on a lower level
becomes part of the decision on a higher level, in form of expected remaining travel time
(hierarchical structure).

Hereafter, models adopted for these decisions are illustrated.

Choice models in case of observations

In this section, choice models for choices based on observations are described. This is the
case of boarding at stops (situation 1), or situation 2, 3 and 4 when a suitable infrastructure
(e.g. passenger’s knowledge of timetables and on-board real-time information system which
provides information about departures of other lines at the stop or at close-by stops) is avail-
able.
Indeed, FB models usually assume that passengers know line headways and running times,
and, thus, in situations 2, 3 and 4, costs can only be estimated when full information about
next departures of lines from stops is not available.

Visum offers four different models for decisions based on observations:

1. no information and exponentially distributed headways (passengers face a high level
of uncertainty);

2. no information and constant headways;

3. information on the elapsed wait time and constant headways;

4. information on the next departure times of the lines from stops (e.g. passenger infor-
mation systems at stops);

All models are suitable for boarding decisions (situation 1), but only model 4 can be applied
to the other cases (situation 2, 3 and 4). In case of boarding, even if the four models assumed
different levels of information, in the end the passenger always chooses one of the different
lines, due to observations (e.g. arriving vehicles).
Hereafter, models are explained referring to situation 1, boarding decisions.

Being L the set of available lines, sorted in ascending order according to their remaining
journey time sl ≥ 0 (expected time needed from the studied node to reach the destination
node), the different choice models calculate the optimal set of lines L∗ ⊆ L, and the demand
share πl ≥ 0 of each line l ∈ L∗. Of course, this computation changes according to the
available information.
When users choose any set of lines L′, they want to minimize their remaining costs CL,
which is a function of the remaining journey time s and the wait time before boarding WL′ ,
as shown in the following equation:

CL′ = WL′ + ∑
l∈L′

(πl · sl) . (2.7)

The remaining journey time s is computed through the impedance function explained in
equation 2.5.
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When no extra information is known and headways are distributed exponentially (model 1),
the optimization can be done with two different approaches: 1) using the model introduced
by Spiess and Florian (1989) to minimize times, assigning passengers to lines proportion-
ally to the nominal frequencies, without considering explicitly the increase in waiting times
induced by congestion; 2) determining the optimal set of lines, and then choosing the first
arriving line in this set.
The first approach allows only additive fares and simple coordination of transfers, while the
second allows additional choice model settings and more complex definitions in terms of
coordination and fares.

Adopting the second approach, the optimal set of lines is computed considering that the
expected remaining travel time of a set Li is given by equation 2.8, where λj and sj are
respectively line j ∈ Li frequency (inverse of headway) and remaining travel time, and that
the optimal set of lines Li∗ is the one which minimizes ui∗ . It is proved that the optimal set is
Li∗ , where i∗ is the last line in the optimal set 3 and for which equation 2.9 is valid. Equation
2.9 ensures the stop condition: E(CLi ) > E(CLi−1).

ui =

1 +
i

∑
j=1

(
λj · sj

)
i

∑
j=1

λj

. (2.8)

i∗ = max {i : si ≤ ui − 1} . (2.9)

The share πi of line i ∈ Li∗ is equal to the probability that line i depart first and can be
computed as function of the frequency as in equation 2.10. This non dependence from re-
maining travel times in the share definition illustrates the heavily simplified construction of
this choice model.

πi =
λi

∑
j∈Li∗

λj
. (2.10)

This construction of share πi shows how this choice model is heavily simplified.

In case that no information is available to the passengers and service is characterized by
constant headways (model 2), the route choice model follows the same principles of the
previous one, where users select the first line arriving from the optimal set. However, the
approach to compute the first line arriving is different, as in this case condition 2.9 does not
ensure optimality. Indeed, in this case the stop condition E(CLi ) > E(CLi−1) is no longer
sufficient, when headways are constant as some local optima may occur.
The stop condition adopted in this approach is the following:

i∗ = argmini
{

E(CLi )
}

. (2.11)

3Lines are sorted by ascending s, as explained before
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The shares assigned to the individual lines again correspond with the possibility of arriving
first, as shown in the following equation:

πi = λi ·
∫ h

0
∏

j∈L∗ , j 6=i
(1− λi · w) dw, (2.12)

where h = min {hi} is the minimal occurring headway.
If the timetable in the analyzed network is regular or only slightly irregular, and the pas-
sengers do not have any information on departure times, this choice model is more realistic
than the model considered before.

When information on elapsed waiting time is available and headways are constant (model
3), passengers can use the information of how long they have been waiting to reduce their
expected remaining costs. Indeed, knowing the elapsed time a passenger can ignore poten-
tially earlier arriving time if they are slower than the remaining journey cost of another line.
In this case, the optimal set L∗ depends on the elapsed wait time and it is no longer constant,
which makes determining it with respect to the previous models more difficult.
It is proven that there is an exact point in time tj ∈ Ij =

(
tj + 1, tj

]
from which onward the

remaining journey time of line j is greater than the remaining cost CLj−1 of line l ∈ Lj−1,
which means that tj is the unique solution of equation 2.13. If the users observe an arrival
of a line from τ ∈ Ij after wait time W, they will board the line, while other lines will be
ignored.

sj = E(CLj−1 |W>t )t. (2.13)

As normally a passenger has the information about elapsed time, this model does not imply
any strong options. However, the computation of optimal set of lines has to be redone for
each instant of time and, thus, determining the optimal set is more difficult than in the pre-
vious models.

Finally, when information on departure times is available (model 4) it is not necessary for
the user to know the times and headways of all the lines and the optimal strategy can be
formulated as follows: “A passenger boards the line that offers the least remaining costs given the
actual departure times”.
As nowadays many places already have information systems at stops which display the
next departure times on the basis of real-time operating data, the assumption of passenger
knowledge of departure times is not an extremely strict requirement.

Thus, the optimal line set consists of all lines which have the least costs in some timetable
positions, as shown in the following equation:

i∗ = max
{

i : si < minj
{

sj + hj
}}

. (2.14)
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In this case, the calculation of shares is as follows:

πi = P
(
Ci < Cj ∀j

)
=

=
1
hi

∫ si+hi

si

P
(
Ci < Cj ∀j|Ci = x

)
dx =

=
1
hi

∫ si+hi

si
∏
j 6=i

P
(
Ci < Cj|Ci=x

)
dx

=
1
hi

∫ si+hi

si
∏
j 6=i

P
(
Cj > x

)
dx =

=
1
hi

i∗

∑
k=i

∫ sk+1

sk

k

∏
j=1, j 6=i

P
(
Cj > x

)
dx =

=
1
hi

i∗

∑
k=i

∫ sk+1

sk

k

∏
j=1, j 6=i

(
1−

x− sj

hj

)
dx.

(2.15)

The demonstration of derivation of equation 2.15 is not the subject of this thesis. For the sake
of knowledge, it can be found in PTV Visum 17 Manual PTV AG (2017), section 7.9.4.4.
For what concerns situations beside boarding choice where this model can be applied, the
model will consider choosing between all the possible transfer lines, which are available
after alighting, and the on-board line (also at the beginning of users’ trip, at origin zone).

Choice models in case of estimations

In this section, choice models for choices based on estimations are described. This is the case
of situations 2, 3 and 4 when no additional information beside travel times and headways
are available, i.e. when information systems or timetables are not provided.
Such decisions can be modelled in two ways:

1. by a discrete choice model;

2. by an “all-or-nothing” decision in favour of the best alternative.

The second case reduces the expected remaining costs but does not reflect the fuzziness of
the passengers’ behaviour. Thus, normally a discrete choice model is better.

Route Loading

To search routes, first of all, the travel demand of an OD pair is entered at the origin zone.
According to the choice model adopted, Visum assignment procedure divides (as is the case
at all later decision points) the entire demand between all reasonable alternatives. Several
alternatives having different headways and impedance may be already available with the
choice of the first line.
When splitting demand, stochastic fuzziness becomes involved as all the used lines possess
a headway and, thus, the wait time for a line is random. Consequently, a certain percentage
of demand can be given to a line which is less attractive (e.g. when passenger information
on departures is available, it may happen that the line with positive probability departs so
much earlier than qualitatively better alternatives, and this time advantage wins over the
higher impedance).
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To represent this phenomenon, the route search in the headway-based assignment is not
based on shortest path search but creates a directed decision graph for each destination
zone, where nodes represent the decision points (i.e. stops with several alternatives) and
paths represent the various options to reach the destination zone.
A fundamental assumption of this approach is the Markov’s memory-less property of a
stochastic process (Markov, 1954). This assumption means that, from each stop, passengers
will make their choice for the continuation of their journey on the basis of this probability
graph, regardless of how they reached this stop. Consequently, search and choice in the
headway-based procedure are organized so that, working backwards from each destination
zone, all options are calculated to allow passengers to move from the stops of the network to-
wards the destination zone. Thus, the mean impedance of already-analysed decision points
is used for the iterative calculation of the distribution for more distant decision points.

In the course of this search, only routes that are positively assessed by the selected choice
model are maintained and then loaded in the decision graph.

Example for the Headway-Based Assignment

This section illustrates an example of Visum headway-based assignment. More precisely,
user equilibrium in a two-hour time interval is computed for the public transport supply
represented in figure 2.1.

The network is composed of 22 different links and two public transport services are oper-
ating on them. The first service, called Bus 1, is represented with a red line in figure 2.1,
while the second, called Train, is represented with a white-and-black-striped line. Service
timetables for the time interval between 05:30 and 07:30 are listed in table 2.3.

FIGURE 2.1: Example of headway-based assignment, studied public trans-
port supply.

First of all, headways can be calculated applying one of the methods described in section
2.2.1. In this case, the method of the mean headway is chosen and applied to the time inter-
val above mentioned. From the formula of this method (model 2), and being the number of
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TABLE 2.3: Example of headway-based assignment, input timetables.

Line Departure Times
Bus 06:10, 06:55, 07:25

Train 06:25, 07:25

departures per time interval respectively 3 for Bus 1 and 2 for Train, the resulting headways
are 40 minutes and 60 minutes.

Secondly, route search has to be performed. In this example, the demand is composed of the
only OD pair (A−Village, X− City). Assuming the case in which information on departure
times is available to passengers, both at stops and on board of Bus 1 (complete information,
the route search step finds two possible routes:

• Route 1: Bus 1;

• Route 2: Train;

where Route 2 becomes faster than of Route 1 only if no extremely high transfer time penalty
is used. Indeed, besides the transfer time penalty, the mean wait time for the train (i.e. 30
minutes) and the complete range of possible wait times are used to choose the path.
In this case, passengers will wait for the train at the transfer stop between 0 and 60 minutes.
With a certain probability, the train will arrive only shortly after the bus arrives. However,
the probability of obtaining an unfavourable connection in higher than the favourable case,
and the majority of the passengers will continue their journey by bus. Thus, thanks to the ex-
isting passenger information, each of the two routes receives that portion of demand which
corresponds to the chance of being the better of the two options.

To compute this chance, equations 2.5 and 2.6 are used to find the impedance. In this exam-
ple, the following specific impedance parameters are set:

• αPJT = 1;

• α f = 0;

• αIVT = 1;

• βl = 1;

• αAXT = n.d. 4;

• αACT = 1;

• αEGT = 1;

• αWT = 1;

• αOWT = 1;

• αTWT = 1;

• βs = 1;

• αNTR = 2min.

Resulting impedances for a passenger arriving at the railway station on Bus 1 for the remain-
ing route legs, assuming a remaining run time of 33 minutes for Bus 1 and 16 minutes for
Train, are listed in table 2.4.

As said before, the decision of which of the two routes is more attractive depends on whether
the random variable (impedance of Train, called IMP2) is greater or smaller than the constant
variable (impedance of Bus 1, called IMP1). As the first (IMP2) is uniformly distributed
in rand [18, 78) minutes, and the second (IMP1) is equal to 33 minutes, the probability of
choosing route 2 is 0.25 and can be computed through the following formula:

P2 =
IMP1−min (IMP2)

max (IMP2)−min (IMP2)
=

33min− 18min
78min− 18min

=
15min
60min

= 0.25. (2.16)

4no auxiliary transport systems are available, thus the parameter setting is not irrelevant
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TABLE 2.4: Example of headway-based assignment, resulting impedance cal-
culation.

Bus 1 [min] Train [min]
Egress and walk time 0 0
Run time 33 16
Transfer wait time 0 rand [0, 60)
Transfer time penalty 0 2
IMP 33 rand [18, 78)

For example, if the OD demand is 90 trips, 25% of 90 (≈23 passengers) will choose route
2, while the remaining 75% (≈67 passengers) will choose route 1, and the final passengers’
volumes on the network are the ones shown in figure 2.2.

FIGURE 2.2: Example of headway-based assignment, distribution of flows.

With any variation of impedance parameters, the computed flow shares change. Table 2.5
shows changing in flow shares according to the variation of transfer penalty.

TABLE 2.5: Example for headway calculation, change of flow distribution
according to transfer penalty.

Transfer Time Penalty [min] Share of Route 1 Share of Route 2
0 0.717 0.283
1 0.733 0.267
2 0.750 0.250
5 0.800 0.200

10 0.883 0.117
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3 Theoretical Background

In transit assignment, passengers’ journey can be split into several legs, i.e. reaching the stop,
accessing the platform, waiting for the vehicle, boarding the vehicle, travelling on-board of
the vehicle, dwelling at stops, alighting the vehicle (also for transfers), etc..
The implemented model represents all these trip phases through a specific graph, which as-
sociates an arc and a related cost function to each journey leg.

Cost functions representing arc performances consider the costs strictly linked to the journey
leg (such as travel time) and some additional costs, which represent the following congestion
discomfort due to vehicle and platform capacity:

1. Overcrowding Congestion: passengers discomfort due to overcrowding on-board of a
vehicle or at platforms;

2. Queuing congestion at platforms for waiting passenger;

3. Dwelling Delay for passenger on-board of a vehicle, due to overcrowding and door
capacity.

In addition, the model can also represent other congestion phenomena such as the availabil-
ity of seats (both for boarding passengers and dwelling passengers) and the waiting process at
stops.
To model these last two congestion phenomena, it is assumed that passengers have a strate-
gic behaviour, and the concept of strategies and hyperpaths, introduced by Chriquì and
Robillard (1975) and Nguyen and Pallottino (1988), is adopted.

Finally, the model performs deterministic congested transit assignment through a UE algorithm
which determines search direction and size of the convergence search through a reduced gra-
dient projection (RGP) method on implicit hyperarcs. Relative gap criterion is adopted as stop
condition.

As introduced in chapter 2, deterministic congested transit assignment finds the UE, which
consists of the set of routes which will be chosen by users according to demand and supply
of the transit network.
UE algorithms are based on Wardrop’s first principle (Wardrop and Whitehead, 1952), which
states that the journey times in all routes that are used are less or equal to those that would
be experienced by a single user on any unused route, so that:

1. any used path k ∈ Kod is shortest;

2. any non-shortest path k ∈ Kod is unused.
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This means that equilibrium is found when no user finds convenient to unilaterally change
path.
The main assumption behind this principle is that users are rational decision makers and
wishes to choose a cost-efficient path (i.e. the path with minimum cost).

In case of uncongested assignment (i.e. arc, costs do not depend on flows), UE can be easily
found simply assigning all flows to the shortest path (i.e. the path with minimum perceived
cost). On the other hand, in case of congested assignment where there is circular dependency
between costs c and flows q 1, when UE exists2 it can be found through convex optimization.
However, this approach can be adopted only when the uniqueness of equilibrium is guar-
anteed, which is not the case for transit assignment. Indeed, the sufficient condition for UE
uniqueness is that the Jacobian arc cost function is positively defined (Cascetta, 2009), i.e. the
travel time of a given link is a positive and increasing function of the flow on that link only,
but congestion phenomena in transit networks are non-separable (i.e. cost of an arc depends
also on the flows of other adjacent arcs, for example, cost of boarding a line depends on
users that are already on the line). Moreover, this dependency is in general not symmetric
nor monotonic.
Consequently, more complex formulations for UE are required in transit assignments, such
as valid inequalities or fixed-point formulation. The latter, illustrated by the flowchart of figure
3.1, is the one adopted in this thesis.

Arc
Attributes

Graph
(N, A)

Arc Performance
Functions

cag

Route Choice Model

padg

Flow Propagation qadg
Network

Loading Map

qag

Convergence Check

Demand
Flows
dodg

FIGURE 3.1: Static transit assignment, fixed-point formulation.

As shown in figure 3.1, inputs of the process are the travel demand dodmg, on the demand
side, and arc attributes (i.e. graph G = (N, A)), on the supply side.
First, the algorithm is initialized in the Arc Performance Functions block, which computes
the free flow cost c0

ag (i.e. cost when flows on the arc is null) of each arc a ∈ A. These costs are
then used by the Route Choice Model block to compute the conditional probabilities padg

3.

1q = ϕ1(c), c = ϕ2(q), and consequently q = ϕ1(ϕ2(q)).
2The existence of UE is guaranteed by the continuity of the arc performance functions.
3Probability that users take arc a ∈ A conditional on being at its tail node.
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Then, the Flow Propagation block couples the conditional probabilities padg with the de-
mand flows dodg for each OD pair and user group g ∈ G through an “all-or-nothing” assign-
ment over the shortest hypertree 4. The outputs of this block are the aggregated flows qadg for
each arc a ∈ A, directed to each destination d ∈ D and for each user group g ∈ G. These
flows satisfy Markov’s memory-less assumption, introduced in chapter 2 (i.e. they do not
carry information about their origin).
Aggregated flows qqdg are then used as input of the Network Loading Map (NLM), which
assigns final flows qag to each link a ∈ A, for each user group g ∈ G.
Finally, flows qag are used by the Arc Performance Functions block to update arc congested
costs cag (i.e. cost depends on arc flow) for each arc a ∈ A and each user group g ∈ G, and
these costs are used by the Route Choice Model block to find the routes chosen by passen-
gers and compute the new conditional probabilities padg.
This iterative process is repeated until UE is found, that means the flows qag resulting in
the previous iteration from the NLM block are the same of the one computed in the current
iteration (convergence). This convergence is checked in the Check Convergence block.

When studying fixed-point functions that are contractions 5, convergence is obtained at first
iteration. However, UE assignment function is not a contraction and, thus, some methods
are necessaries to find convergence.

Hereafter, demand modelling, network topology, implemented congestion phenomena, arc
performance functions, strategies, route choice model and the methods adopted to find con-
vergence are described in detail.

3.1 Demand Modelling

People spend their day doing activities that often are engaged in different locations, thus
different trips are produced. Each trip is associated with some disutility due to time usage
and comfort, and transport demand must be estimated considering it. More precisely, travel
demand is usually segmented in different groups g ∈ G of users, called passengers in public
transport simulation, that have different personal characteristics and trip purposes.

In the implemented model, travel demand is expressed as Origin-Destination (OD) matrices,
usually partitioned according to land, means and time.
For what concerns the land partition, the land is divided into a set Z of zones, where each
zone represents an area with similar characteristics, such as homogeneity of activities. All
the socio-economic activities located in a zone are assumed to be concentrated in one single
point, called centroid, where trips start and end. For model purposes, two different centroids
cannot be associated with the same origin or destination node. Links between centroids and
transport network are done through origin and destination nodes.
From the means point of view, passengers of public transport can perform their trips in a
set M of different ways called modes. Each mode is a set of transport systems and rules on

4Spanning tree T ⊆ (N, A), such that the hyperpath distance from its root to any other vertex is the shortest
hyperpath distance.

5F contraction: ∀x, y ||F(x)− F(y)|| 6 ||x− y||.
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how/where it can be accessed and implies different travel times and costs. In the imple-
mented model, only one mode will be available, which is the public transport mode (PuT).
PuT is composed of all the public transport system, such as metro, train, bus, and the walk
option.
Finally, demand is partitioned according to thetime interval t ∈ T in which the flow of users
departs from a certain origin towards a certain destination.
The portion of travel demand representing user group g ∈ G which goes from origin o ∈ Z
to destination d ∈ Z, with mean m ∈ M at time t ∈ T travel demand is denoted as dg

odmt.

As in this thesis only the transit service is simulated, the mode is assumed to be public
transport and variable m will not be specified anymore. Moreover, the model is static and,
consequently, the demand is fixed (i.e. non-dependant from OD skim matrices) and the ref-
erence to time will also be omitted.

3.2 Network Topology

The model represents transport supply through a directed graph (N, A), where N is the set of
nodes n and A is the set of links/arcs a. The zone centroids are a subset of these nodes (Z ⊆ N).
It is assumed that on the graph exists a non-empty set Kod of acyclic paths connecting each
origin o ∈ O ⊂ Z to every destination d ∈ D ⊂ Z.

The graph is articulated in sub-networks, consisting of separate layers of arcs and nodes that
are reserved to one specific transport system. Sub-networks are connected by inter-modal
arcs and, consequently, each mode is identified indirectly by the set of inter-modal arcs that
can use. For example, public transport can use connector arcs between centroids and the
pedestrian network, and stop arcs between the pedestrian network and the transit lines.

Figure 3.2 represents an example of the supply graph at a given stop s ∈ S, called transit
network. The transit graph is composed of:

• the pedestrian network (sub-network of the base network, where pedestrians can walk);

• the line network (that represents all possible trip phases for each line);

• the inter-modal arcs that connect centroids to the pedestrian network;

• the inter-modal arcs that connect the pedestrian network to the line network, which is
composed of one sub-network for each service line.

Thus, the transit graph is composed of the following types of nodes and links:

• zone centroids Z;

• base nodes Nbase (and its subset con-
nected to stops Bs);

• stop nodes S;

• line nodes Nl ;

• origin and destination connector arcs
Aorig, Adest;

• base arcs Abase;
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FIGURE 3.2: Topology of the transit graph at a given stop s ∈ S.

• stop arcs Astop;

• waiting arcs Aboard;

• boarding/placing arcs Aboard;

• running arcs Arun;

• dwelling arcs Adwell .

It is important to stress out that the described graph is a simplified version of the one
adopted in the model. Indeed, the model can differentiate the seating option from the stand-
ing one by introducing seat arcs and stand arcs. Consequently, the graph in figure 3.2 should
have more arcs. More precisely, each of the boarding/placing arcs, running arcs, dwelling
arcs and alighting arcs should be divided into two different arcs, one for seat passengers
and one for stand passengers and switch arcs should be added to represent the possibility
of sitting during dwelling. Moreover, the implemented model studies also the possibility of
not enough seats to board, thus fail-to-board arcs must be introduced as well.
However, in this section only the simplified graph of figure 3.2 will be described for sake of
simplicity (indeed, from the topological point of view, having seat and stand arcs is irrele-
vant).

3.2.1 Base Network

The base network (Nbase, Abase) is a sub-network of (N, A) that represents infrastructures, such
as roads and rails.
usepackageEach node n ∈ Nbase of the base network has geographic coordinates. Base arcs
a ∈ Abase are described by polylines with intermediate points to allow map representation
though GIS (Geographic Information System).
Link a ∈ A in the base network is characterized by the following parameters:
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• lbase
a length;

• vwalk
a walking speed (non-walkable

arcs have a null speed);

• xwalk
a sidewalk width (non-walkable

arcs have a null width).

The pedestrian network is the subset of the base network composed of walkable links the
nodes between.

3.2.2 Line Network

Line network is a sub-network of (N, A) that consists of a set S ∈ N of nodes called stops,
between which service operates.

Each stop s ∈ S represents a unique geographic location where passengers can access to
transit services (e.g. a platform) and that is associated with a base node Ns ⊂ N. It is
assumed that transfers within a single stop take zero walking time.

Stops are served by transit services, which are organized in a set L of lines. A line l ∈ L serves
an ordered set of stops Sl ∈ S, with no repetitions (circular lines and side-trips are excluded
from the model). Each stop s−l ∈ Sl is linked to the successive stop s+l ∈ Sl in the line by a
so-called line segment. For visualization requirements, each line segment is associated with
an acyclic path on the base network, whose support arcs are denoted support edges.

Stops that are usually perceived as one unique network element are grouped in stop areas,
while similar lines and their reverse are grouped in line sets. However, it is assumed that
grouping has no consequence for passenger route choice.

The line network has a sub-network for each service line, articulated in boarding, running,
dwelling and alighting arcs to represent separate trip phases. To do this, for each stop s ∈ Sl

of line l ∈ L two nodes, called arrival node Narr
ls and departing node Ndep

ls , are introduced.
Moreover, for each stop s ∈ S, a boarding node Nboard

s is added to the graph.

For each link of the line network, variables la ∈ L and sa ∈ S are used to indicate respectively
the line and the stop associated to it. For a ∈ Arun, sa indicates the stop at the head of the link.

The generic line l ∈ L is characterized by a strictly positive running time trun
ls for each line

segment ls = s−l s+l and a non-negative dwelling time tdwell
ls for each stop s ∈ Sl .

Often the running time is not a direct input but derives instead from more aggregated data
sources. In practical the running time of line segment ls = s−l s+l is the sum of the travel time
of its support edges, plus a stop time tstop

l characteristic of the line:

trun
ls = tstop

l + ∑
a∈Bls

la

Sa
, (3.1)

where Sa is the commercial speed along link a ∈ Bls of segment ls, under the assumption all
lines using that edge are characterized by the same transport system.

Also, line l ∈ L is characterized by a strictly positive alighting time talight
ls to indicate the time

necessary for getting off the vehicle and accessory operations (such as baggage claim) at stop
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s ∈ Sl , and a strictly positive boarding time tboard
l , which represent the time for getting on the

vehicle (usually negligible) plus the a priory anticipation of passengers in reaching the stop
or the safety margin in transfers. Further details can be found in Gentile et al. (2016a).

In schedule-based networks, lines are served by an ordered set of runs Rl , where a run r ∈ Rl

represents one vehicle serving all stops of its line in order. It is assumed that each run r ∈ Rl

has a schedule with an arrival time τrs and a departure time θrs for each stop s ∈ Sl .
When using frequency-based models, only the departure time of each run from the first
stop and the scheduled running times between subsequent stops are known, while dwelling
times are computed through the simulation (they may depend on flows of alighting and
boarding passengers as well as of vehicles occupying the platform).

A generic stop s ∈ S has the following attributes

• kpax
s platform passenger capacity; • kveh

s platform vehicle capacity;

while the relevant attributes of a vehicle serving the generic line l ∈ L are

• tmin
l minimum dwelling time;

• tdoors
l door manoeuvre time;

• kseat
l seat capacity;

• kstand
l stand capacity;

• kalight
l alight capacity;

• kboard
l board capacity.

Each line segment ls of line l ∈ L at stop s ∈ Sl is characterized by the expected headway
E (hls), which represents the time interval between two successive departures of the line
from the stop. The expected headway hls of line l ∈ L at stop s ∈ Sl is assumed to be an
independent random variable with Erlang distribution, characterized by irregularity param-
eter σls. Further details can be found in Gentile et al. (2016a).

From the expected headway E (hls), the frequency fls of line segment ls of line l ∈ L at stop
s ∈ Sl , representing the number of run departures from the stop in the studied time interval,
is computed as:

fls =
1

E (hls)
. (3.2)

Under the assumption of constant running and dwelling times, the frequency is constant.

Finally, knowing the frequency fls of line segment ls of line l ∈ L at the generic stop s ∈ Sl ,
for each vehicle capacity kl introduced before (e.g. seat capacity, stand capacity. etc.), the
corresponding line segment capacity Kls can be computed as follows:

Kls = kl · fls. (3.3)
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3.3 Congestion Phenomena

As stated at the beginning of this section, different congestion phenomena can be simulated
by the implemented model through the introduction of additional costs on the interested
arcs.
Hereafter, congestion phenomena simulated by the model.

3.3.1 Overcrowding Congestion

At higher densities, the more passengers are packed, the more likely they perceive this as
uncomfortable and stressful. Hence, passengers travelling through crowded vehicles and
platforms will be willing to re-route on longer but less-congested routes.

For what concerns passengers on-board, their discomfort increases with in-vehicle loading,
which can be measured by the saturation rate (i.e. the number of passengers on board divided
by the vehicle capacity). This is directly related to the seat availability and the density of
standing passengers:

• for low/medium saturation rates, crowding discomfort is due to the lower probability
of getting a seat;

• for medium/high saturation rates, crowding discomfort is due to the close physical
distance with other passengers;

• for higher saturation rates, crowding discomfort is due to physical contact and pres-
sure of other passengers.

To represent these phenomena, the running travel time for all standing passengers on-board
of a vehicle of line l ∈ L at stop s ∈ Sl is multiplied by the following BPR-type factor
BPRv−crowd

ls

BPRv−crowd
ls (qa) = αcrowd ·

(
qa

Kstand
ls

)βv−crowd
l

, (3.4)

where:

• qa is the standing flow attempting to use the link;

• αcrowd and βv−crowd
l are vehicle overcrowding discomfort parameters;

• Kstand
ls is the stand capacity of line l at stop s ∈ Sl , which can be computed with equa-

tion 3.3.

With regards to passengers waiting at platforms, their discomfort due to overcrowding can
be modelled in the same way, introducing a multiplication factor to the wait time.
Again, this can be done through a BPR-type BPRp−crowd

s factor computed for stop s ∈ S by
the following equation

BPRp−crowd
s (qa) = αcrowd ·

 ∑
b∈s+

(qb · tb)

kpax
s


βp−crowd

, (3.5)
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where:

• kpax
s is the platform capacity of stop s ∈ S;

• αcrowd and βp−crowd are platform overcrowding discomfort parameters;

• qa = ∑
b∈s+

(qb · tb) yields the expected number of passengers waiting at the stop s ∈ S

(qb is the sum of the passenger flow for each waiting arc exiting from the stop and tb is
its expected time).

It can be observed that the crowding discomfort for standing passengers depends only on the
flow of standing arcs (separable congestion), while the crowding discomfort for passengers
at stop depends on several arc flows (non-separable).
Typical values of αcrowd and βcrowd are respectively 1 and 2.

3.3.2 Queuing Congestion

When overcrowding is very heavy, and the crush capacity is reached on-board, no further
passenger can get on the vehicle. Then, an over-saturation queue of passengers waiting at
the stop is formed, increasing the expected waiting time. Clearly, this phenomenon does not
affect the passengers that are already on-board, but only the ones willing to board.
The additional wait time due to the lack of space on-board increases not only with the num-
ber of passengers wishing to board but also with the number of dwelling passengers that
are already on-board (queuing congestion is not separable). The dwelling passengers clearly
have a priority on passengers attempting to board with respect to the occupation of the avail-
able vehicle space. Moreover, dwelling passengers are not affected by passengers waiting to
board, unless discomfort is considered.
Queuing congestion is thus patently non-separable.

Two main modelling approaches are usually adopted to represent crush capacity:

• soft capacity constraints;

• strict capacity constraints.

In the first case, the vehicle capacity can be exceeded by the number of on-board passengers.
Congestion affects the cost pattern through the so-called effective frequency (De Cea and
Fernandez, 1993), inducing additional impedance on waiting arcs by decrease the nominal
frequency of studied line. Then, the route choice model will indirectly tend to lower the
on-board flow exceeding the line capacity.
However, relevant capacity violations can result at the equilibrium when no alternative route
is available. In the implemented model, capacity violations are allowed only for standing
passengers, as it is assumed they can squeeze, contrarily to sitting passengers.

In the second case, the vehicle capacity will never be exceeded by the number of on-board
passengers.
Strict capacity constraints can be satisfied in several ways, as described in Gentile et al.
(2016b). This thesis adopts the fail-to-board probability method (Kurauchi et al., 2003), which
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removes the flow in excess from the waiting arc and ideally injects it in the following tem-
poral layer (e.g. “next hour”).

The implemented model allows the user to choose which of the two capacity constraints
should be adopted, assuming passengers mingling at stops.

Effective Frequency

The effective frequency method reduces the nominal frequency fls of line l ∈ L at stop s ∈ Sl

according to the vehicle remaining capacity.
The fundamental idea behind this approach is that, when passengers mingle at stops (that
is the implemented model case), the probability to succeed in boarding the next desired
approaching vehicle decreases on average with the level of on-board congestion. The latter
is expressed by the saturation rate of the next line segment (running arc), where the waiting
flow and the dwelling flow merge.
Therefore, efficient frequency can be computed as follows

f e f f
ls (qa) =

fls

1 + αqueue ·
(

qa

Kveh
ls

)βqueue , (3.6)

where:

• fls is the nominal frequency of line l ∈ L at stop s ∈ Sl ;

• qa is the flow of passengers on board of next line segment (running arc), equal to the
sum of the dwelling flow qd and the waiting flow qa;

• Kveh
ls is the vehicle capacity of line l ∈ L at stop s ∈ Sl , which can be computed as the

sum of the seat capacity Kseat
ls and the stand capacity Kstand

ls of line l ∈ L at stop s ∈ Sl ,
introduced in section 3.2.2 Line Network;

• αqueue and βqueue are the BPR parameters for queuing congestion, whose typical values
are respectively 1 and 4.

The expected wait time at stop s ∈ Sl is, hence, calculated by applying the same equations
that are valid in the uncongested case (that will be introduced in section 3.4.6 Waiting Arcs),
whereas the nominal frequency is substituted with the effective frequency

twait
ls (qa) =

hls
2
·
(
1 + σ2

ls
)

f e f f
ls

, (3.7)

where:

• f e f f
ls is the effective frequency of line l ∈ L as stop s ∈ Sl computed with equation 3.6;

• hls is the expected headway of line l ∈ L at stop s ∈ Sl ;

• σls is the variation coefficient representing service irregularity of line l ∈ L at stop s ∈ Sl .
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In general, the method of effective frequency may result in travel times that are unrealisti-
cally high as static assignment models are not able to reproduce the accumulation capacity of
the network. Thus, a practical way of representing queues in the context of static assignment
is obtained by coupling the effective frequencies and optimal strategies into a UE model, as
it will be explained in section 3.5.1 Waiting Hyperarcs.

Fail-to-board Probability

As in the effective frequency method, the fail-to-board probability approach is based on the
idea that, when mingles queues occur at the stop, the probability to succeed in boarding
the next approaching vehicle depends on the saturation flow of the vehicle and the flow of
passengers wishing to board.
Hence, when strict capacities are considered and line l ∈ L is over-saturated (remaining ca-
pacity smaller than demand), some travellers will fail to board.
Fail-to-board probability method represents this phenomenon through the introduction of
the so-called fail-to-board arcs, which represent the connection with the following temporal
layer (e.g. “next hour”). Indeed, this method removes the flow in excess from waiting arcs
and, ideally, injects it in next temporal layer of a quasi-dynamic assignment 6. In practice,
as a static assignment is performed, passengers who failed to board are eliminated from the
model.

Furthermore, all waiting passengers for line l ∈ L at stop s ∈ Sl suffer from an additional
cost c f ail

lsg due to the risk of fail-to-board, which is additional to the temporal cost of waiting
for the arrival of the boarded service. This additional cost can be computed for each user
group g ∈ G through the risk-averseness coefficient γrisk

g towards abnormal delays (fail-to-
board is perceived as a system malfunctioning), as shown in the following equation

c f ail
lsg = γrisk

g · p f ail
a

fls

(
1− p f ail

a

) , (3.8)

where:

• fls is the nominal frequency of line l ∈ L at stop s ∈ Sl ;

• p f ail
a is the fail-to-board probability.

The term at the denominator of equation 3.8 can also be a sort of effective frequency and its
inverse as a sort of effective expected headway. It coincides with the average additional time
that the passenger must wait if fail-to-board occurs for the first approaching vehicle. Thus,
the failing cost tends to infinity as the fail to board probability goes to one.
The number of passengers who will accept the risk of failing is a result of the equilibrium
mechanism.

6In quasi-dynamic models “a layer sequence of static models is defined, each referred to a time interval, to reproduce
some dynamic phenomena, such as queuing.” (Gentile et al., 2016a)



Chapter 3. Theoretical Background 28

3.3.3 Dwelling Delay

Passengers dwelling at stops experience some additional delays caused by difficulty in board-
ing, because of door capacity. Indeed, smaller is the capacity of the door, higher is the diffi-
culty for passengers to board, as it will be explained in section 3.4.3 Dwelling Arcs.
Moreover, when the standing saturation rate of a vehicle is large (i.e. vehicle overcrowding),
the nominal capacity of doors is reduced, and boarding/alighting passengers take more time
to access/egress the vehicle.

The following BPR-type function is used to model the additional delay due to overcrowding

BPRdwell
(

qdwell−stand
)
= 1 + αdwell ·

(
qdwell−stand

Kstand
ls

)βdwell

, (3.9)

where:

• αdwell
ls and βdwell

ls are the BPR parameters for dwelling at line l ∈ L at stop s ∈ Sl ;

• qdwell−stand is the flow of people standing on board of the dwelling vehicle;

• Kstand
ls is the stand capacity of line l ∈ L at stop s ∈ Sl , which can be computed with

equation 3.3.

Typical values of αdwell and βdwell are respectively 1 and 2.

3.4 Arc Performance Functions

Usually, the generic cost cag of link a ∈ A for user of group g ∈ G is the sum of a non temporal
cost cnt

ag and a temporal cost, given by the discomfort coefficient γag representing the value of time
of the group g ∈ G multiplied by the arc travel time ta, as shown in equation 3.10.

cag = cnt
ag + γag · ta. (3.10)

For what concerns the discomfort coefficient γag of the group g ∈ G, it can be computed by
multiplying the base value of time γvot

g for different weights (discomfort coefficients), that
change according to the arc type and arc flow.
Travel time ta is also function of flows, as it depends on congestion. More precisely, travel
time ta can be described by the following Bureau of Public Roads (BPR) formula

ta (qa) = t0
a ·
(

1 + α

(
qa

Ka

)β
)

, (3.11)

where:

• qa is the flow attempting to use link a ∈ A;

• t0
a is the free flow travel time on link a ∈ A;

• Ka is the capacity of link a ∈ A;

• α and β are the BPR parameters.
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In case of capacity equal to zero, the travel time is assumed to be infinite.
Finally, non-temporal costs depend on different disutility factors, such as monetary costs
and users’ preferences (length, slope, pollution, etc). An example is the value of distance γdist

g ,
which is the costs that user of group g ∈ G assigns to the travelled unit of distance.

The proposed arc performance model includes many coefficients expressing the attitudes
and preferences of the different user groups. One of the best ways to set these coefficient
values is by the calibration of a random utility model for route choice, based on surveys (in-
cluding both revealed and stated preference questions). Examples of calibration techniques
can be found in Cascetta (2001).

Hereafter, for each kind of arcs represented in figure 3.4, the model adopted for computing
its cost is described. As the computation process is the same, no matter which user group is
considered, here after the variable g will not be specified anymore.
Null cost is assigned to stop, fail-to-board, switch seat, switch stand, origin and destination
arcs.

3.4.1 Walking Arcs

Walking arcs represent passengers walking on sidewalks.
The non-temporal cost cnt

a of walking arc a ∈ Abase can be obtained multiplying the length
of the link la by the value of distance γdist.
For what concerns travel time ta, it coincides with the free flow travel time t0

a when the arc
capacity is large enough to avoid congestion, otherwise a BPR function like the one in equa-
tion 3.11 is adopted. The free flow travel t0

a can be computed as the ratio between the is the
link length la and the link walking speed vwalk

a .
Finally, the discomfort coefficient γa can be computed multiplying the value of time γvot

with the walking discomfort coefficient γwalk.

Equation 3.12 shows the general form of equation 3.10 in case of walking arcs.

ca = γdist · la + γvot · γwalk · la

vwalk
a

(3.12)

3.4.2 Running Arcs

Running arcs represent passengers sitting or standing on-board of a vehicle travelling from
one stop to the successive.
The non-temporal cost cnt

a of running arc a ∈ Aline can be obtained multiplying the length of
the link la by the value of distance γdist, summed to the product of the kilometric fee ck f ee

l and
a possible fee multiplier γm f ee.
For what concerns travel time ta, it is usually assumed to be just the running time of the
line segment (i.e. link) introduced in equation 3.1, where the speed of the support edges is
assumed to be constant 7.

7Transit assignment does not consider vehicle traffic, thus the time needed for the vehicle to travel a link of the
base network is constant.
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In case timetables exist and are strictly followed, the travel time ta is computed just as the
sum, over all runs r ∈ Rl , of the difference between the head stop arrival time τrsh and the
tail stop departure time θrst , divided by the number of runs (equation 3.13).

t0
a =

∑
r∈Ra

(
τrsh − θrst

)
|Rl |

(3.13)

Finally, the discomfort coefficient γa can be computed as the product of the value of time
γvot, the line discomfort coefficient γline, and the seat discomfort coefficient γseat (or the stand
discomfort coefficient γstand in case of standing arcs).
The line discomfort coefficient γline indicates some additional attributes of the line which
can influence users’ cost perception (e.g. air conditioning, leather seats, etc.) and can be
computed through the following equation

γline = 1 + ∑
c∈Ccl

(
βline

c · alc

)
, (3.14)

where:

• Ccl is the set of such attributes;

• alc is line l attribute;

• βc is the user group’s utility coefficient relative to the line attribute alc.

Equation 3.15 shows the general form of equation 3.10 in case of seat running arcs (the one
for stand running arcs is similar).

ca = la ·
(

γdist + γm f ee · ck f ee
ls

)
+ γvot · γseat · γline · t0

a (3.15)

As explained in section 3.3.1 Overcrowding Congestion, the effect of overcrowding must
be considered for standing passengers. To this purpose, a BPR-type additional time due to
discomfort tcrowd

a is added to the link cost ca.
This additional time is computed multiplying the product between free flow travel time
t0
a and the discomfort coefficient γa by the BPR-type factor introduced in equation 3.4, as

follows

ta (qa)
crowd = t0

a · γa · αcrowd ·
(

qa

Ka

)βcrowd

, (3.16)

where:

• qa is the flow attempting to use the link;

• t0
a is the free flow travel time on the link;

• Ka is the capacity of the line;

• αcrowd and βv−crowd
l are overcrowding discomfort parameters.

3.4.3 Dwelling Arcs

Dwelling arcs represent vehicle dwelling at stops. Dwell time is the period when a vehicle
is immobilized at a stop to allow passengers alighting and boarding, and it is composed of a
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series of processes:

1. doors opening after the vehicle is safely positioned at stops;

2. passenger alighting and boarding;

3. doors remaining open without passenger flow (if necessary);

4. doors closing, safety control, and vehicle departing.

The first and last process are independent of the vehicle loads and is represented by the door
manoeuvre time tdoors

l . The second process is associated to the passenger alighting and board-

ing time tdwell
a

(
qalight, qboard

)
), that is greater than zero as the doors are assumed to have

finite capacity Kalight
l and Kboard

l (as introduced in section 3.3.3 Dwelling Delay). Finally, the
third process is done only if the operational minimum dwelling time tmin

l is not yet passed.
Thus, the travel time ta corresponds to the maximum between the tmin

l , if existing, and
the sum of the door manoeuvre time tdoors

l and the passenger alighting and boarding time

(tdwell
a

(
qalight, qboard

)
).

The passenger alighting and boarding time (tdwell
a

(
qalight, qboard

)
) depends on non-separable

congestion (alighting flow qalight and boarding flow qboard) and it is computed differently ac-
cording to whether doors are dedicated or not, as shown in the following equation

tdwell
a

(
qalight, qboard

)
=


qalight

Kalight
l

+
qboard

Kboard
l

not dedicated doors

max

(
qalight

Kalight
l · fls

,
qboard

Kboard
l · fls

)
dedicated doors

, (3.17)

where:

• qalight and qboard are respectively the corresponding alighting and boarding flow;

• Kalight
l and Kboard

l are respectively the corresponding alighting and boarding capacity
(in terms of flow);

• fls is the frequency of line l ∈ L at stop s ∈ Sl .

Moreover, since the capacity of doors can be reduced by the effects of on-board overcrowd-
ing (difficulty of moving inside the carrier due to passenger on-board), the final dwelling
time due to alighting and boarding flows can be obtained multiplying the result of equation
3.17 by the BPR factor BPRdwell

(
qdwell−stand

)
introduced by equation 3.9.

Finally, the non-temporal cost cnt
a of dwelling arc a ∈ Aline is null, while the discomfort coef-

ficient γa is just of the value of time γvot.

Equation 3.18 shows the general form of equation 3.10 in case of dwelling arcs.

ca = γvot ·max
(

tmin
l , tdoors

l + tdwell
a

(
qalight, qboard

)
· BPRdwell

(
qdwell−stand

))
. (3.18)

3.4.4 Alighting Arcs

Alighting arcs represent users alighting a vehicle at stops.
The non-temporal cost cnt

a of the alighting arc a ∈ Aline is equal to the cost of transfer ctran.
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This cost of transfer represents different aspect of transfer disutility, not necessarily con-
nected with a measurable delay (e.g. psychological stress of possibly changing line, addi-
tional travel time variance induced by the transfer, etc.).
For what concerns the travel time ta, it is assumed to be the alighting time talight

ls of the cor-
responding line l ∈ L at the corresponding stop s ∈ Sl (introduced in section 3.2.2 Line
Network).
Finally, the discomfort coefficient γa is simply of the value of time γvot.

Equation 3.19 shows the general form of equation 3.10 for alighting arcs.

ca = ctran + γvot · talight
ls (3.19)

3.4.5 Placing Arcs

Placing arcs represent users that, once boarded on a vehicle, find their space on it.
The non-temporal cost cnt

a of the placing arc a ∈ Aline can be obtained multiplying the board-
ing fee cb f ee

ls of line l ∈ L at stop s ∈ Sl by possible fee multiplier γm f ee.
For what concerns travel time ta, it is usually assumed to be null as it overlaps with the travel
time of the corresponding waiting arc and those of running arcs.

Equation 3.20 shows the general form of equation 3.10 for alighting arcs.

ca = γm f ee · cb f ee
ls (3.20)

3.4.6 Waiting Arcs

Waiting arcs represent passengers waiting to board a specific line. As introduced in sec-
tion 3.3.2 Queuing Congestion, their cost depends on which kind of capacity constraint type
(i.e. soft capacity constraints and strict capacity constraints) is adopted. Hence, a general
framework for computing the cost of waiting arcs, which can be applied to both methods, is
described in this section.

For what concerns the temporal cost ta of waiting arc a of line l ∈ L at stop s ∈ Sl , it is
usually composed of the three following terms:

• the expected waiting time twait
ls before boarding the vehicle;

• the additional time tplat
ls associated to overcrowding congestion at platforms (intro-

duced in section 3.3.1 Overcrowding Congestion);

• the fail-to-board additional cost c f ail
ls (introduced in section 3.3.2 Queuing Congestion).

When soft capacity constraints are considered, the effective frequency methods are adopted.
Hence, all passengers must go to destination. Thus, the fail-to-board additional cost c f ail

ls is
null and the expected waiting time twait

ls is computed as follows

twait
ls (qa) = t0

a ·
fls

f e f f
ls

·, (3.21)
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where:

• fls is the nominal frequency of line l ∈ L at stop s ∈ Sl ;

• f e f f
ls is the effective frequency computed with equation 3.6;

• t0
a is the free flow travel time of line l ∈ L at stop s ∈ Sl , computed with in different

ways according to the type of service.

In case of services characterized by frequency, free flow travel time t0
a is computed as follows

t0
a =

hls
2
·
(

1 + σ2
)

, (3.22)

where:

• hls is the expected headway of line l ∈ L at stop s ∈ Sl ;

• σls is the variation coefficient representing service irregularity of line l ∈ L at stop s ∈ Sl .

On the other hand, when the service is characterized by a schedule, the following equation
3.23 is applied

t0
a = min

(
hls
2

, tboard
l

)
, (3.23)

where:

• hls is the expected headway of line l ∈ L at stop s ∈ Sl ;

• tboard
l is the boarding time of line l ∈ L associated to the safety margin introduced in

section 3.2.2 Line Network.

The former formula represents the rational choice of a user, which chooses the most conve-
nient option between waiting at the stop on average for half of the expected headway, or
staying at home and waiting at the stop only the time associated to the safety margin.

When fail-to-board is considered, the expected waiting time twait
a of the waiting arc a ∈ A

can also be computed with equation 3.21, assuming that effective frequency f e f f
ls is equal to

the nominal one ( fls). For what concerns the additional cost c f ail
ls related to fail-to-board, it

can be computed with equation 3.8 introduced in section 3.3.2 Queuing Congestion.

Finally, the additional time tplat
ls associated to overcrowding congestion at platforms is com-

puted multiplying the waiting time twait
ls by the BPR-type factor of equation 3.5.

Thus, being the discomfort coefficient γa the product of the value of time γvot and the wait
discomfort coefficient γwait, the generalized cost of waiting arcs becomes

ca (qa, qd) = c f ail
ls (qa, qd) + γa ·

(
twait
ls + tplat

ls

)
=

= γrisk · p f ail
a (qa, qd)

fls

(
1− p f ail

a (qa, qd)
)+

+γvot · γwait · twait
ls ·

(
1 + BPRp−crowd

s (qa)
)

,

(3.24)

where:
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• γrisk, γvot and γwait are respectively the risk averseness coefficient, the value of time
for waiting arcs and the waiting discomfort coefficient;

• p f ail
a is the fail-to-board probability;

• fls is the nominal frequency of line l ∈ L at stop s ∈ Sl ;

• twait
ls (qa) is the waiting time of line l ∈ L at stop s ∈ Sl , as in equation 3.21;

• BPRp−crowd
s (qa) is the BPR-type coefficient of equation 3.5 (qa is the vector of passen-

ger flow the platform).

3.5 Strategies and Hyperpaths

In transport modelling, a strategy can be defined as the plan users adopt to reach the desired
destination at a minimum expected cost.
Strategic behaviour usually results in lower costs and, thus, it is adopted by passengers. In-
deed, it could be better to board a slower line that is arriving earlier than to wait for a faster
line that will arrive later, where “slow” and “fast” do not refer to the commercial speed of
the line but to the expected travel time to reach the destination once boarded the line (which
may include further sub-strategies and other lines).
To model travel strategies, it is assumed that passengers choose the strategy pre-trip. More-
over, the concept of diversion point is introduced.
As stated by Gentile et al. (2016a), “diversion points are nodes where users may exploit informa-
tion acquired along the trip, about variables that are preventively seen as random unknowns, and on
this base, can make en-route decisions on how to proceed toward the destination”.
This information may be acquired at the diversion node itself (e.g. a vehicle is approaching
the stop, timetables are visible at the stop), or before with modern information system (e.g.
timetables are available online).
A travel strategy is then described by an “iterative sequence of route diversions, starting from the
origin, until the destination is reached for each possible combination of events, given the considered
options” (Gentile et al., 2016a).
Two main kinds of strategies exist: strategies that are outcome of events and strategies that
depend on random variables.

An example for the first kind is passengers waiting at stops, which are diversion points.
Passengers choose their strategy (e.g. take the first bus that brings to destination) at home,
setting the subset of the attractive lines. Once at the stop, they will choose which line (of the
attractive set) to take, because of an event (e.g. vehicle approaching the stop). Furthermore,
the journey will follow different routes depending on which event has happened.
Hence, when a strategic behaviour is adopted, passengers’ decisions do not consist in which
vehicle to board (which is an information that reveals itself en-route), but which strategy to
adopt.
For what concerns strategies depending on random variables, examples are passengers board-
ing a vehicle and trying to seat, or passengers on a crowded platform and trying to board
a vehicle. In these cases, the outcome of the strategy depends only on if the passengers are
lucky enough to find a seat or a space on-board. Thus, passengers do not continue their
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journey in a specific way because of the revelation of information (as in the previous case),
but based on estimations.

From a topological point of view, strategies on transit networks are formalized with hyper-
arcs and hyperpaths. The topological definition of hyperarcs and hyperpaths is described in
following lines.

For definition, a hyperarc ǎ is a non-empty set of diversion arcs exiting from a diversion node
i ∈ Ndiv ⊆ N (i.e. a subset of its forward star i+).
The generic hyperarc ǎ ⊆ i+ of the diversion node i ∈ Ndiv has as tail ǎ− the diversion node
itself, while its head ǎ+ is the set of nodes {a+ : a ∈ ǎ}.
Each branch a ∈ ǎ of a hyperarc ǎ ∈ H, being H the set of hyperarcs, is characterized by the
following variables:

• the diversion probability pa|ǎ of using branch a among all branches ǎ of the hyperarc;

• the conditional travel time ta|ǎ connected to using branch a as part of the hyperarc ǎ;

• the conditional cost ca|ǎg connected to using branch a ∈ ǎ as part of the hyperarc ǎ ∈ H
for users of group g ∈ G.

For notation consistency, it is intended that if a /∈ ǎ then pa|ǎ = 0, ta|ǎ = 0, ca|ǎg = 0.

The generic hyperpath k is a “bush” of arcs that connects its unique origin k− to its unique
destination k+. Thus, from a topological point of view a hyperpath can be defined as an
acyclic sub-graph (Nk, Ak) with:

• one origin;

• one destination;

• one successor arcs for each node, except the destination (which has none) and the di-
version nodes (which may have more than one);

• one or more predecessor arcs for each node, except the origin (which has none).

The cost of the generic hyperpath k can consequently be defined as the sum of its arc costs and
of its hyperarc branch costs, multiplied by the probability of using these arcs when following
that route. A path is a hyperpath that does not include diversions.

Figure 3.3 shows an example of hyperpath k from origin o to destination d.
From this picture, it can be observed that hyperpath h is composed of the hyperarc ǎ = {a, b},
even if 7 possible hyperarcs are exiting (the diversion node i ∈ Ndiv (i.e. all the possible com-
binations of diversion arcs a, b and c).
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FIGURE 3.3: Example of a hyperpath k from origin o to destination d. The
hyperpath is depicted in dashed red lines. The diversion nodes are in red.

The bold lines are diversion arcs.

When studying hyperarcs, the combined cost cǎg of hyperarc ǎ and its combined travel time
tǎ are given respectively by the following equations

cǎg = ∑
a∈ǎ

ca|ǎg · pa|ǎ (3.25)

tǎ = ∑
a∈ǎ

ta|ǎ · pa|ǎ (3.26)

where:

• ca|ǎg is the conditional cost connected to using branch a ∈ ǎ for users of group g ∈ G
(i.e. cost of link a);

• pa|ǎ is the diversion probability of using branch a ∈ ǎ among all branches ǎ of the
hyperarc;

• ta|ǎ is the conditional travel time connected to using branch a ∈ ǎ (i.e. travel time of
link a).

Being the generic cost cag of link a ∈ A for user of group g ∈ G is the sum of a non-temporal
cost cnt

ag and a temporal cost, and combining equation 3.25, the final form of the combined cost
cǎg of hyperarc ǎ is the following:

cǎg = ∑
a∈ǎ

ca|ǎg · pa|ǎ = ∑
a∈ǎ

(
cnt

ag + γǎg · ta|ǎ

)
· pa|ǎ = ∑

a∈ǎ
cnt

ag · pa|ǎ + γǎ−g · tǎ. (3.27)

The value of time γǎg it was assumed to be equal for all diversion arcs exiting the same di-
version node i = ǎ−.

In conclusion, a strategy can be defined as a hyperpath that connects the origin-destination
pair of the trip. Each strategy has an expected cost which corresponds to the cost of a hyper-
path.
As the number of hyperarcs and of hyperpaths that can be defined on a network can be
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huge, although finite, an implicit enumeration of hyperpaths is usually adopted as the ex-
plicit enumeration is prohibitive.

3.5.1 Hyperarcs of the Model

Figure 3.4 represents the adopted graph for a generic line l ∈ L and its generic stop s ∈ Sl

when strategies are modelled.
As introduced in section 3.2 Network Topology, this graph is slightly different from the gen-
eral one explained in figure 3.2. More precisely, the model distinguishes stand and seat pas-
senger flows, by splitting line links and by introducing placing and switching links. More-
over, a fail-to-board arc is added to the graph to simulate passengers that are not able to
board any vehicles during the simulation time, as it will explain later.

FIGURE 3.4: Example of adopted graph, with seating line (in red), standing
line (in green) and fail-to-board arc (in blue).

From figure 3.4 besides the nodes explained in section 3.2 Network Topology, the graph
adopted in the model has a new kind of nodes: the diversion nodes, introduced to represent
strategy and hyperarcs. When more than one line is represented, the generic stop node s
becomes a diversion node.

The implemented graph has three types of diversion nodes: board placing node Np−board
ls , stand

arrival placing node Np−stand
ls and stop node s (when more than one line serve the stop).

Consequently, three types of hyperarcs can be introduced:

• boarding hyperarc;

• dwelling hyperarc;
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• waiting hyperarc.

The first and the second hyperarc represent the probability of passengers to seat, while the
third one represents the probability of passengers to board the desired line.
Noteworthy, as introduced in section 3.3.2 Queuing Congestion, for seating hyperarcs there
is no choice to be made, as the probabilities depend only on a physical random event (in fact
there is just one exiting hyperarc). Moreover, for waiting hyperarcs, the choice consists in the
determination of the attractive line set, which depends solely on given expected headways
and remaining costs (i.e. expected cost perceived by users to reach the destination), while the
resulting diversion probabilities depend on passenger flows (no choice).

Hereafter, how these hyperarcs are implemented and how they work is described in detail.

Seating Hyperarcs

As introduced before, passengers travelling on transit services experience discomfort by
standing versus sitting. Passengers are subject to the random process of finding a seat on-
board of line l ∈ L at stop s ∈ Sl at two different nodes of the graph:

1. the board placing node Np−board
ls , where passengers are boarding the desired vehicle and

may find a seat according to the vehicle remaining capacity (i.e. vehicle capacity minus
passengers already on-board);

2. stand arrival placing node Np−stand
ls , where passengers standing on-board of a vehicle

may find a seat because of sitting passengers alighting from the vehicle.

In the former case it is assumed that passengers who are already on board have priority over
the newly boarding passengers in two ways:

1. passengers arriving at a stop sit have guaranteed a seat for the next line segment so
that they either alight or remain seated;

2. passengers arriving at a stop standing who do not alight have priority over the passen-
gers newly boarding so that these passengers have a prior chance to occupy any seat
that might become vacant thanks to alighting passengers.

The model accomplishes the differentiation of the discomfort experienced by sitting versus
standing passengers by explicitly modelling the limited seat availability and the random
process of passengers finding a seat as a hyperarc.
Hyperarcs related to board placing node Np−board

ls are called boarding hyperarcs, while the
ones related to stand arrival placing node Np−stand

ls are called dwelling hyperarcs.

For both kind of hyperarcs, the hyperarc sitting diversion probability, which is called sit
probability, is simply given by the ratio between supply and demand seat, under the main
assumption that all competing passengers have (on average) the same motivation in chasing
any free seats. Hence, the diversion probability is anyhow bounded between 0 and 1.
The introduction of fail-to-sit probabilities ensures that the seating capacity of the vehicle is
never exceeded.
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For the dwelling hyperarc, the following equation is adopted to compute the sitting proba-
bility pa|ǎ of getting the switch seat arc a

pa |ǎ =
Kseat

ls − qseat
d

qa
, (3.28)

where:

• Kseat
ls is the seat capacity of line l ∈ L at stop s ∈ Sl , which can be computed with

equation 3.3;

• qseat
d is the flow of seat passengers dwelling;

• qa is the total flow of switching passengers, given by the sum of those who actually are
standing qa , and those who will continue their journey sitting qa .

At constant demand the probability of sitting increases with larger remaining capacity Kseat
ls −

qseat
d . Moreover, as the probability is bounded between 0 and 1, the diversion probability for

stand switching arcs (which is fail-to-sit probability) can be computed as the 1’s complement
of the one computed in equation 3.28.

Boarding hyperarcs have a similar sitting probability computation. In this case, the supply
is given by the seating capacity of line l ∈ L at stop s ∈ Sl (equation 3.3), reduced by the
dwelling passengers qd, while the demand is given by the boarding passengers qa.
For what concerns the fail-to-sit probability, it can be computed as the 1’s complement of the
sitting probability when the effective frequency method introduced in section 3.3.2 Effective
Frequency is adopted to represent queuing congestion.
Otherwise, if the fail-to-board probability method is adopted (section 3.3.2 Fail-to-board
Probability), an additional arc is introduced at the boarding node Np−board

ls and the hyperarc
is composed of three arcs instead of two. Hence, the fail-to-sit probability is computed as the
1’s complement of the sitting probability, the fail-to-board one.

For what concerns the expected waiting time of these hyperarcs, it can be computed by equa-
tion 3.26. This ensures that the expected cost of reaching the destination when boarding a
given line results from the average cost of sitting and standing, weighted by the sitting and
fail-to-sit probability, respectively. In turn, the cost of standing includes the possibility of
sitting at next stops.
As explained in Gentile et al. (2016b), this model implies that the alighting decision is not
predetermined anymore. Indeed, passengers who have obtained a seat might prefer to trans-
fer later, whereas standing passengers are more likely to transfer earlier.

Waiting Hyperarcs

As stated before, passengers choose strategies (pre-trip) to minimize their journey time. To
this purpose, they select a set of lines (i.e. attractive set), depending on given expected
headways and remaining costs, and, once at the stop, take the first vehicle approaching
from this set.
The attractive set is computed with a Greedy algorithm, which exploits the order of lines in
terms of remaining costs as follows:
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• starting from an empty set,

• add the lines in increasing order of remaining cost to reach the destination once boarded,

• stop when the remaining cost of the next line is higher than the current value of the
expected cost.

To model this strategic behaviour, the expected wait time of the first vehicle arrival for any
subset of the attractive line set, as well as the probability that each line arrives first, must be
computed.
The expected wait time tǎ of hyperarc ǎ ⊆ As (referred to as the combined wait time) can be
computed as follows:

tǎ =
1

∑
b∈ǎ

fb
, (3.29)

being fb the frequency of branch b ∈ ǎ and assuming that the line expected headways is
independently distributed with an exponential distribution8.
For what concerns the diversion probability pa|ǎthat branch a ∈ ǎ corresponds to the first
approaching vehicle, it can be computed as follows:

pa|ǎ =
fa

∑
b∈ǎ

fb
. (3.30)

From equation 3.29 and 3.30, it can be seen that the combined expected time of a waiting hy-
perarc, as well as the diversion probability of its branches, depends solely on the frequency
of its arcs (served lines). Obviously, this frequency corresponds either to the nominal fre-
quency or to the effective frequency, when the effective frequency approach described in
section 3.3.2 Effective Frequency is adopted.
The sum of the frequencies of all attractive lines is referred to as the combined frequency of the
stop.

It is important to stress out that, as congestion increases, more (and hence slower) lines are
included in the attractive set. Moreover, if all lines are congested, some passengers would
rather walk than continue to wait.
This leads to a stability condition: passengers waiting at a stop would consider an attractive
set that is never completely saturated and therefore each of them would be able to board the
first arriving vehicle for at least one of the attractive lines.

3.6 Route Choice Model

The algorithm adopts an arc based route choice model (RCM) that produces arc conditional
probabilities padg for each link a ∈ A, destination d ∈ D and user group g ∈ G. More pre-
cisely, it takes as input the cost of each arc and decides, for each node i ∈ N, the conditional
probability of each arc a ∈ i+ ⊆ A of its forward star i+ ⊆ A (sequential RCM). As the flow

8More general results can be found in Gentile et al. (2016b).
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conservation must hold for each node, the sum of the conditional probability over the for-
ward star of each must be equal to 1.

Assumption beyond the sequential application of RCM is that, in case of additive supply
models, users reach their destination through a sequence of choices at nodes, where the lo-
cal alternatives are the arcs of the forward star. These choices depend only on arcs cost to
reach destination and if they are connected to the destination or not.
The sequential approach is based on implicit enumeration of routes, which requires the in-
troduction of the following variables:

• wid expected cost perceived by users to reach the destination d ∈ D from node i ∈ N
(remaining cost);

• qid flow of users traversing node i ∈ N to reach the destination d ∈ D.

Thus, RCM finds the shortest hypertree by computing the remaining cost wid for each node
i ∈ N to reach destination d ∈ D and computes conditional probabilities padg for each link
a ∈ A, destination d ∈ D and user group g ∈ G.
Under the assumption that only efficient routes are considered (i.e. paths getting closer to
the destination with respect to some fixed cost), RCM computes the remaining cost of each
node by processing nodes in topological order with respect to the metric chosen to define effi-
cient routes.

RCM computes the conditional probabilities pad for each arc a ∈ A and destination d ∈ D as
follows:

• if arc a ∈ A does not belong to the shortest path T ∈ (N, A), its diversion probability
pad for destination d ∈ D is set to zero;

• if arc a ∈ T ⊆ A belongs to the shortest path T ∈ (N, A) and it does not belong to any
hyperarc ǎ ∈ H, its diversion probability pad for destination d ∈ D is set to 1;

• if arc a ∈ T ⊆ A belongs to the shortest path T ∈ (N, A) and it belongs to hyperarc
ǎ ∈ H, its conditional probability pad for destination d ∈ D is equal to the diversion
probability pa|ǎ (of taking arc a ∈ ǎ+ as branch of the hyperarc ǎ ∈ H).

Hereafter, the dynamic programming method adopted to compute the shortest hypertree for
each destination d ∈ D. For sake of simplicity, variable d will be omitted.

3.6.1 Shortest Hypertree Computation

The implemented method computes the shortest hypertree through an extension of Dijkstra
Algorithm (Dijkstra, 1959), which repeatedly applies the following Bellman update to every
arc a ∈ A, until no further cost improvement is possible (Bellman, 1958):

wa− ← min (wa− , wa) , (3.31)

where:
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• wa− is the current remaining cost of node a− ∈ N, tail of arc a ∈ A;

• wa is the remaining cost of node a− ∈ N, tail of arc a ∈ A, computed with equation
3.32).

Thus, Bellman update checks whether using arc a ∈ A can improve the current cost to reach
the destination from the initial node a−.

The remaining cost wi for each node i ∈ N to reach the destination taking arc b ∈ i+ of its
forward star i+ ⊆ A, can be computed as follows

wi = cb + wb+ , (3.32)

where:

• b+ is the head node of arc b ∈ i+;

• cb is the cost of arc b ∈ i+;

• wb+d is the remaining cost to reach the destination of the head b+ of arc b ∈ i+.

If the node is not connected to the destination, its perceived cost is infinite.

This concept can be extended to hyperarcs, considering that the remaining cost wi for each
diversion node i ∈ N to reach the destination by taking hyperarc b̌ ∈ i+ of its forward star
i+, is equal to:

wi =

cb̌ + ∑
b∈b̌

pb|b̌ · wb+

∑
b∈b̌

pb|b̌
, (3.33)

where:

• cb̌ is the cost of hyperarc b̌ ∈ i+;

• pb|b̌ is the diversion probability for branch b ∈ b̌ of hyperarc b̌ ∈ i+;

• wb+ is the remaining costs to reach the destination of head b+ ∈ N of branch b ∈ b̌ of
hyperarc b̌ ∈ i+.

To explain the extended Dijkstra Algorithm adopted to compute the shortest hypertree, the
normal version of Dijkstra Algorithm to compute the shortest tree 9 is described in the fol-
lowing lines and illustrated by the pseudo-code of algorithm 1.
First of all, the ordered list L of nodes to be visited and the list B of extraction node order
are created. Then list L is initialized with the destination, while list B is emptied. Moreover,
node remaining costs (called labels) are set to infinity for each node i ∈ N \D and to zero for
the destination.
Then, for each node i ∈ L extracted from list L, each arc a ∈ i− of its backward star is studied
and its label wi is updated according to Bellman update (equation 3.31).
Whenever a label wi of node i ∈ N is updated, the corresponding node i ∈ N is inserted in
list L according to the remaining cost wi value. If arc costs are not negative, nodes are visited

9Spanning tree T ⊆ (N, A), such that the path distance from its root to any other vertex is the shortest path
distance.
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only once, and the algorithm can adopt a label setting approach (i.e. the cost is not updated
if the node has already been extracted).
At each successful update of label wi of node i ∈ N, the algorithm records also the related
arc a ∈ i− as successor arc si of node i ∈ N.
When all arcs a ∈ i− from the backward star of node i ∈ N are analysed, node i ∈ N is
added to the list of visited node B, which provides the topological order of the nodes.
List B of the node extraction order will be reversed and used by the Flow Propagation block
of the UE assignment algorithm (figure 3.1).

Algorithm 1 Shortest Tree Computation Algorithm

1: procedure COMPUTE SHORTEST HYPERTREE

2: Step 1 (initialization):
3: L← L ∪ {i}
4: B← L = ∅
5: wi ← ∞ ∀i ∈ N; wd ← 0

6: Step 2 (get the next arc to examine):
7: ∀i ∈ L :
8: while L 6= ∅ do
9: L← L− {i}

10: for all a ∈ i− do
11: Bellman Update: wa− ← min (wa− , wa)
12: if Bellman Update succeeded then
13: L← L + {a−}
14: si ← a
15: B←i

When including strategies, Dijkstra Algorithm is modified as it may happen that the re-
maining cost wid of diversion node i = ǎ− ∈ N of hyperarc ǎ is lower than those of its
heads a+ ∈ ǎ+, which prejudices the label setting approach of the Dijkstra algorithm. In-
deed, nodes with lower cost could be extracted after nodes with a higher cost, so that a node
already extracted can be further optimized (and can be visited more than once). Moreover,
successive arc si of the diversion node i = ǎ− ∈ N of hyperarc ǎ cannot be defined, as the
head of the hyperarc may consist in more than one arc.
As a consequence of the presence of head costs higher than tail ones, the optimal strategy
can involve so-called absorbing cycles (e.g. an unlucky boarding passenger unable to seat,
who then alights at next stop and walks back to wait again for the line at the previous stop,
thus gaining another chance of sitting on-board), which is inconsistent with the definition of
hyperpath (i.e. acyclic graph).

To avoid this kind of paradoxes, there are two possible approaches:

1. Force the label setting everywhere including the stop, justifying it through a risk-
averse behaviour: passengers do not consider an alternative if it has a chance of ending
up to a higher cost.

2. Accept the label correcting (i.e. the cost is updated, no matters if the node has already
been extracted) except for alighting arcs, where a label setting approach is imposed,
and diversion nodes, which are addressed separately.
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In this thesis, approach number 2 is adopted. However, this approach is not optimal and
may cause difficulties in equilibrium convergence.

The adopted shortest hypertree computation algorithm studies the diversion nodes (i.e. the
diversion node is added to list L and its label is updated) only if some conditions are satis-
fied. More precisely:

• in case of seating hyperarcs, when both heads have already been extracted;

• in case of waiting hyperarcs, every time adding the arc related to the extracted node
will decrease the remaining cost of the hyperarc tail (i.e. the studied arc belongs to the
attractive line set).

In case of seating hyperarc ǎ ∈ H, the remaining cost wi of its diversion node i = ǎ− ∈ N
can be computed as follows (coupling equation 3.25 with 3.33)

wi =

∑
a∈ǎ

pa|ǎ · (ca + wa+)

∑
a∈ǎ

pa|ǎ
, (3.34)

where:

• pa|ǎ is the diversion probability of taking branch a ∈ ǎ+ of hyperarc ǎ ∈ H;

• ca is the expected cost of branch a ∈ ǎ+ of hyperarc ǎ ∈ H;

• wa+ is the remaining cost of node a+, head of the branch a ∈ ǎ+ of hyperarc ǎ ∈ H.

For what concerns the remaining cost wi of the diversion node i = b̌− ∈ N corresponding to
the waiting hyperarc b̌ ∈ H can be computed as follows (coupling equation 3.25 with 3.33)

wi =

γi + ∑
a∈b̌

wa+ · fa

∑
a∈ǎ

fa
, (3.35)

where:

• γi is the value of time for node i ∈ N;

• wa+ is the remaining cost of node a+, head of the branch a ∈ b̌+ of hyperarc b̌ ∈ H;

• fa is the frequency of branch a ∈ b̌+ of hyperarc b̌ ∈ H.

This is valid only after the assumptions that headways are regular and that diversion arcs
have only non-temporal costs.
If another branch c /∈ b̌ is added to the hyperarc (i.e. Greedy algorithm to compute attractive
line set of section 3.5.1 Waiting Hyperarcs), the new cost remaining cost wi of the waiting
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hyperarc b̌ ∈ H becomes:

wi

(
b̌ ∪ c

)
=

γi + wc+ · fc + ∑
a∈b̌

wa+ · fa

fc + ∑
a∈b̌

fa
=

=

wi

(
b̌
)
·∑

a∈b̌

fa + wc+ · fc

fc + ∑
a∈b̌

fa
,

(3.36)

where:

• γi is the value of time for node i ∈ N;

• wi

(
b̌
)

is the remaining cost of the waiting hyperarc b̌ ∈ H (computed with equation
3.36);

• fa is the frequency of branch a ∈ b̌+ of hyperarc b̌ ∈ H;

• fc is the frequency of the additional arc c ∈ A /∈ b̌+;

• wc+ is the remaining cost of node c+, head of the additional c ∈ A.

3.7 Convergence Search

The drawback of fixed point problems with respect to more classical optimization models
(e.g. where the objective function is the sum of cost integrals) is the lack of rapidly conver-
gent algorithms, which prevents precise calculations of the equilibrium solutions.

The Method of Successive Averages (MSA) is one of the most used convergence methods in
UE assignments and converges to UE under Blum theorem conditions (see Cascetta, 2009,
Appendix A).
At each iteration k + 1, MSA compares the average qk+1 of all preceding flows exiting the
NLM block of figure 3.1 (computed through equation 3.37, where q(ck) are the flows at the
current iteration) with the average qk computed at previous iteration k.
MSA usually decides whether to stop as the equilibrium was found or to iterate again, by
checking the stop criterion represented by the inequality of equation 3.38, where ε represents
a threshold. Convergence is reached when qk+1 = qk, that is for small values of the ratio λ.
Thus, decreasing values of ε ensure better convergence.

qk+1 = qk +
1
k
·
(

q(ck)− qk
)

(3.37)

γ =

∣∣∣qk+1 − qk
∣∣∣∣∣qk

∣∣ < ε (3.38)

MSA is a very simple method, but it does not give high convergence precision, as it usually
stabilizes around a value after some iterations. Moreover, MSA is very slow (in terms of
number of iterations), as the step size 1/k becomes smaller each iteration.
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To overcome MSA drawbacks, this thesis solution algorithm implements a reduced gradient
projection (RGP) method over implicit hyperarcs.
RGP is a variant of Gradient Projection (GP) methods, which consist in iterative optimiza-
tion algorithms for constrained functions that project the search direction on the active con-
straints (Rosen, 1960).
The implemented RGP is an innovative one, as it performs convergence search over arcs
a ∈ A, avoiding the enumeration of hyperarcs (RGP on implicit hyperarcs). The implicit defi-
nition of hyperarcs is an important goal achieved, as enumerating them will be really costly
in terms of computational time. Indeed, transit networks usually consists in large-scale in-
stances and the total number of possible hyperarcs is usually huge (e.g. considering a small
network composed of three stops and three lines serving those stops, there are already 16
hyperarcs: 7 waiting hyperarcs and 9 seating hyperarcs).

In general, GP algorithms for equilibrium assignment find the optimal set of alternatives
and flows, solving the convex cost optimization problem (Beckman et al., 1956), where alter-
natives can be either hyperpaths connecting the OD pairs or arcs exiting a node towards the
destinations.
More precisely, in case of explicit enumeration, the following equilibrium scheme which
equalizes hyperpath costs transferring flows from all non-shortest hyperpaths to the short-
est hyperpath, is adopted:

1. Compute an initial feasible solution of hyperpaths.

2. Compute the descent direction.

3. Find the optimal step size.

4. Update the hyperpath flows and link flows.

5. Compute the shortest hyperpath. If its cost is less than the minimum cost of the active
hyperpaths returns to step 2, otherwise, stop.

The adopted RGP method eliminates the probability of the best alternative from the problem
and considers as search direction the anti-gradient of the objective function, suitably scaled
to apply shifts it in the space of probabilities. In this thesis, a scale factor equal to the alter-
native cost is adopted. To do this, the solution algorithm considers OD pairs sequentially, in
a way similar to the GP algorithm proposed by Florian et al. (2009), based on a Gauss-Seidel
decomposition. More precisely, for each OD pair, the adopted RGP method is applied.

Finally, the solution of traffic assignment may be not unique and RGP algorithms may not
converge to it. Thus, a stop criterion for the solution algorithm is needed. For RGP methods,
stop criteria usually consist in gap functions.
Gap functions indicate how far the candidate equilibrium p ∈ Sp is from an equilibrium. An
example, which is the one adopted in this thesis, is the relative gap, shown in equation 3.39,
where p ∈ Sp is the candidate equilibrium, x ∈ Sp is the candidate equilibrium of previous
iteration, γ(p) is the relative gap, c(p) is the cost of the candidate equilibrium, and cmin

g (p)
and cavg

g (p) are the minimum and average costs of user group g ∈ G of the candidate equi-
librium p ∈ Sp.
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Given a candidate equilibrium , relative gap yields the best improvement on the sum of av-
erage costs that is achievable, shifting choice probabilities to better alternatives.

γ(p) = max
(

1− c(p)T · x
c(p)T · p : x ∈ Sp

)
= 1−

∑
g∈G

cmin
g (p)

∑
g∈G

cavg
g (p)

∈ [0, 1] (3.39)

Value of ε is chosen according to the purpose of the simulation. Usually, ε ≈ 10−2 ÷ 10−3 is
adopted for fair check of convergence, while ε ≈ 10−4 ÷ 10−5 means good value of simula-
tion convergence and is adopted for reliable scenario comparison. γ(p) = 0 means equilib-
rium is reached.
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4 Software Description

The implemented VB software follows the algorithm explained in chapter 3. More precisely
the software can be described by the flowchart of figure 4.1, where:

Start

Data AcquisitionCSV model
Visum model

Build Network

Build Graph

Prepare Cost

Initialize Variables

UE algorithm

Export Results

End

FIGURE 4.1: Flow chart of the implemented VB software.

• Data Acquisition block reads demand and supply of the network to study, from input
files (CSV and Visum files);

• Build Network block populates specific VB structures representing each element of
the network;

• Build Graph block creates graph (N, A) introduced in chapter 3;
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• Prepare Cost block sets the variables containing all link and group attributes, such as
capacity, value of time, etc.;

• Initialize Variables block initializes assignment variables;

• UE Algorithm block, composed of may sub-blocks, performs UE algorithm explained
in chapter 3;

• Export Results block exports results in different forms (eg. CSV file, image file, Visum).

Hereafter, all significant aspects of each diagram block are described.

4.1 Data Acquisition

As stated in chapter 3, inputs of the model are the demand dodmg, the network topology (i.e.
graph (N, A)) and their attributes.
The Data Acquisition block performs data acquisition either by a CSV file or by a Visum
model. CSV files are read with the StreamReader class of Visual Basic (VB), while Visum
models are imported through the software TDE (Transportation Data Exchange) of PTV SIS-
TeMA (PTV SISTeMA, 2017), that is a library to import, store and export a network model
(including road infrastructures, transit services, travel demand and traffic data) from/to dif-
ferent sources (such as databases and text files).
In this thesis, the first type of input was adopted for the implemented software and algo-
rithm testing, while the second one for simulating larger networks.

4.1.1 Network Modelling

The implemented VB software takes as input network models of a certain form and converts
them in the graph (N, A), explained in section 3.2 Network Topology.
When modelling a network, a user should define the following elements:

• pedestrian infrastructures: roads, pathways, etc., where passengers can walk;

• transit infrastructures: roads, rail, etc., where transit vehicles can travel;

• transit services: lines, stops, platforms, routes, timetables, etc., which define the ser-
vice itself;

• transit demand: OD matrices for passengers, divided in groups, and class characteris-
tics.

When modelling the network through CSV files, the input process can be done by writing
a text line for each of the following model elements: links, lines, runs, OD matrix items and
user groups (called groups). These text lines assume different forms, as follows:

• links: “link;tail;head;length;func”;

• lines: “line;node;stop;func”;

• runs: “runs;line;run;stop;arrt;dept” 1;

• OD matrix items:“user;orig;dest;flow;group”;
1arrt and dept are the arrival and the departure time of the run at a specific stop
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• user groups: “group;func”;

where func represent the element function (i.e. the set of element attributes, that will be ex-
plained in section 4.1.2 Parameter Setting).
For example, if the modeller wants to define a bus line called BUS 1, going from stop A at
node 1 to stop B at node 2, he or she can write in the CSV file: “BUS 1;1;A” and “BUS 1;2;B”.
In section A.1 of appendix A, an example of CSV file used to model a simple network com-
posed of three stops and one line is shown.

For what concerns modelling through Visum, the process illustrated in PTV Visum 17 Man-
ual (PTV AG, 2017) should be followed, observing that:

• model nodes are Visum nodes;

• model links are Visum links;

• model stops are Visum stop points;

• model lines are Visum line routes;

• model line segments are Visum line route items;

• model OD matrices are Visum matrices;

• model groups are Visum demand segments.

4.1.2 Parameter Setting

To simplify the data model and make it more flexible to possible extensions, supply at-
tributes and demand attributes are read from input files and saved in dictionary data struc-
tures F of VB. Each dictionary represents a collection of keys and values pair of data.
Dictionaries were chosen to store inputs as they allow fast key lookups, as each item of the
dictionary is just the combination of a key and a value.

To model input data, the following dictionaries have been introduced in the VB software:

• group dictionary Fg for each group g ∈ G;

• link dictionary Fa for each link a ∈ Abase of the base-network (Nbase, Abase);

• stop platform dictionary Fs for each stop platform of stop s ∈ S of the line network
(Nline, Aline);

• line segment dictionary Fls for each line segment after stop s ∈ Sl of line l ∈ L of the
line network (Nline, Aline).

Table 4.1, 4.2, 4.3 and 4.4 illustrate respectively the parameters saved in link dictionaries,
stop platform dictionaries, line segment dictionaries and group dictionaries, and their asso-
ciated four-letter key. Line segment parameters can also be set generally for the whole line,
no matter which stop is considered.
In these tables, “(”length-UM), “(”time-UM) and “(”int-UM), represents the unity of mea-
surement adopted for length, time and time intervals.
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TABLE 4.1: Parameters saved in the generic link dictionary Fa and associated
keys.

Parameter Key Comment
vwalk

a WSPE walking speed (length-UM/time-UM)
Sa TSPE transit speed (length-UM/time-UM)

TABLE 4.2: Parameters saved in the generic stop dictionary Fs and associated
keys.

Parameter Key Comment
kpax

s PCAP platform capacity (pax)
β

p−crowd
s BSTP crowding BPR exponent (coef)

βs A_SX attribute X (if any)

TABLE 4.3: Parameters saved in the generic line segment dictionary Fls and
associated keys.

Parameter Key Comment
Sls LSPE commercial speed (length-UM/time-UM); 0 means TSPE

talight
ls TALI alighting time (int-UM)

tboard
ls TBOA boarding margin time (int-UM)
hls HDWY expected headway (int-UM)
σls HVAR Erlang headway variation coefficient 2

lck f ee KFEE kilometric fee (e/length-UM)
cb f ee

ls BFEE boarding fee (e)
Kalight

ls BCAP boarding door capacity (pax/int-UM)
Kboard

ls ACAP alighting door capacity (pax/int-UM)
aded ∈ {0, 1} DEDO dedicated doors for boarding and alighting (coeff)

tdoors
ls DOTI door operation time (int-UM)
tmin
ls TDWL minimum dwell time, after DOTI

ho f f s
ls OFFS offset w.r.t. simulation Initialize if no run is given (int-UM)

kseat
ls SCAP seating capacity (pax)

kstand
ls VCAP standing capacity (pax)

βv−crowd
ls BCOM discomfort BPR exponent (coef)
α

queue
ls AQUE queueing BPR multiplier (coef)

β
queue
ls BQUE queueing BPR exponent (coef); 0 means fail to board

αdwell
ls ADWL dwelling BPR multiplier (coef)

βdwell
ls BDWL dwelling BPR exponent (coef)
βls A_LX attribute X (if any)
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TABLE 4.4: Parameters saved in the generic group dictionary Fg and associ-
ated keys.

Parameter Key Comment
γvot

g VOFT value of time (e/time-UM)
γdist

g VOFD value of distance (e/length-UM)
γwait

g WAIT waiting discomfort (coef)
γwalk

g WALK walking discomfort (coef)
ctran

g CTRA transfer cost (e)
γstand

g STND standing discomfort (coef)
γseat

g SEAT sitting discomfort (coef)

γ
m f ee
g MFEE fee multiplier (coef)

αcrowd
g ACRW crowding discomfort BPR multiplier (coef)
γrisk

g RISK risk adverseness (coeff)
nlmax

g MNAL maximum number of attractive lines (No)
agl B_LX A_LX multiplier (if any)
ags B_SX A_SX multiplier (if any)

In CSV files, these attributes can be easily defined by writing a line following the form
“func;para;valu;desc”, where func is the function name, para is the parameter key, valu is the
parameter value and desc is the parameter description (e.g. “0;BPED;2;[link] walking BPR ex-
ponent (coef)”).
In section A.1 of appendix A, an example of CSV file used to model the attributes for a sim-
ple network composed of three stops and one line is shown.

In Visum, the modeller can define these attributes as user-defined attributes (UDA, see PTV
Visum 17 Manual, PTV AG (2017)) of each network object of the network, according to the
correspondence illustrated in section 4.1.1 Network Modelling.
Noteworthy, to introduce model user groups it is also necessary to define an additional POI
(Point OF Interest), whose UDAs will represent the attributes of the related group.
Finally, looking at the implemented model as a pre-work for dynamic assignment, the UDAs
regarding model lines that could depend on the specific time of the day (e.g. expected head-
way, capacity, etc.) must be set on Visum as UDAs of time profile elements.

4.2 Build Graph

After Build Graph block populates some specific VB structures (eg. lines, stops, nodes,
zones, etc.) with the data imported by the Data Acquisition block, Build Graph block cre-
ates the graph (N, A) represented in figure 3.4 by populating VB arrays nodes and links.
In Build Graph block, firstly:

• the links contained in VB structure links representing the arcs of the base network are
added to VB links array;

• the nodes contained in VB structure nodes representing the nodes of the base network
are added to VB nodes array;
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and then each link of the line network is added to VB links array, and its corresponding nodes
are added to VB nodes array following the sequence described in next lines.

Stop arcs, connecting the stop node s to the relative base node Bstop
s , are the first added to

VB links array. Then, for each line l ∈ L and for each stop s ∈ Sl of the line, the block checks
whether the stop is a terminal or not.
If stop s is not the first stop of line l ∈ L, the seat alighting arc and the stand alighting arc
(connecting respectively the seat arrival node Na−seat

ls and the stand arrival node Na−stand
ls to

the stop-associated base node Bstop
s ) are added to VB links array.

If stop s is not a terminal, arcs representing the dwelling leg of the journey are added to VB
links array, according to the following sequence:

1. the seat dwelling arc connecting the seat arrival node Na−seat
ls to the seat departure

node Nd−seat
ls ;

2. the stand dwelling arc connecting the stand arrival node Na−stand
ls to the switch node

Np−stand
ls ;

3. the seat switching arc connecting the switch node Np−stand
ls to the seat departure node

Nd−seat
ls ;

4. the stand switching arc connecting the switch node Np−stand
ls to the stand departure

node Nd−stand
ls .

Then, if stop s is the first stop of line l or any stop excluding the last one, the waiting arc
between the stop and the board placing node Np−board

ls , as well as all the arcs in its forward
star are added to VB links array. These arcs are:

1. the seat placing arc connecting to the seat departure node Nd−seat
ls ;

2. the stand placing arc connecting to the stand departure node Nd−stand
ls ;

3. the fail-to-board arc connecting to “next temporal layer”, if exists.

Again, for stops that are not the final terminal, running arcs are added to VB links array.
More precisely:

1. the seat running arc connecting to the seat departure node Nd−seat
ls to next stop seat

arrival node Na−seat
ls+

;

2. the stand running arc connecting to the stand departure node Nd−stand
ls to next stop

stand arrival node Na−stand
ls+

;

are added.
Finally, connectors are added to VB links array.
Moreover, every time an arc is added, the Build Graph block checks whether both heads of
this arc are already in VB nodes array. If not, it adds the missing ones to the array.

Figure 4.2 shows an example of complete graph (N, A) for network “OneLine_ThreeStops”
(composed of one line, three stops and three zones) obtained by plotting the VB links and
nodes array after Build Graph block.
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FIGURE 4.2: OneLine_ThreeStops graph. Base network is drawn in yellow,
seating network in blue, standing network in green, seat switching arc in red.

4.3 Prepare Cost

The Prepare Cost block sets the VB software variables containing all the attributes connected
to links and user groups. More precisely, the variables represented in table 4.5, 4.6 and 4.7
are populated, according to what explained in section 3.4 Arc Performance Functions.

TABLE 4.5: Variables populated related to user group g ∈ G.

VB Variable Model Parameter Comment
acrw αcrowd

g crowding discomfort BPR multiplier (coef)
risk γrisk

g risk adverseness (coef)
mnal nlmax

g maximum number (No) of attractive lines
gvot γvot

g value of time (currency/hour)

TABLE 4.6: Variables populated related to arc a ∈ A.

VB Variable Model Parameter Comment
leng la length (m)
tim0 t0

a uncongested time (sec)
capa Ka capacity (pax/h) of arc a ∈ A
abpr αBPR

a BPR coefficient (coef)
aux1 / first auxiliary parameter
aux2 / second auxiliary parameter

Noteworthy, variable capa is the platform capacity in case arc a ∈ A is a stop arc, and variable
aux1 and aux2 represent different things according to the arc type (eg. for waiting arcs aux1
represents the line expected headway, while for seat dwelling arcs represents whether doors
are dedicated or not).

4.4 UE Algorithm

The UE Algorithm block, composed of may sub-blocks, performs the UE algorithm illus-
trated in figure 3.1.
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TABLE 4.7: Variables populated related to both user group g ∈ G and arc
a ∈ A.

VB Variable Model Parameter Comment
avot γvot

ag discomfort coefficient of time (coef)
antc cnt

ag non-temporal cost (currency)

One of the main changes of the algorithm implemented in the VB software with respect to
what explained in chapter 3 is that link costs are not expressed in monetary terms (eg. Euros)
but in temporal terms (eg. seconds). This is done because the currency is not a unit of mea-
surement defined in the International System of Unit (SI), while time is. Indeed, using the
currency as the unity of measurement for costs makes the results varying widely depending
to the country (eg. in Europe costs will be expressed in Euros, while in the USA in Dollars),
while time is officially expressed in seconds.
This change in unit of measurement is simply achieved by dividing the generalized cost cag

of each link a ∈ A for each user group g ∈ G for the value of time γvot
g of the user group

g ∈ G.

Moreover, when debugging the VB software, some problems have arisen for what concerns
passengers choices at dwelling arcs, and, thus, some other changes were introduced with
respect to what explained in chapter 3.
More precisely, passengers were sometimes alighting the vehicle at one stop and boarding
the same vehicle at the same stop to avoid dwelling costs. Indeed, when no cost of boarding
or transfer is introduced, bypassing the dwelling arc resulted more convenient.
However, this is not realistic as, even if passengers alight and board the same vehicle, they
still must wait until the vehicle leaves the station and, consequently, paying all the dwelling
time.

The problem of bypassed dwelling arcs is easily overcome in dynamic assignment, where
assumption of not boarding the same vehicle twice can be implemented as vehicles are ex-
plicitly modelled. In static assignment case, fix the problem is more complicated. In the VB
software, it was decided to disincentive the bypass of dwelling arcs by adding some extra
time to placing and alighting arcs, assuming that the generic passenger is the last one to
board and the last one to alight.
As this change in the model is simply a deterrent for dwelling passengers, extra costs were
added only at stops that are not terminals. Obviously, this is not consistent with respect to
the costs of boarding and alighting passengers, but these extra costs are significantly smaller
than the total costs of paths and, thus, they do not affect path choice (except in proximity of
dwelling arcs).

For what concerns alighting arcs a ∈ Aline of stops that are not terminals, the extra time is
computed as a variation of the dwelling time described in section 3.4.3 Dwelling Arcs, and
it is equal to the sum of the following factors:
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• doors opening time for line l ∈ L, which is assumed to be half of the door manoeuvre
time tdoors

l ;

• an additional delay talight
a (qa) due to the capacity of the doors, multiplied by the BPR

coefficient BPRdwell
(

qdwell−stand
)

representing vehicle overcrowding (equation 3.9).

The additional delay talight
a (qa) can be computed with the following equation, assuming that

the generic alighting passenger is the last one to alight and that doors have a limited capacity

talight
a (qa) =

qa

Ka · fls
, (4.1)

where:

• qa is the alighting flow composed of both sitting and standing passengers;

• Ka is the capacity of alighting arcs (in terms of flows), which represents the capacity of
doors;

• fls is the frequency of line l ∈ L at the studied stop s ∈ Sl .

Equation 4.1 is a variant of equation 3.17.

Thus, equation 3.19 for alighting arcs of line l ∈ L at stop s ∈ Sl becomes the following:

ca = ctran + γvot ·
(

talight
ls + f ·

(
tdoors
l
2

+ talight
a (qa) · BPRdwell

(
qdwell−stand

)))
, (4.2)

where:

• ctran is the transfer cost;

• γvot is the value of time of the studied user group;

• tdoors
l is the door manoeuvre time of line l ∈ L;

• talight
a (qa) is the additional delay introduced by equation 4.1;

• BPRdwell
(

qdwell−stand
)

is the BPR factor representing vehicle overcrowding and intro-
duced by equation 3.9;

• f = {0, 1} is a parameter which indicates whether the stop is a terminal ( f = 1) or not.

When boarding passengers are considered, the placing arcs a ∈ Aline at stops that are not
terminal have the additional time to be added is the sum of the following terms:

• door manoeuvre time tdoors
l of line l ∈ L;

• an additional delay tplace
a (qa, qb) (where qb is the flow of corresponding alighting arcs)

due to the capacity of the doors, multiplied by the BPR coefficient BPRdwell
(

qdwell−stand
)

representing vehicle overcrowding (equation 3.9).

The additional delay tplace
a (qa, qb) is due to the assumption that doors have limited capacity

and can be computed with the following equation, assuming that the generic boarding pas-
senger is the last one to board (and, thus, he or she must suffer all the delay due to boarding
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and alighting passengers)

tplace
a (qa, qb) =


qa

Ka · fls
+

qb
Kb · fls

not dedicated doors

max
{

qa

Ka · fls
,

qb
Kb · fls

}
dedicated doors

(4.3)

where:

• qa and qb are respectively the alighting flow and boarding flow composed of both sit-
ting and standing passengers;

• Ka and Kb are respectively the capacity of alighting arcs and placing arcs in terms of
flow (which represent the capacity of doors);

• fls is the frequency of line l ∈ L at studied stop s ∈ Sl .

Equation 4.3 is a variant of equation 3.17.
Thus, equation 3.20 for placing arcs of line l ∈ L at stop s ∈ Sl becomes the following

ca = γm f ee · cb f ee
ls + f ·

(
tdoors
l + tplace

a (qa, qb) · BPRdwell
(

qdwell−stand
))

(4.4)

where:

• γm f ee is the fee multiplier;

• cb f ee
ls is the boarding fee of line l ∈ L at stop s ∈ Sl ;

• tdoors
l is the door manoeuvre time of line l ∈ L;

• tplace
a (qa, qb) is the additional delay introduced by equation 4.3;

• BPRdwell
(

qdwell−stand
)

is the BPR factor representing vehicle overcrowding and intro-
duced by equation 3.9;

• f = {0, 1} is a parameter which indicates whether the stop is a terminal ( f = 1) or not.

4.5 Export Results

Model results consist in the distribution of flows over the network once equilibrium is found
and the expected costs of traversing each arc. To analyse the solution, also how the equilib-
rium was found (RGAP trend) and the grade of congestion (i.e. increase of costs due to
congestion) are important; thus, these data are exported as well.
The results can be visualized through different ways: 1) CSV file; 2) image file; 3) Visum. In
this thesis, the first and the second way was usually adopted for debugging and phenomena
study, while the third one was used for large simulations or not linear networks.
Hereafter, the possible outputs are described.

4.5.1 Output format - CSV file

For what concerns the CSV file representing flows and costs, it consists of one text line for
each arc a ∈ A. These lines follow the form “arc;arc;tail;head;cap;Flow1;Flow2; ... ; Flow|G|;
Cost1;Cost2;...;Cost|G|”, where |G| is the number of user groups. Thus, CSV file can represent
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in detail the flow and the expected cost of each user group g ∈ G on each link a ∈ A.
Results about the equilibrium trend are illustrated in another CSV file, where each text line
represents an assignment iteration according to the form “iter,clock,rgap,alfa”, where clock
is the iteration clock time, and rgap and alfa are respectively the RGAP and the step size
corresponding to the iteration.
An example of CSV files representing assignment results can be found in section A.2 of
appendix A.

4.5.2 Output format - Image file

Another way of representing results is to draw them on a graph representation. Thus, the
image file that shows the results consists of a representation of graph (N, A), where each
link width depends on the flow assigned to the link at the equilibrium. More precisely, if the
flow on arc a ∈ A is null at the equilibrium, the arc is not drawn, otherwise the brush size b
is computed by the following formula:

b = 7 · qa

max
b∈A

(qb)
, (4.5)

where qa is the flow on arc a ∈ A and qb is the flow of arc b ∈ A.

Moreover, for each arc, a label indicating the flow and its capacity, if relevant 3, is plotted.
An example of image file representing assignment results can be found in section A.2 of ap-
pendix A.

When drawing a representation of the graph (N, A), base network nodes Nbase are plotted
according to their coordinates, if available (i.e. Visum input). Usually, this is not the case of
network models imported by CSV files, thus some values must be assigned to the coordi-
nates.
More precisely, when coordinates are not available they are computed sequentially by set-
ting the position of a chosen origin node and drawing all the nodes of its forward star at a
certain distance, with a certain angle, assuming that transit lines have linear infrastructure.
Thus, taking node n1 ∈ Nbase as origin node and node n2 ∈ Nbase as its forward star node to
be plotted, the coordinates of node n2 are computed with the following formula:

xn2 = xn1 + 1000 · ln1,n2 · cos
(

c · π

12

)
, (4.6)

yn2 = yn1 + 1000 · ln1,n2 · sin
(

c · π

12

)
, (4.7)

where ln1,n2 is the length of the link connecting the two nodes, and c is a counter indicating
how many arcs are already drawn from the forward star of node n1.

Furthermore, different colours are adopted according to the type of arcs. More precisely, con-
nectors are plotted in magenta, base network arcs are plotted in yellow, stop arcs are plotted

3 Capacity is indicated only for those arcs that may produce congestion for lack of capacity (i.e. running arcs
and stop arcs).
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in purple and line arcs are plotted in the colour indicated by the line name (if available) or
in one of the predefined colours (depending on the line plotting order).

4.5.3 Output format - Visum

In case inputs are imported from a Visum model, results can also be represented through
Visum. More precisely, the VB software creates two files to be imported in the Visum model,
one CSV file containing the results in form of UDAs and one XML file containing the graph-
ics of the results. Examples of these files and their outputs can be found in section A.2 of
appendix A.

The following UDAs are defined to represent flows and congestion:

• “PUTUE_WALK” representing the flow of users (user/h) walking on the UDA-related
link or connector;

• “PUTUE_SEAT_FLOW_lineName” representing the flow of users (user/h) sitting on
line lineName, on the UDA-related link;

• “PUTUE_STAND_FLOW_lineName” representing the flow of users (user/h) standing
on line lineName, on the UDA-related link;

• “PUTUE_STAND_CONG_lineName” representing the congestion level for users stand-
ing on line lineName, on the UDA-related link;

• “PUTUE_BOARD_FLOW_lineName” representing the flow of users (user/h) boarding
on line lineName at the UDA-related stop point;

• “PUTUE_ALIGHT_FLOW_lineName” representing the flow of users (user/h) alighting
on line lineName at the UDA-related stop point;

• “PUTUE_WAIT_CONG_lineName” representing the congested time (s) for users wait-
ing line lineName at the UDA-related stop point.

Except the first UDA (“PUTUE_WALK”), the others are defined for each line in the network.

The congestion level κa of arc a ∈ Aline is defined as the percentage of cost increase from
uncongested network state to UE, as follows

κ =
ca − ca

0

c0
a
· 100, (4.8)

where:

• ca = ∑
g∈G

ca is the sum for each user group g ∈ G of the UE costs of arc a ∈ Aline;

• ca
0 = ∑

g∈G
c0

a is the sum for each user group g ∈ G of the UE costs of arc a ∈ Aline.

As stated before, a file indicating the graphics to represent results is also produced.
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Results related to link flows are represented as bars on the link, with different colours de-
pending on the flow type and line, and on the level of congestion. More precisely, the walk-
ing flow of passengers is represented with a magenta bar, while seating flows are plotted
in the colour indicated by the line name (if available) or in one of the predefined colours
(depending on the line plotting order).
For what concerns standing flows, they assume different gradation of their related seating
flow, depending on the level of congestion. Higher the congestion is, darker the gradation.

Results related to stop flows are represented with a histogram for each stop, where alighting
and boarding flows are illustrated by different columns plotted in gradations of the colour
indicated by the line name (if available) or in one of the predefined colours (depending on
the line plotting order).
For what concerns congested times, they are plotted in the same histogram as columns of
line-related colour, whose gradation its darker than corresponding boarding and alighting
flow ones. Congested times do not include cost due to overcrowding at platforms and fail-
to-board, as they are meant to indicate solely the estimated waiting time for passengers
boarding the studied line at the corresponding stop.
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5 Model Validation and
Simulations

The model validation process consisted in reproducing the congestion phenomena described
in section 3.3 Congestion Phenomena for small networks, as well as the strategic behaviour
of section 3.5 Strategies and Hyperpaths, and analysing them.
More precisely, it was checked whether a specific congestion phenomenon causes changing
in the passengers’ choices and if these changes are sensible in terms of passengers behaviour.
While doing this, the software and the algorithm were tested in terms of flow conservation
and cost convergence at UE. Moreover, the satisfaction of the constraints defined by the
model, such as the not violation of seating capacity and the priority of seating arcs over
standing ones, was also ensured.
Moreover, analyses were conducted about the convergence speed and precision of the im-
plemented convergence method (i.e. RGAP on implicit hyperarcs).
After validating the model, some simulations of larger networks were conducted, and results
were analysed and compared with the results of Visum HB assignment procedure, described
in section 2.2.1 Headway-Based Procedure

Hereafter, the process followed for validating the model and some relevant simulations are
described.
All simulations were conducted over a simulation interval of 1 hour, and by adopting min-
utes, hours and kilometres as unit of measurements for time intervals, time and length.

5.1 Model Validation

To validate the model, the following three simple networks were adopted:

• NetworkA, composed of one line serving two stops and used for testing on-board
overcrowding congestion, platform overcrowding congestion, queuing congestion and
boarding hyperarcs.

• NetworkB, composed of two lines serving two stops and used for testing waiting hy-
perarcs.

• NetworkC, composed of one line serving three stops and used for testing dwelling
delay due and dwelling hyperarc.

Table 5.1 and 5.2 illustrate CSV inputs related to base and line network for NetworkA, table
5.3 and 5.4 the ones related to NetworkB, and table 5.5 and 5.6 the ones related to NetworkC,
while figure 5.1, 5.2 and 5.3 show their graph (N, A). As the travel demand was introduced
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only for one user group, user group g ∈ G will not be specified.

Parameter values were changed according to the phenomenon to observe. Table 5.7 shows
the standard values adopted if not differently specified. Noteworthy, the following values
were assumed in every simulation:

• line l ∈ L expected headway hl equal to 6min;

• sitting discomfort coefficient γseat
g equal to 1;

• standing discomfort coefficient γstand equal to 1.5;

• waiting discomfort coefficient γwait equal to 1;

• walking discomfort coefficient γwalk equal to 1;

• walking speed vwalk
a of walking arcs a inAbase equal to 5Km/h ;

• commercial speed Sa of running arc a ∈ Aline equal to 20km/h.

Finally, RGAP equal to 10−9 was adopted as general stop criterion, and the maximum num-
ber of iterations was set equal to 500. This means that, if convergence is not achieved before
500 iterations, the algorithm is stopped.

TABLE 5.1: NetworkA, CSV file of the base network model.

link tail head leng func

1 1 2 5 0

TABLE 5.2: NetworkA, CSV file of the line network model.

line node stop func

Bus1 1 1 0
Bus1 2 2 0

FIGURE 5.1: NetworkA, graph (N, A). Fail-to-board arc not plotted.

TABLE 5.3: NetworkB, CSV file of the base network model.

link tail head leng func

1 1 2 5 0



Chapter 5. Model Validation and Simulations 63

TABLE 5.4: NetworkB, CSV file of the line network model.

line node stop func

Bus1 1 1 0
Bus1 2 2 0
Bus2 1 1 0
Bus2 2 2 0

FIGURE 5.2: NetworkB, graph (N, A). Fail-to-board arcs not plotted.

TABLE 5.5: NetworkC, CSV file of the base network model.

link tail head leng func

1 1 2 5 0
2 2 3 5 0

TABLE 5.6: NetworkC, CSV file of the line network model.

line node stop func

Bus1 1 1 0
Bus1 2 2 0
Bus1 3 3 0

FIGURE 5.3: NetworkC, graph (N, A). Fail-to-board arcs not plotted.
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TABLE 5.7: Standard parameter settings adopted to study congestion phe-
nomena. Value equal to 100000 represents infinite.

func para valu desc

0 fromLengUnitToMeter 1000
0 fromTimeUnitToSec 3600
0 fromIntUnitToSec 60
0 WSPE 5 [link]
0 TSPE 20 [link]
0 LSPE 0 [line-seg]
0 TALI 0 [line-seg]
0 TBOA 0 [line-seg]
0 HDWY 6 [line-seg]
0 HVAR 0 [line-seg]
0 KFEE 0 [line-seg]
0 BFEE 0 [line-seg]
0 DEDO 0 [line-seg]
0 DOTI 0 [line-seg]
0 TDWL 0 [line-seg]
0 MDWL 0 [line-seg]
0 OFFS 0 [line-seg]
0 VOFD 0 [class]
0 VOFT 60 [class]
0 WAIT 1 [class]
0 WALK 1 [class]
0 CTRA 0 [class]
0 STND 1.5 [class]
0 SEAT 1 [class]
0 MFEE 0 [class]
0 ACRW 0 [class]
0 APED 0 [link]
0 BPED 2 [link]
0 BCAP 100000 [line-seg]
0 ACAP 100000 [line-seg]
0 ADWL 0 [line-seg]
0 BDWL 2 [line-seg]
0 BCOM 0 [line-seg]
0 AQUE 0 [line-seg]
0 BQUE 6 [line-seg]
0 BSTP 0 [stop-plat]
0 RISK 1 [class]
0 MNAL 10 [class]
0 SCAP 100000 [line-seg]
0 VCAP 100000 [line-seg]
0 PCAP 100000 [stop-plat]
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5.1.1 Test - On-board Overcrowding Congestion

As stated before, on-board overcrowding congestion is tested on NetworkA, composed of
one line serving two stops. To this purpose, many simulations were conducted, each of
them with different amount of travel demand going from node 1 to node 2.
In these simulations, the crowding BPR multiplier αcrowd was set equal to 1, while the on-
board crowding BPR exponent βv−crowd was set equal to 2. Moreover, to reproduce the con-
gestion phenomenon related to vehicle crowding, line seating capacity was set equal to 0
passengers per hour and line standing capacity was set equal to 40 passengers per hour
(which means 400 passengers per hour, being the expected headway of 6 minutes).
The demand was varied from 100 to 1000 passengers per hour, with steps of 100 passengers
per hour, and RGAP equal to 10−9 was adopted as stop criterion.

Figure 5.4 illustrates the trend of expected cost for stand running arc during the assignment
algorithm. More precisely, the horizontal axis shows the number of iterations necessaries to
find equilibrium, while the vertical axis represents the expected cost of stand running arc
for flows exiting the cost functions block of figure 3.1. Trends for different travel demand
values are shown in different colours.
From this picture, growing travel demand implies growing costs, as expected. Indeed,
greater flows on stand running arc cause larger expected costs as consequence of on-board
overcrowding congestion. Furthermore, it can also be observed that greater travel demands
generally stem in a larger number of iterations necessary to find the equilibrium expected
cost.
More precisely, it can be observed that there is a threshold (in this case, demand equal to 500
passengers per hour) below which the equilibrium is found in two iterations, which consist
in performing an “all-or-nothing assignment” to the shortest uncongested hyper-tree and do-
ing another iteration to check convergence. For demand flows higher than 400 passengers
per hour, the walking option becomes competitive with the one of boarding line BUS1 and,
hence, the algorithm looks for the exact distribution of flows that balances out the hyperpath
expected costs. Thus, more iterations are needed to converge.

Figure 5.5 shows the trend of RGAP for the different travel demands during the algorithm
iterations. RGAP trends for different travel demand values are shown in different colours.
Again, it can be observed that greater demands generally imply harder-to-find solutions
and, consequently, slower convergence (in terms of number of iterations). Moreover, this
graph highlights the threshold introduced in the previous paragraph (500 passengers per
hour) below which the number of iterations necessary to find the convergence is only two.
However, there is no evident relation between convergence speed and growing travel de-
mand for flows above the threshold.
From figure 5.5 it can also be seen that, by imposing a less restrictive stop criterion (e.g.
RGAP equal to 10−5 and 10−4), the convergence speed would have been faster (in terms
of number of iterations). More precisely, when the RGAP stop criterion is set equal to 10−4,
maximum 9 iterations are needed by the algorithm, against the 23 necessaries with the RGAP
equal to 10−9. When testing small network, the difference in number of iterations due to the
stop criterion is not relevant, but it influences widely the algorithm speed in case of large
networks (in terms of number of iterations). Moreover, from the practical point of view,



Chapter 5. Model Validation and Simulations 66

high convergence precision is not important, as usually precision in the order of magnitude
of 10−4 is enough.

Figure 5.6 shows the equilibrium of expected costs for hyperpaths when the travel demand
is equal to 1000 passengers per hour, where the two lines represent the trend of the expected
general costs of two hyperpaths. More precisely, the violet one for the walking hyperpath
and the red one for the transit line BUS1 hyperpath.
Noteworthy, as no diversion node is present in the graph (there are only one line and no
seating arcs), the equilibrium is between paths and not hyperpaths.
It can also be seen that the walking option is part of the solution only after the second itera-
tion. This is because, as stated before, at first iteration all flows are assigned to the shortest
uncongested hyper-tree, i.e. boarding the transit line.
Also, it can be observed that the RGP algorithm corrects the flows with gradual steps.

Figure 5.7 shows the flow of passengers boarding the transit line BUS1 for each demand
flow, where each column is a different demand flow. From this picture, it can be observed
that maximum 473 passengers per hour are assigned to the transit line BUS1. Thus, all pas-
sengers exceeding this value choose the walking option.
Obviously, these results strictly depend on standing capacity value and BPR parameters.
For example, changing the value of βv−crowd from 2 to 4 reduces the maximum number of
boarding passengers to 429 passengers per hour.

Finally, to study more in detail how the algorithm performs when on-board overcrowding
congestion is activated, additional simulations were conducted for travel demand equal to
1000 passengers per hour and for varying on-board crowding BPR exponent βv−crowd (from
2 to 10). Figure 5.8 shows the value of expected flow boarding the transit service for each
βv−crowd. It can be observed that, for growing βv−crowd, the number of passengers choosing
to take line BUS1 decreases, as the costs of the stand running arc increases due to congestion.
Similar conclusions can be observed by varying the crowding BPR multiplier αcrowd.
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FIGURE 5.4: On-board Overcrowding Congestion test. Expected cost of stand
running arc.

FIGURE 5.5: On-board Overcrowding Congestion test. RGAP of the solution
algorithm for βv−crowd = 2.
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FIGURE 5.6: On-board Overcrowding Congestion test. Hyperpath cost equi-
librium: The walking option is represented in violet, while the option of tak-

ing line BUS1 is represented in red.

FIGURE 5.7: On-board Overcrowding Congestion test. Expected total board-
ing flow of line BUS1 at equilibrium.
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FIGURE 5.8: On-board Overcrowding Congestion test. Expected total board-
ing flow of line BUS1 at equilibrium for varying βv−crowd.

5.1.2 Test - Platform Overcrowding Congestion

As stated before, platform overcrowding congestion is tested on NetworkA, composed of one
line serving two stops. As in on-board overcrowding congestion testing, many simulations
were conducted, varying the travel demand (going from node 1 to node 2) from 100 to 1000
passengers per hour, with steps of 100 passengers per hour.
In these simulations, the crowding BPR multiplier αcrowd was set equal to 1, while the plat-
form crowding BPR exponent βp−crowd was set equal to 2. Moreover, to reproduce the con-
gestion phenomenon related to platform crowding, the platform capacity kpax

s was set equal
to 10 passengers. Finally, RGAP equal to 10−9 was again adopted as stop criterion.

Figure 5.9 illustrates the trend of expected cost for stand running arc (similarly to figure 5.4),
while figure 5.10 shows the trend of RGAP for the different travel demands (similarly to fig-
ure 5.4). Both trends are plotted with respect to the assignment algorithm iterations. Trends
for different travel demand values are shown in different colours.
From these pictures, growing travel demand implies growing costs, as consequence of con-
gestion, and that there is a threshold below which the equilibrium is found in two iterations
(as in the graphs related to on-board overcrowding congestion).
In these specific simulations, the threshold is travel demand equal to 800 passengers per
hour, which means that for demand flows higher than 700 passengers per hour the walking
option becomes competitive with the one of boarding the line BUS1 and the algorithm needs
more iterations to converge.
Moreover, figure 5.5 shows that, with the stop criterion imposed as RGAP equal to 10−4,
maximum 7 iterations are needed by the algorithm, against the 16 necessaries with stop cri-
terion set to RGAP equal to 10−9).
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Figure 5.11 shows the equilibrium of expected hyperpath costs during the assignment algo-
rithm when the travel demand is equal to 1000 passengers per hour (similarly to figure 5.6).
More precisely, the violet one for the walking hyperpath and the red one for the transit line
BUS1 hyperpath.
As in the on-board crowding congestion case, no diversion node is present in the graph
(there are only one line and no seating arcs) and the equilibrium is between path costs and
not hyperpaths.
Moreover, also in this case, it can be observed that the walking option is part of the solution
only after the second iteration.

Figure 5.12 shows the flow of passengers boarding the transit line BUS1 for each demand
flow, where each column is a different demand flow. From this picture, it can be observed
that maximum 748 passengers per hour are assigned the transit line BUS1. Thus, all the ex-
ceeding passengers choose the walking option.
Obviously, these results strictly depend on platform capacity and BPR parameters. For ex-
ample, changing the value of βp−crowd from 2 to 4 varies reduces the maximum number of
boarding passengers to 387 passengers per hour.

Comparing these results with the ones of the on-board overcrowding test (section 5.1.1), it
can be observed that platform congestion is less relevant to users’ decisions than on-board
crowding. Indeed, the flow demand after which congestion influences passengers’ choices
is significantly higher for the platform case than for the on-board case (800 passengers per
hour with platform capacity of 10 passengers against 500 passengers per hour with standing
vehicle capacity of 40 passengers).
Moreover, if the platform capacity is imposed of the same value of the vehicle standing ca-
pacity used in section 5.1.1 (40 passengers), the congestion due to platform overcrowding
becomes relevant only for demand flows higher than 2992 passengers per hour. This is be-
cause the BPR platform overcrowding congestion term is multiplied for the waiting time,
while the BPR on-board overcrowding congestion term is multiplied by the running time,
and that waiting time is significantly smaller than running time (360 seconds against 900
seconds).

Finally, as in the case of on-board congestion, additional simulations were conducted for
travel demand equal to 1000 passengers per hour and for varying platform crowding BPR
exponent βp−crowd (from 2 to 10). The purpose of these simulations was studying more in
detail how the algorithm performs when platform overcrowding congestion is activated.
Figure 5.13 shows the expected flow boarding the transit service, where each column repre-
sents different value of βp−crowd. It can be observed that, for growing βp−crowd, the number of
passengers choosing the transit line BUS1 decreases. This is a consequence of the increase of
waiting expected costs due to congestion. A similar conclusion can be observed by varying
the crowding BPR multiplier αcrowd.
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FIGURE 5.9: Platform Overcrowding Congestion test. Expected cost of wait-
ing arc.

FIGURE 5.10: Platform Overcrowding Congestion test. RGAP of the solution
algorithm for βp−crowd = 2.
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FIGURE 5.11: Platform Overcrowding Congestion test. Hyperpath cost equi-
librium: The walking option is represented in violet, while the option of tak-

ing line BUS1 is represented in red.

FIGURE 5.12: Platform Overcrowding Congestion test. Expected total board-
ing flow of line BUS1 at equilibrium.
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FIGURE 5.13: Platform Overcrowding Congestion test. Expected total board-
ing flow of line BUS1 at equilibrium for varying βp−crowd.

5.1.3 Test - Queuing Congestion

As stated before, queuing congestion is tested on NetworkA, composed of one line serving
two stops. As for on-board and platform overcrowding congestion testing, many simula-
tions were conducted, varying the travel demand (going from node 1 to node 2) from 100 to
1000 passengers per hour, with steps of 100 passengers per hour.
In these simulations, the standing vehicle capacity kstand

l was set equal to 40 passengers
(which means 400 passengers per hour, being the expected headway equal to 6 minutes),
as in the on-board overcrowding case of section 5.1.1. Moreover, RGAP equal to 10−9 was
again adopted as stop criterion.

As introduced in section 3.3.2 Queuing Congestion, and summarized by equation 3.24, two
kinds of queuing congestion are implemented in the algorithm:

• soft capacity constraints reproduced with the effective frequency method;

• strict capacity constraints reproduced with the fail-to-board probability method.

To simulate the first method, the queuing BPR multiplier αqueue was set equal to 1, while
the platform crowding BPR exponent βqueue was set equal to 4. On the other hand, to study
queuing congestion with the second method, the platform crowding BPR exponent βqueue

was set equal to 0 and the risk adverseness coefficient γrisk was set equal to 1.

Figure 5.14 and 5.15 represent the trend of RGAP during the assignment algorithm, respec-
tively for the effective-frequency and the fail-to-board probability method. Trends for differ-
ent travel demand values are shown in different colours.
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As it can be observed, in case of βqueue = 4 the algorithm converges in a way like the over-
crowding congestion simulations (figure 5.5 and 5.10), where a threshold exists after which
more than two iterations are necessary to find the equilibrium. In this test, the threshold is
the demand equal to 700 passengers per hour.
For what concerns the case of βqueue = 0, figure 5.15 shows that the algorithm does not con-
verge, and it is stopped when the maximum number of iterations is reached. This is because,
when the fail-to-board probability is considered, some of the demand flow is removed from
the network (and theoretically moved to next temporal layer) and, consequently, flow con-
servation does not hold anymore.

With regards to the expected cost of the waiting arc, its dependence from the demand flow
can be seen in figure 5.16 for βqueue = 4 and figure 5.17 for βqueue = 0, which show the ex-
pected cost of the waiting arc during the assignment algorithm. Trends for different travel
demand values are shown in different colours.
Again, it can be observed as the expected cost of waiting arc increases with the amount of
demand, and that the algorithm does not converge in the fail-to-board probability method.

Finally, figure 5.18 and 5.19 show respectively the amount of flow boarding the line and the
amount of flow reaching destination for βqueue = 4, while figure 5.20 and 5.21 show the same
for βqueue = 0. Each column represents a different demand flow.
It can be observed that, when the effective frequency method is applied, passengers either
board the vehicle or walk, while, when the fail-to-board probability method is considered,
some of the flow disappear from the network. Moreover, in the effective frequency case, the
maximum number of passengers choosing to board the transit line BUS1 is 642 passengers
per hour, while in the fail-to-board case with risk adverseness coefficient γrisk equal to 1 all
passengers choose to board the transit line BUS1 (even if not all passengers are able to board
during the assignment period).

To study more in detail how the algorithm performs when the fail-to-board probability
method is applied, additional simulations were conducted for travel demand equal to 1000
passengers per hour and for varying risk adverseness coefficient (from 1 to 10).
Figure 5.22 shows the RGAP trend during the assignment algorithm for this case. Trends for
different travel demand values are shown in different colours.
From this picture, it can be observed that growing risk adverseness coefficient implies better
convergence.
Figure 5.23 represents the expected flow reaching the destination in the assignment period,
where each column is a different value of the risk adverseness coefficient.
For γrisk larger than 3, some passengers start choosing the walking option instead of wait-
ing the “next temporal layer” and, thus, the number of flow reaching the destination in the
assignment period increase.
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FIGURE 5.14: Queuing Congestion test. Expected total boarding flow of line
BUS1 for βqueue = 4.

FIGURE 5.15: Queuing Congestion test. Expected total boarding flow of line
BUS1 for βqueue = 0.
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FIGURE 5.16: Queuing Congestion test. Expected cost of waiting arc for
βqueue = 4.

FIGURE 5.17: Queuing Congestion test. Expected cost of waiting arc for
βqueue = 0.
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FIGURE 5.18: Queuing Congestion test. Expected total boarding flow of line
BUS1 for βqueue = 4.

FIGURE 5.19: Queuing Congestion test. Expected flow reaching the destina-
tion for βqueue = 4.
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FIGURE 5.20: Queuing Congestion test. Expected total boarding flow of line
BUS1 for βqueue = 0.

FIGURE 5.21: Queuing Congestion test. Expected flow reaching the destina-
tion in the assignment period for βqueue = 0.
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FIGURE 5.22: Queuing Congestion test. RGAP of the solution algorithm for
βqueue = 0 and varying γrisk.

FIGURE 5.23: Queuing Congestion test. Expected flow reaching the destina-
tion in the assignment period for βqueue = 0 and varying γrisk.
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5.1.4 Test - Dwelling Delay

As stated before, dwelling delay due to congestion is tested on NetworkC, composed of one
line serving two stops. To this purpose, many simulations were conducted, each of them
with different amount of travel demand.
It must be stressed out that this congestion phenomenon is not separable, as it depends both
on dwelling and boarding/alighting flows, thus the phenomena cannot be isolated as the
ones studied in previous sections.

As the studied congestion phenomenon is related to the vehicle overcrowding, line seating
capacity was set equal to 0 passengers per hour and line standing capacity was set equal to
40 passengers per hour (which means 400 passengers per hour, being the expected headway
of 6 minutes).
Furthermore, the congestion factor BPRdwell

(
qdwell−stand

)
is introduced in cost computation

by multiplying it per the passenger alighting and boarding time tdwell
a

(
qalight, qboard

)
due to

door finite capacity, introduced in equation 3.17.
In these simulations it was decided to focus on the effects of dwelling congestion related to
boarding passengers, thus the door boarding capacity Kboard

l was limited to 5 passengers per
minute. Studying the effects of dwelling congestion related to alighting passengers gives
similar results (thus, tests are not described in this thesis).
To study the boarding flow effects, two OD pairs were defined: the first one going from node
1 to node 3 and varied from 100 to 1000 passengers per hour (with steps of 100 passengers
per hour), and the second one going from node 2 to node 3 and assumed to get the constant
value of 500 passengers per hour.
In these simulations, the dwelling BPR multiplier αdwell was set equal to 1, while the dwelling
BPR exponent βdwell was set equal to 2.

Figure 5.24 shows the trend of RGAP during the assignment algorithm. Trends for different
travel demand values are shown in different colours.
As in all the previous cases involving congestion, it can be observed that there is a threshold
after which more than two iterations are needed to find the equilibrium. In this case, the
threshold is demand going from node 1 to node 2 equal to 600 passengers per hour.

For what concerns the expected cost of dwelling arc, as well as the expected cost of the plac-
ing arc of stop 2, they are respectively represented in figure 5.25 and 5.26, where trends for
different travel demand values are shown in different colours.
From these pictures, it can be observed that the expected costs of these arcs have the same
trend. This is since boarding fee is assumed to be null and to the assumptions made in
section 4.4 UE Algorithm, where some dwelling cost was added to the placing cost to disin-
centive the bypass of dwelling arcs.

Finally, figure 5.27 and 5.28 represent the expected total boarding flow of transit line BUS1,
respectively at stop 1 and at stop 2. Each column represents a different demand flow.
From these pictures, it can be observed that at stop 1 all passengers board, no matter the
congestion.
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On the other hand, at stop 2 all passengers choose to board the transit line BUS1 until a cer-
tain value of passengers is present on-board. After this threshold, that is 1100 passengers,
some of the network users’ start walking to the destination.
Obviously, this threshold strictly depends on BPR coefficient, door boarding capacity and
cost of other links.

Noteworthy, the dwelling congestion, in this case, does not influence the number of users
already on-board, which can choose between waiting in the dwelling vehicle or alighting at
the stop and walking, but it changes the decision of passengers that have still to board the
line.
The same happens when the dwelling congestion linked to alighting passengers is studied.
In this case, passengers choose to not board the line instead of alighting during the journey
and continue walking.
These results are a direct consequence of the assumptions made in section 4.4 UE Algorithm,
which increase the cost of alighting and boarding together with the cost of dwelling.

To study more in detail the effect of vehicle overcrowding on dwelling congestion, addi-
tional simulations were conducted, assuming both travel demands equal to 1000 passengers
per hour and varying the dwelling BPR exponent βdwell (from 2 to 10).
For parameters larger than 5, the algorithm becomes in-stable and equilibrium with stop
criterion RGAP equal to 10−9 is not reached in the maximum number of iterations. Thus,
the stop criterion was made less restrictive by imposing the minimum RGAP at equilibrium
equal to 10−4.
Figure 5.29 shows the RGAP trend during the assignment algorithm in this case, where dif-
ferent colours represent different βdwell . Furthermore, figure 5.30 represents the expected
flow boarding transit line BUS1 at stop 2, where each column is a different value of βdwell .
From these pictures it can be observed that the algorithm gets highly in-stable for grow-
ing βdwell and that growing congestion means more passengers choosing to walk instead of
boarding the line.
Moreover, it can be observed that congestion starts having consequences on the choices of
already on-board passengers after a certain value of βdwell . More precisely, some of them
start alighting at stop 2, as shown by figure 5.31, where each column represents a different
βdwell .
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FIGURE 5.24: Dwelling Delay test. RGAP of the solution algorithm.

FIGURE 5.25: Dwelling Delay test. Expected cost of stand dwelling arc.
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FIGURE 5.26: Dwelling Delay test. Expected cost of stand placing arc.

FIGURE 5.27: Dwelling Delay test. Expected total boarding flow of line BUS1
at stop 1 at equilibrium.
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FIGURE 5.28: Dwelling Delay test. Expected total boarding flow of line BUS1
at stop 2 at equilibrium.

FIGURE 5.29: Dwelling Delay test. RGAP of the solution algorithm for vary-
ing βdwell .
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FIGURE 5.30: Dwelling Delay test. Expected total boarding flow of line BUS1
at stop 2 at equilibrium.

FIGURE 5.31: Dwelling Delay test. Expected total alighting flow of line BUS1
at stop 2 at equilibrium.
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5.1.5 Test - Seating Hyperarcs

As stated introduced before, to test the phenomena related to the sitting probability, two
different networks were adopted:

• NetworkA, composed of one line serving two stops, for the placing hyperarc test;

• NetworkC, composed of one line serving three stops, for the dwelling hyperarc test.

All the congestion phenomena not related to seating hyperarcs (eg. on-board, at stops, queu-
ing, dwelling delay) were deactivated. Moreover, RGAP equal to 10−9 was adopted as stop
criterion.

For what concerns the placing hyperarc test, several simulations were carried out, each of
them with different amount of travel demand. More precisely, one OD pair going from node
1 to node 2 was introduced and its travel demand was varied from 100 to 1000 passengers
per hour (with steps of 100 passengers per hour). Moreover, to isolate the placing hyper-
arcs phenomena from the phenomena related to the other types of congestion (eg. dwelling
delay, overcrowding, etc.), the door capacity was set equal to infinity and all the BPR coeffi-
cients were set equal to zero, except for βqueue that was set higher than zero to perform the
assignment with the effective frequency method.
Finally, seating and standing capacity for vehicles of line BUS1 were set equal to 20 passen-
gers per vehicle (which means 200 passengers per hour, being the expected headway of 6
minutes).

With regards to the dwelling hyperarc test, the same approach, with respect to capacities
and BPR coefficients, was adopted. However, in this case, it was not possible to fully isolate
the phenomena related to dwelling hyperarcs as having both seating and standing capacity
higher than zero activates also the placing hyperarcs.
Again, many simulations were conducted assuming two different OD pairs. The first one,
going from node 1 to node 2, was varied from 100 to 1000 passengers per hour (with steps of
100 passengers per hour), while the second, going from node 1 to node 3, was kept constant
(400 passengers per hour).

Figure 5.32 and 5.33 show the trend of RGAP during the assignment algorithm, respectively
for placing and dwelling hyperarc. Trends for different travel demand values are shown in
different colours.
From these pictures, it can be observed that when the demand is higher than the seating
vehicle capacity (i.e. demand higher than 200 passengers per hour), the algorithm needs at
least three iterations to find the equilibrium in case of seating hyperarcs activated. Indeed,
the algorithm firstly performs an “all-or-nothing” assignment to the shortest hypertree and
then corrects the flow distribution according to the new conditional probabilities computed
according to the congested costs. If only one seating phenomenon is involved in the equilib-
rium computation (i.e. placing hyperarc test, figure 5.32), the third iteration is sufficient to
check the convergence, otherwise more iterations are necessaries as different combinations
of flows can decrease the costs (i.e. dwelling hyperarc test, figure 5.33).
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To represents the algorithm behaviour in case of only three iterations (i.e. placing hyperarcs),
figure 5.36 and 5.37, representing the algorithm behaviour in case of demand equal to 1000
passengers per hour, were included in this paper. More precisely, figure 5.36 shows how
passengers flow assignment changes (during the assignment algorithm), where the violet
and red trends represent respectively the passengers sitting and standing on-board of line
BUS1, while figure 5.37 shows the hyperarcs to which demand flows are assigned (during
the assignment algorithm).
From figure 5.36, at first iteration all flows are assigned to the seating arc (violet trend), while
at second iterations the seating share is adjusted considering seating vehicle capacity and,
consequently, assigning some flow to the standing arc (red trend). Moreover, from figure
5.37 it can be observed that all demand is assigned to the hyperarc representing line BUS1.
This is because of the non-presence of restrictions on standing vehicle capacity, as either soft
constraints or strict constraints are not enforced.

Figure 5.34 and 5.35 represent the sitting probability for each travel demand, respectively at
the board placing node of NetworkA and at the stand arrival placing node of NetworkC. Each
demand flow is represented by a different column.
From figure 5.34 it can be observed that for values of demand flows lower than the seating
vehicle capacity (200 passengers per hour), the sitting probability is equal to 1. Then, it de-
creases rapidly with the demand growth.
For what concerns the sitting probability of dwelling hyperarcs, it increases with growing
demand. This is because of, when the demand going from node 1 to node 2 increases, less
seating capacity is assigned to the demand going from node 1 to node 3, as some of the
capacity is assigned to passengers of the first OD pair. This means that, when passengers
alight at stop 2, a larger number of seats get available and, thus, more passengers dwelling
can sit. However, it can also be observed that this increase in number of available seats de-
pends on the probabilistic way of assigning seats (at the placing hyperarc). Indeed, higher
the demand for an OD pair is, higher is its sitting probability at the placing hyperarcs.

To study more in detail the effect of seating vehicle capacity kseat
BUS1, additional simulations

were conducted, varying this capacity value from 10 to 100 passengers per vehicle (i.e. 100
to 1000 passengers per hour, being the expected headway equal to 6 minutes). The placing
hyperarc test was carried out over NetworkA, while the dwelling hyperarc test was carried
out over NetworkC.

For what concerns the placing hyperarc test, one OD pair demand going from node 1 to node
2 was introduced and kept constant to the value of 1000 passengers per hour. Figure 5.38
shows the RGAP trend during the assignment algorithm of this test (where different colours
represent different value of kseat

BUS1), while figure 5.39 represents the sitting probability at the
boar placing diversion node of NetworkA (where each column is a different value of kseat

BUS1).
As expected, it can be seen again from these pictures that only three iterations are needed to
find the equilibrium and that growing seating capacity means larger sitting probability.

Finally, with respect to the dwelling hyperarc test, the same OD pairs of the test carried out
in previous lines were adopted. In these simulations, the demand flow of first OD pair, going
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from node 1 to node 2, was kept constant to 1000 passengers per hour, while the demand
flow of the second OD pair, going from node 1 to node 3, was kept constant to 400 passengers
per hour.
Figure 5.40 and 5.41 represent the equivalent figure 5.38 and 5.39 illustrates for the dwelling
hyperarc test. Form these pictures it can be observed that growing seating capacity means
faster algorithm, as fewer iterations are needed to find the equilibrium. More precisely, for
seating capacity higher than 30 passengers per vehicle, the sitting probability is 1, which
means that all passengers dwelling at stop 2 find a seat.

FIGURE 5.32: Seating Hyperarc test, placing hyperarc and effective frequency
method. RGAP of the solution algorithm.
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FIGURE 5.33: Seating Hyperarc test, dwelling hyperarc. RGAP of the solu-
tion algorithm.

FIGURE 5.34: Seating Hyperarc test, placing hyperarc and effective frequency
method. Expected percentage of passengers sitting on-board of line BUS1 at

equilibrium.



Chapter 5. Model Validation and Simulations 90

FIGURE 5.35: Seating Hyperarc test, dwelling hyperarc. Expected percentage
of passengers sitting on-board of line BUS1 at equilibrium.

FIGURE 5.36: Seating Hyperarc test, placing hyperarc and effective frequency
method. Expected cost and flow of seat running arc (in violet) and stand

running arcs (in red).
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FIGURE 5.37: Seating Hyperarc test, placing hyperarc and effective frequency
method. Hyperpath cost equilibrium. The walking option is not represented
as its flow is null, while the option of taking line BUS1 is represented in red.

FIGURE 5.38: Seating Hyperarc test, placing hyperarc and effective frequency
method. RGAP of the solution algorithm for varying kseat

BUS1.
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FIGURE 5.39: Seating Hyperarc test, placing hyperarc and effective frequency
method. Expected percentage of passengers sitting on-board of line BUS1 at

equilibrium for varying kseat
BUS1.

FIGURE 5.40: Seating Hyperarc test, dwelling hyperarc. RGAP of the solu-
tion algorithm for varying kseat

BUS1.
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FIGURE 5.41: Seating Hyperarc test, dwelling hyperarc. Expected percentage
of passengers sitting on-board of line BUS1 at equilibrium for varying kseat

BUS1.

5.1.6 Test - Waiting Hyperarcs

As stated before, waiting hyperarcs are tested on NetworkB, composed of two lines serving
two stops.
To study how diversion probabilities of waiting hyperarc change at the diversion node (i.e.
stop 1), all the other congestion phenomena (eg. crowding, queuing, etc.) were deactivated.
Moreover, the effective frequency method was adopted.

To this purpose, many simulations were carried out by setting a constant demand going
from node 1 to node 2 (1000 passengers per hour) and the standing vehicle capacity equal to
20 passengers per vehicle. Moreover, the expected headway of line BUS1 was kept constant
to the value of 5 minutes, while the expected headway of line BUS2 was varied between 1
and 10 minutes.
Figure 5.42 illustrates the trend of algorithm convergence during the assignment algorithm
respectively, while figure 5.43 shows the expected percentage of passengers boarding line
BUS1 at equilibrium. Different values of line BUS2 expected headway are represented in
different colours.
Figure 5.42 shows how the equilibrium is found just after the first iteration, thus the equilib-
rium solution is the “all-or-nothing” assignment of uncongested network. This is because the
cost of waiting hyperarcs depend solely on the line effective frequencies, as well as the di-
version probabilities. Thus, if no other congestion phenomena are considered, the effective
frequencies of the two lines are the same and, consequently, the conditional probabilities of
the stop node are equal to the diversion probabilities of the waiting hyperarc and the attrac-
tive line set is composed of both lines.
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Furthermore, as expected the conditional percentage of line BUS1 increases with the ex-
pected headway of line BUS2 (the headway is inversely proportional to the waiting time).
Expected flows are exactly halves at the diversion node only when the headways are the
same (identical lines).

To study further in detail the behaviour of waiting hyperarcs, other simulations were run.
More precisely, the demand was varied between 100 and 1000 passengers per hour (with
steps of 100 passengers per hour), while the two lines were assumed to have the same ex-
pected headway and similar speed: 20 kilometres per hour for line BUS1 and 15 kilometres
per hour for line BUS2.
Figure 5.44 and 5.45 are the same of figure 5.42 and 5.43 for the case with varying demand.
From figure 5.44 the convergence is reached again in one iteration for flows below 500 pas-
sengers per hour, while more than 50 iterations are required otherwise. This is a direct
consequence of the effective frequency method adopted, which decreases the nominal fre-
quencies in function of the flow of passengers waiting the line.
More precisely, it can be seen from figure 5.45 that, initially, all flows are assigned to line
BUS1, which means that the waiting hyperarc 1, composed of line BUS1 only, is chosen by
passengers.
When the demand starts growing, the effective frequency of line BUS1 decreases until users
find no convenient to take only line BUS1. Indeed, being line BUS1 crowded, they may be
able to board line BUS2 firstly and, thus, decrease their costs (strategies concept). Hence,
for values of demand higher than 400 passengers per hour, some passengers start including
in their attractive line set also line BUS2 and, consequently, the new equilibrium is between
waiting hyperarc 1 (composed of line BUS1 solely) and waiting hyperarc 2 (composed of line
BUS1 and line BUS2).
Of course, no passenger chooses the hyperarc composed by line BUS2 solely as it is slower,
hence more expensive.
In conclusion, the increase of number of iterations necessaries to find equilibrium is because,
for demand larger than 400 passengers per hour, the algorithm looks for an equilibrium
among hyperarcs, which is more difficult than the ones studied until now.

Finally, it is important to stress out that some passengers stay stick to the choice of waiting
for line BUS1 (i.e. waiting hyperarc composed only by one branch). This phenomenon can
be observed in real-life cases and it is the only way to find UE (i.e. no user finds convenient
to change choice unilaterally).
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FIGURE 5.42: Waiting Hyperarc test. RGAP of the solution algorithm.

FIGURE 5.43: Waiting Hyperarc test. Expected percentage of passengers
choosing line BUS1 at equilibrium.
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FIGURE 5.44: Waiting Hyperarc test. RGAP of the solution algorithm for
varying demand.

FIGURE 5.45: Waiting Hyperarc test. Expected percentage of passengers
choosing line BUS1 at equilibrium for varying demand.
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5.2 Visum Example Simulation

In this section, the network introduced in section 2.2.1 Example for the Headway-Based
Assignment and represented in figure 2.1 was adopted to perform a simulation of the imple-
mented transit assignment.
The UE was computed over a one-hour time interval of a common day, whose demand con-
sists in one user group following the OD matrix of table 5.8.

A-Village X-City C-Village B-Village
A-Village 0 200 20 0

X-City 200 0 500 200

C-Village 20 500 0 0

B-Village 0 200 0 0

TABLE 5.8: Visum Example Simulation, OD matrix of the assignment de-
mand.

For what concerns the network topology, it is described in section 2.2.1 Example for the
Headway-Based Assignment.
Parameters illustrated in table 5.9, 5.10, 5.11, 5.12 were adopted to set the assignment.

TABLE 5.9: Visum Example Simulation, parameters related to the links.

Parameter Comment Pedestrians Bus Train
vwalk

a walking speed (km/h) 6 / /
Sa transit speed (km/h) / 18 30

TABLE 5.10: Visum Example Simulation, parameters related to the stop plat-
forms.

Parameter Comment 10 and 20 30 and 40
kpax

s platform capacity (pax) 30 100
β

p−crowd
s crowding BPR exponent (coef) 2 2
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TABLE 5.11: Visum Example Simulation, parameters related to the transit
lines Bus and Train.

Parameter Comment Bus Train
Sls commercial speed (km/time-UM); 0 means TSPE 0 0

talight
ls alighting time (min) 0 0

tboard
ls boarding margin time (min) 0 0
hls expected headway (min) 10 20
σls Erlang headway variation coefficient 0 0

lck f ee kilometric fee (e/km) 0 0
cb f ee

ls boarding fee (e) 0 0
Kalight

ls boarding door capacity (pax/min) 20 20
Kboard

ls alighting door capacity (pax/min) 20 20
aded ∈ {0, 1} dedicated doors for boarding and alighting (coeff) 0 0

tdoors
ls door operation time (min) 0.5 0.5
tmin
ls minimum dwell time, after DOTI 0 2

ho f f s
ls offset w.r.t. simulation Initialize if no run is given (min) 5 0

kseat
ls seating capacity (pax) 10 50

kstand
ls standing capacity (pax) 40 50

βv−crowd
ls discomfort BPR exponent (coef) 2 2
α

queue
ls queuing BPR multiplier (coef) 1 1

β
queue
ls queuing BPR exponent (coef) 4 4

αdwell
ls dwelling BPR multiplier (coef) 1 1

βdwell
ls dwelling BPR exponent (coef) 2 2

TABLE 5.12: Visum Example Simulation, parameters related to the user
group.

Parameter Comment Group 1
γvot

g value of time (e/h) 60
γdist

g value of distance (e/km) 0
γwait

g waiting discomfort (coef) 1
γwalk

g walking discomfort (coef) 1
ctran

g transfer cost (e) 0
γstand

g standing discomfort (coef) 1.5
γseat

g sitting discomfort (coef) 1

γ
m f ee
g fee multiplier (coef) 0

αcrowd
g crowding discomfort BPR multiplier (coef) 1
γrisk

g risk adverseness (coeff) 1
nlmax

g maximum number of attractive lines (No) 10
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The assignment algorithm needed 116 iterations to converge when for stop criterion RGAP
equal to 10−4.
Figure 5.46 and 5.47 show the results represented in Visum. More precisely, the first one
illustrates the flows as bars on links, while the second one illustrates the passenger boarding
and alighting at stops as charts on stop points.

It can be observed that, according to the implemented software, the right-bottom part of the
network is highly congested, and the supply is not enough to satisfy the demand. Indeed,
as shown from the presence of dark colours almost all over the network, all transit services
except the Bus line connecting C-Village and B-Village have a standing cost that is at least
twice its corresponding uncongested cost.
Moreover, for links connecting B-Village and X-City, and the other way around, some pas-
sengers prefer walking rather than squeezing/waiting the bus.
Finally, even if the cost of waiting the train is both directions is huge (as shown from the dark
green and dark yellow columns at stop points 20 and 40 of figure 5.47), passengers choose to
take the Train lines because they are faster, have more capacity and run over a shorter path
than the bus lines connecting the same stops.

FIGURE 5.46: Visum Example Simulation, implemented software assign-
ment. Network flows represented as bars on links.
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FIGURE 5.47: Visum Example Simulation, implemented software assign-
ment. Boarding and alighting flows represented as charts on stop points.

Finally, Visum HB assignment procedure explained in section 2.2.1 Headway-Based Proce-
dure was executed for the same network, where the headway was obtained by the UDA
“HDWY” set for the previous assignment.
Figure 5.48 shows the results as bars on links when the following specific impedance param-
eters were set:

• αPJT = 1;

• α f = 0;

• αIVT = 1;

• βl = 1;

• αAXT = n.d. 1;

• αACT = 1;

• αEGT = 1;

• αWT = 1;

• αOWT = 1;

• αTWT = 1;

• βs = 1;

• αNTR = 0min.

Comparing the results of Visum HB assignment procedure illustrated in figure 5.48 with
the ones obtained with the implemented software (figure 5.46 and 5.47), it can be seen that
Visum assigns all passengers to the transit service (i.e. no passengers walking) and that is
expected that 700 passengers per hour will take the train, which is 7 times higher the train
lines capacity. This is a consequence of Visum not considering any vehicle capacity restraints
during the assignment.
Moreover, according to Visum results, line Bus could be completely deleted between B-
Village and C-Village as it is almost unused.

1no auxiliary transport systems are available, thus the parameter setting is not irrelevant
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FIGURE 5.48: Visum Example simulation, Visum HB procedure. Network
flows represented as bars on links.

An example of strategic planning using the implemented software is the following.
Considering the results shown by figure 5.46 and 5.47, the transport planner may wonder
whether changing the bus frequency will relieve the network congestion or not. To this pur-
pose, the transport planner could run a simulation, changing the expected headway of Bus
from 10 minutes to 5 minutes.
Then, he or she might study the simulation outputs, that are shown in figure 5.49. From
this picture, the transport planner could observe that changing the expected headway of Bus
lines relieves significantly the network congestion. More precisely, it makes more passen-
gers taking the Bus lines instead of walking or waiting the Train lines.
However, the transport planner may also realize that this solution is more expensive, as it
requires 12 working buses per hour instead of just 6. Moreover, Train lines are still highly
congested, hence, implementing this solution is not increase the level of service significantly.

As a consequence, the transport planner may also wonder whether, instead of changing the
expected headway of the Bus lines, it would be better to decrease the expected headway of
the Train lines (from 20 minutes to 10 minutes). To this purpose, the transport planner could
run another simulation whose results are shown in figure 5.50.
From this picture he or she could observe that, when Train expected headway is equal to 10
minutes, passengers moves their choices from Bus lines to Train lines, making the network
uncongested (with the exception of the Train lines). However, as the Train lines have higher
frequency and, thus, higher capacity, their waiting costs and running costs decrease and,
consequently, also congestion is lower with respect to previous cases.
Hence, the transport planner could decide to implement this last option in order to increase
the level of service.
It is important to specify that the distribution of flows of this last solution is the same of the
one resulting from the Visum HB procedure, even if its expected headway of Train lines is
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halves.

FIGURE 5.49: Visum Example Simulation, implemented software assign-
ment. Network flows represented as bars on links, and boarding and alight-

ing flows represented as charts on stop points for hBus = 5min.

FIGURE 5.50: Visum Example Simulation, implemented software assign-
ment. Network flows represented as bars on links, and boarding and alight-

ing flows represented as charts on stop points for hTrain = 10min.
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6 Conclusions and Further
Developments

Transport has a positive key role in the economy and, at the same time, its policies can harm
human health and the environment. Thus, governments have been investing huge capitals
on public transport, attempting to attract more users by increasing the quality of service and
comfort. Nevertheless, public transport must still compete with private one, as users’ expe-
rience is influenced negatively by congestion and service reliability.
The increase of level of service can be achieved by reducing congestion through careful plan-
ning of the public transport service. To this purpose, different transit assignment models
have been introduced in the last 60 years.

This thesis focuses on the simulation of transit networks, including passengers’ congestion
phenomena, as a tool for strategic and tactical planning.
More precisely, the thesis proposes a deterministic static assignment model which is able
to compute UE for large-scale networks in case of passengers mingling at stops and high-
frequency or low-reliability transit service, considering congestion phenomena. To this pur-
pose, passengers’ journey is divided into several legs, each of them described by a link. Each
link is characterized by a specific cost performance function, that represents the cost of the
trip leg in terms of time. This cost is usually composed of a monetary cost and a temporal
cost, and the latter may be a function of congestion (depending on the trip leg).

Congestion phenomena such as Overcrowding Congestion, i.e. passengers discomfort due to
overcrowding on-board of a vehicle or at platforms, Queuing congestion, i.e. passengers wait-
ing at platforms, and Dwelling Delay, i.e. passengers waiting on-board of a vehicle, due to
limited door capacity and overcrowding, are represented in the model by introducing ad-
ditional costs (in terms of time) for the affected. These congestion costs are computed in
different ways according to the studied phenomenon.
More precisely, overcrowding congestion on-board and at platforms is modelled by intro-
ducing a BPR factor which multiplies the travel time when flows is equal to zero, dwelling
delays is modelled by adding extra dwelling time due to limited door capacity and over-
crowding on-board (if the vehicle saturation rate is high, people have difficulties in access
and egress the vehicle), and queuing congestion is modelled either by reducing the nominal
frequency of the line depending on the number of passengers waiting to board (effective
frequency method, where the vehicle standing capacity can be exceeded) or by introducing
the high cost probability of boarding the vehicle only in “next temporal layer” (fail-to-board
probability method, where the vehicle standing capacity cannot be violated).
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In addition, the model represents other two congestion phenomena, such as the availability
of seats (both for boarding passengers and dwelling passengers) and the waiting process at
stops. This is achieved by using the concept of strategies and hyperpaths, i.e. plans users
adopt to reach the desired destination at a minimum expected cost.
More precisely, congestion related to the waiting process is represented through a waiting
hyperarc, where the strategy is chosen pre-trip (eg. user takes the first vehicle approaching
the stop from his or her attractive line set composed of line 1 and line 2) and whose outcome
depends on an event (e.g. the vehicle of line 1 approaches the stop). The attractive line set
is determined by a Greedy algorithm and depends solely on given expected headways and
remaining costs (i.e. expected cost perceived by users to reach the destination.
For what concerns congestion related to the process of finding a sit, it is represented by a
placing hyperarc at placing nodes and a dwelling hyperarcs at the stand arrival placing node,
and whose outcomes do not involve any choice as they depend on random variables (i.e. the
passenger is lucky enough to find a sit).

As the congestion phenomena in transit networks are non-separable (i.e. cost of an arc de-
pends also on the flows of other adjacent arcs, for example, cost of boarding a line depends
on users that are already on the line), the uniqueness of equilibrium is not guaranteed. Thus,
the problem of finding UE for congested transit networks cannot be solved through convex
optimization.

This thesis model adopts an assignment algorithm which solves the fixed-point formulation of
UE, based on the circular dependency between arc flows and congested costs.
Inputs of this assignment algorithm are the travel demand, defined by the OD matrix for each
user group g ∈ G and arc attributes, which consist in the graph (N, A) representing the tran-
sit network according to model requirements.
First, the algorithm is initialized by computing the free-flow cost of each arc a ∈ A (i.e. cost
with null flow on the arc) and the corresponding conditional probabilities (i.e. probability that
users take arc a ∈ A conditional on being at its tail node). These probabilities are obtained
through a sequential approach which computes the shortest hypertree (i.e. spanning tree
T ⊆ (N, A), such that the hyperpath distance from its root to any other vertex is the shortest
hyperpath distance) through an extended version of Dijkstra algorithm, assuming that users
reach their destination through a sequence of choices at nodes, where the local alternatives
are the arcs of the forward star. These choices depend only on arcs cost, the remaining cost
of their heads and if they are connected to the destination or not.
Then, the conditional probabilities are coupled with the demand flows for each OD pair and
user group through an “all-or-nothing” assignment over the shortest hypertree to produce
the aggregated flows for each arc, directed to each destination and for each user group. These
flows satisfy Markov’s memory-less assumption, i.e. they do not carry information about
their origin.
Aggregated flows are then used as input of the Network Loading Map, which assigns final
flows to each link, for each user group.
Finally, flows are used to update arc congested costs for each arc and each user group, and
these updated costs are used again to find the new routes chosen by passengers and the cor-
responding conditional probabilities.
This iterative process is repeated until UE is found, that means the flows resulting in the
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previous iteration from the NLM are the same of the one computed in the current iteration
(convergence).

As UE assignment function is not a contraction, the RGP method on implicit hyperarcs was
implemented to find UE convergence by determining search direction and size of the con-
vergence search. Relative gap criterion is adopted as stop condition.
The implemented RGP is an innovative one, as it performs convergence search over arcs,
avoiding the enumeration of hyperarcs. The implicit definition of hyperarcs is an important
goal achieved, as enumerating them will be really costly in terms of computational time.
Indeed, transit networks usually consists in large-scale instances and the total number of
possible hyperarcs is usually huge (e.g. considering a small network composed of three
stops and three lines serving those stops, there are already 16 hyperarcs: 7 waiting hyper-
arcs and 9 seating hyperarcs).

Simulations were executed implementing the model in Visual Basic 15, and results were vi-
sualized with the software PTV Visum 17 of the company PTV, which allows GIS-based data
management in the field of private and public transport. To simplify the input process, data
regarding networks and demand were imported from Visum.

To validate simulation results, the various congestion phenomena were tested singularly.
More precisely, tests have shown that the algorithm converges in less than 10 iterations
and with high precision (RGAP equal to 10−9) in case of simple congestion phenomena (eg.
overcrowding, queuing with effective frequency, sitting hyperarcs). On the other hand, for
dwelling delay and waiting hyperarcs more iterations are needed to reach the same conver-
gence precision.
Moreover, in case of queuing congestion with fail-to-board probability, the algorithm does
not converge as flow conservation does not hold (i.e. some flows is removed from the net-
work and sent to the “next temporal layer”).
From these tests it was also observed that all the modelled congestion phenomena behave
as expected, except for the dwelling delay. Indeed, this congestion phenomenon starts hav-
ing consequences on the choice of on-board dwelling passengers only after a certain value
of BPR exponent. Before this value, dwelling congestion simply influences boarding pas-
sengers, which choose to walk instead of to board the line at the congested stop. This is a
direct consequence of the costs introduced in boarding and alighting arcs with the purpose
of avoid dwelling arc bypass (i.e. passengers alighting and boarding the same vehicle to
avoid paying dwelling costs).

Finally, it can be said that the congestion and overcrowding are not only due to wrong strate-
gic and tactical planning but also to the lack of operational and real-time planning. And yet,
a system which can predict the network response to incidents and propose a solution to keep
congestion levels acceptable does not yet exist.
To contain congestion and keep the level of service high, public transport operators should
use a system able to predict congestion development and guide users’ choices. However,
a software fast enough to forecast real-time passengers’ congestion in public transport net-
works while considering a wide range of congestion phenomena, does not exist yet.
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The model implemented in this thesis is not suitable for real-time simulation and incident
management, as it performs a static assignment which implies steady state setting (constant
flows and performances during the assignment period), allowing only an average evaluation
of network performances during the analysis period. An example is the load of passengers
on each line: the implemented model is can evaluate the phenomena, but it may not be sat-
isfactory if the travel demand has a sharp peak.

However, this thesis can also be an early stage for the implementation of a real-time incident
management software for public transport networks.
Indeed, outcomes of the implemented model can be used as inputs of the Transit Link Trans-
mission Model (TLTM) shown in figure 6.1, which is a fast-macroscopic model that performs
a dynamic assignment on any network from the results of its static.
As it can be seen from figure 6.1, inputs of TLTM are solely demand, supply and service
features and the results of a static assignment. Hence, the static assignment performed from
the implemented model can be easily turned dynamic by using its inputs and its results as
inputs of a TLTM model. More precisely, the fundamental UE outputs for performing dy-
namic assignment through TLTM are the splitting rates, which are conditional probabilities
at nodes.

TLTM is based indeed on the Simplified Kinematic Wave Theory(Newell, 1993), which

FIGURE 6.1: TLTM structure.

propagates flows jointly according to the splitting rates, and its outputs are inflows and out-
flows of network links, and their travel times.
TLTM is applied by solving consecutively two sub-models, called link model and node model,
for each element of the network. The link model propagates flow states forward (vehicles
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and passengers) and backward (space) on each arc, while the node model solves flow con-
flicts at nodes.
At current state, TLTM is able to do real-time monitoring and forecasting of the number
of users travelling on a certain transit network. Since the forecast of transit network loads
in real-time is one of the most requested research topics by cities such as Singapore, where
public transport is the lifeblood of the society, the implementation of a TLTM model able to
consider all the congestion phenomena described in this thesis is fundamental.
Another important aspect of TLTM is the possibility of real-time forecasting of accidental
events, such as service interruptions, strikes, accidents, etc., which, if not adequately fore-
cast and studied, can change significantly the service quality and level of service.

An example of TLTM application is the provision of information regarding available seat
on a vehicle. If this information is made available to passengers, together with other in-
formation such as traffic and, if necessary, service malfunctions, the efficiency of the transit
network as well as its level of service can increase significantly.
In conclusion, TLTM is a valid tool to move demand from private transport to the public
one.
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A Software IO methods and
examples.

This appendix includes examples of input/output methods for the implemented software.

A.1 Example of network modelling by CSV files

This section shows the CSV file used to model the network OneLine_ThreeStops of figure A.1,
composed of:

• two road links of 5km length each;

• a line (BUS 1) serving each node (stops coincides with nodes) of the network with a
headway-based service of expected headway equal to 6 minutes.

The demand in the assignment period consist on:

• flow of 500 passengers of Class1 per hour going from zone Block A (connected to node
1) to Work (connected to node 3);

• flow of 300 passenger of Class2 per hour going from zone Block B (connected to node
2) to Work (connected to node 3).

FIGURE A.1: OneLine_ThreeStops network. Yellow triangles are stops, dashed
red line is the transit line BUS 1, purple polygons are demand zones.

Table A.1 and A.2 represent the CSV model of OneLine_ThreeStops network topology, table
A.3 and A.4 represent the CSV model of the demand, and table A.5 represents the CSV model
of demand and supply attributes 1.

Line BUS 1 has:

• headway hBUS1 = 6 min;

1Negative BQUE means hyperbolic, 0 fail to board. Negative HVAR means scheduled. OFF defined only when
no line is provided
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• speed SBUS1 = 20 km/h;

• seat vehicle capacity kseat
BUS1 = 30 pax/veh;

• stand vehicle capacity kstand
BUS1 = 50 pax/veh.

All other attributes are negligible or assume the typical values.

For what concerns users, Class1 differs from Class2 in value of time γvot
g and waiting discom-

fort coefficient γwait
g . More precisely:

• γvot
Class1 = 60 e/hour γwait

Class1 = 1;

• γvot
Class2 = 40 e/hour γwait

Class2 = 2.

All other attributes are the same and assume the typical values.

TABLE A.1: OneLine_ThreeStops network, CSV file of the node topology
model. “/” means function 0.

link tail head leng func
1 1 2 5 /
2 2 3 5 /

TABLE A.2: OneLine_ThreeStops network, CSV file of the line topology
model. “/” means function 0.

line node stop func
BUS 1 1 1 /
BUS 1 2 2 /
BUS 1 3 3 /

TABLE A.3: OneLine_ThreeStops network, CSV file of the OD flow model.

user orig dest flow grup
1 1 3 500 Class1
1 2 3 300 Class2
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TABLE A.4: OneLine_ThreeStops network, CSV file of the user class model.

grup func
Class1 Class1
Class2 Class2

TABLE A.5: OneLine_ThreeStops network, CSV file of the network and de-
mand attribute model. 1 and 2 mean Group 1 (user class 1) and Group 2 (user

class 2).

func para valu desc
0 WSPE 5 [link] walking speed (km/h)
0 APED 0 [link] walking BPR multiplier (coef)
0 BPED 2 [link] walking BPR exponent (coef)
0 TSPE 30 [link] transit speed (km/h)
0 TALI 0 [line-seg] alighting time (min)
0 TBOA 0 [line-seg] boarding margin time (min)
0 HDWY 6 [line-seg] expected headway (min)
0 KFEE 0 [line-seg] kilometric fee (e/km)
0 BFEE 0 [line-seg] boarding fee (e)
0 BCAP 100000 [line-seg] boarding door capacity (pax/min)
0 ACAP 100000 [line-seg] alighting door capacity (pax/min)
0 DEDO 0 [line-seg] dedicated doors (0-1)
0 DOTI 0.5 [line-seg] door operation time (min)
0 ADWL 0 [line-seg] dwelling BPR multiplier (coef)
0 BDWL 2 [line-seg] dwelling BPR exponent (coef)
0 OFFS 0 [line-seg] offset wrt simulation init (min)
0 SCAP 30 [line-seg] sitting capacity (pax)
0 VCAP 50 [line-seg] standing capacity (pax)
0 BCOM 2 [line-seg] discomfort BPR exponent (coef)
0 AQUE 1 [line-seg] queueing BPR multiplier (coef)
0 BQUE 6 [line-seg] queueing BPR exponent (coef)
0 PCAP 100000 [stop-plat] platform capacity (pax)
0 BSTP 2 [stop-plat] crowding BPR exponent (coef)
Class1 VOFT 60 [class] value of time (e/h)
Class1 VOFD 0 [class] value of distance (e/km)
Class1 WAIT 1 [class] waiting discomfort (coef)
Class1 WALK 1 [class] walking discomfort (coef)
Class1 CTRA 0 [class] transfer cost (e)
Class1 STND 1.5 [class] standing discomfort (coef)
Class1 SEAT 1 [class] sitting discomfort (coef)
Class1 MFEE 1 [class] fee multiplier (coef)
Class1 ACRW 1 [class] crowding discomfort BPR multiplier (coef)
Class1 RISK 1 [class] risk averseness (coef)
Class1 MNAL 10 [class] maximum number of attractive lines (No
Class2 VOFT 40 [class] value of time (e/h)
Class2 VOFD 0 [class] value of distance (e/km)
Class2 WAIT 2 [class] waiting discomfort (coef)
Class2 WALK 1 [class] walking discomfort (coef)
Class2 CTRA 0 [class] transfer cost (e)
Class2 STND 1.5 [class] standing discomfort (coef)
Class2 SEAT 1 [class] sitting discomfort (coef)
Class2 MFEE 1 [class] fee multiplier (coef)
Class2 ACRW 1 [class] crowding discomfort BPR multiplier (coef)
Class2 RISK 1 [class] risk averseness (coef)
Class2 MNAL 10 [class] maximum number of attractive lines (No)
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A.2 Example of results representation

This section shows the results of the assignment performed on the network OneLine_Three-
Stops, represented in figure A.1.
Outputs represented through CSV files are shown by table A.6 and table A.7, while figure
A.2 shows the flow results on an image where also the capacity of links is shown (when
relevant “flow/capacity”).
Finally, figure A.3 shows the flow results on links (represented by flow bars) and the results
for stop points (represented as histogram columns), while listing A.1 and listing A.2 show
the CSV files produced by the software to export result-related UDAs and their graphics in
Visum.

FIGURE A.2: OneLine_ThreeStops network, image file representing the flows
on the network and capacities (flow/capacity).

TABLE A.6: OneLine_ThreeStops network, CSV file representing assignment
results in terms of convergence trend.

iter clock rgap alfa

1 7:47:19 PM 1 1
2 7:47:19 PM 0.121398401199613 1
3 7:47:19 PM 3.57099622776313E-17 1
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TABLE A.7: OneLine_ThreeStops network, CSV file representing assignment
results in terms of flows and costs.
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FIGURE A.3: OneLine_ThreeStops network, screen-shot of Visum model repre-
senting the flows on links, divided in walking flows and seating and standing
flows for each line, and the boarding and alighting flows at stops. The con-
gestion level for standing passengers is plotted by different color gradations
of standing flow (higher congestion, darker color), while the waiting time at

stops due to congestion is plotted as a darker column in the histogram.
Flows on connectors are not plotted for space necessity.
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1 $LINK :NO;FROMNODENO;TONODENO;PUTUE_WALK_FLOW;PUTUE_WALK_CONG; PUTUE_SEAT_FLOW_1_BUS_1 ;
PUTUE_STAND_FLOW_1_BUS_1 ; PUTUE_STAND_CONG_1_BUS_1
1 ; 1 ; 2 ; 0 ; 0 ; 3 0 0 ; 2 0 0 ; 1 6

3 1 ; 2 ; 1 ; 0 ;NaN ; 0 ; 0 ; 0
2 ; 2 ; 3 ; 0 ; 0 ; 3 0 0 ; 5 0 0 ; 1 0 0

5 2 ; 3 ; 2 ; 0 ;NaN ; 0 ; 0 ; 0

7 $CONNECTOR:ZONENO;NODENO; DIRECTION ; TSYSSET ;PUTUE_WALK_FLOW;PUTUE_WALK_CONG
1 ; 1 ;O; ; 5 0 0 ; 0

9 1 ; 1 ;D; ; 0 ; 0
2 ; 2 ;O; ; 3 0 0 ; 0

11 2 ; 2 ;D; ; 0 ; 0
3 ; 3 ;O; ; 0 ; 0

13 3 ; 3 ;D; ; 8 0 0 ; 0

15 $STOPPOINT :NO;STOPAREANO; TSYSSET ;NODENO;LINKNO;FROMNODENO; RELPOS ; PUTUE_BOARD_FLOW_1_BUS_1 ;
PUTUE_ALIGHT_FLOW_1_BUS_1 ; PUTUE_WAIT_CONG_1_BUS_1

1 ; 1 ; B ; 1 ; 0 ; 0 ; 0 ; 5 0 0 ; 0 ; 1 8 0
17 2 ; 2 ; B ; 2 ; 0 ; 0 ; 0 ; 3 0 0 ; 0 ; 1 8 0

3 ; 3 ; B ; 3 ; 0 ; 0 ; 0 ; 0 ; 8 0 0 ; 1 8 0

LISTING A.1: OneLine_ThreeStops network, CSV file representing the UDAs
to import in Visum in order to represent results.

1 <?xml version=" 1 . 0 " encoding=" utf−8" standalone=" yes " ?>
<netEditorGraphicParameters version=" 2 ">

3 <netEditor2D >
<layerParameters >

5 < l a y e r s p a r t i a l =" t rue ">
< l a y e r draw=" true " type="STOPPOINTS" />

7 </layers >
</layerParameters >

9 <l inks >
< l a y e r s p a r t i a l =" t rue ">

11 < l a y e r draw=" true " type="BARLABELS" />
< l a y e r draw=" f a l s e " type="LABELS" />

13 < l a y e r draw=" true " type="BARS" />
</layers >

15 <bars >
<general barGap=" 0 " connectBars=" f a l s e " hideShortBars=" t rue " useCrossValues=" f a l s e ">

17 < l a b e l avoidOverlapping=" f a l s e " labelGap=" 1 " l a b e l I n s i d e B a r =" f a l s e "
l a b e l V i s i b i l i t y R u l e ="DRAWPOSITIONDEPENDENT" usePolyLineMidPos=" f a l s e ">

<textFormat drawFrame=" true " frameColor=" f f 0 0 0 0 0 0 " l ineSpac ing=" 50 " t e x t C o l o r="
f f 0 0 0 0 0 0 " textColorFromBar=" t rue " t e x t O r i e n t a t i o n ="VERTICAL" t e x t S i z e =" 2 . 5 " t ransparentText
=" f a l s e ">

19 < f o n t S t y l e bold=" f a l s e " fontFamilyName=" Ar ia l " i t a l i c =" f a l s e " />
</textFormat >

21 </l a b e l >
< o b j e c t S e l e c t i o n c l a s s i f i c a t i o n A t t r I D ="TYPENO" drawOnClosedObjects=" f a l s e "

drawOnlyOnActiveMainObjects=" f a l s e " drawOnlyOnActiveObjects=" t rue " numDecPlaces=" 0 "
useClassif iedMode=" f a l s e " useLayerOrder=" f a l s e " />

23 <defau l tL inePathBarS ty le draw=" f a l s e ">
<polygonStyle drawBorder=" t rue ">

25 < f i l l S t y l e c o l o r =" f f 0 0 a 8 0 0 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" f f 0 0 a 8 0 0 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

27 </polygonStyle >
</defaul tL inePathBarSty le >

29 </general >
<items >

31 <item barType="STANDARD" draw=" true " gridColumnWidth=" 114 ">
< s c a l e a u t o S c a l e F a c t o r=" 1 " maxDimension=" 4 " maxValue=" 1000 " minValue=" 0 "

useAutoScale=" t rue " useMinDimension=" f a l s e " />
33 < l a b e l labe lThreshold=" 0 " mul t ip lyFactor=" 1 " numDecPlaces=" 0 " roundValue=" 1 "

showTitle=" f a l s e " showUnit=" f a l s e " showValue=" t rue " stringFormatType="DEFAULTFMT"
textContentType="TEXTFROMATTRIBUTEVALUE" t e x t P r i o r i t y =" 1 " useLabelThreshold=" t rue "
useMult iplyFactor=" f a l s e " useUserDef inedTit leText=" t rue " userDef inedTi t l eText="Walk" />
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<standardBar c l a s s i f i c a t i o n A t t r I D ="PUTUE_WALK_CONG" negat iveSca leAt t r ID="
PUTUE_WALK_FLOW" numDecPlaces=" 0 " s c a l e A t t r I D="PUTUE_WALK_FLOW" useClassif iedMode=" t rue "
useLayerOrder=" f a l s e ">

35 <uniform draw=" true ">
<polygonStyle drawBorder=" t rue ">

37 < f i l l S t y l e c o l o r =" FFFF00FF " hatchType="SOLIDFILLING" hatchWidth=" 0 " />
<borderSty le c o l o r =" FFFF00FF " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

39 </polygonStyle >
</uniform>

41 < c l a s s i f i e d >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 0 "

s t r ingValue=" * " upperLimit=" 0 ">
43 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
45 < f i l l S t y l e c o l o r =" FFFF00FF " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FFFF00FF " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
47 </polygonStyle >

</contents >
49 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 20 "
s t r ingValue=" * " upperLimit=" 20 ">

51 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

53 < f i l l S t y l e c o l o r ="FFCC00CC" hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r ="FFCC00CC" dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

55 </polygonStyle >
</contents >

57 </ c l a s s >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 40 "

s t r ingValue=" * " upperLimit=" 40 ">
59 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
61 < f i l l S t y l e c o l o r =" FF990099 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FF990099 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
63 </polygonStyle >

</contents >
65 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 60 "
s t r ingValue=" * " upperLimit=" 60 ">

67 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

69 < f i l l S t y l e c o l o r =" FF660066 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" FF660066 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

71 </polygonStyle >
</contents >

73 </ c l a s s >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 80 "

s t r ingValue=" * " upperLimit=" 80 ">
75 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
77 < f i l l S t y l e c o l o r =" FF330033 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FF330033 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
79 </polygonStyle >

</contents >
81 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; gt ; 0 . 4 "
s t r ingValue=" * " upperLimit=" INF ">

83 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

85 < f i l l S t y l e c o l o r =" FF000000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" FF000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

87 </polygonStyle >
</contents >

89 </ c l a s s >
</ c l a s s i f i e d >

91 </standardBar >
</item >

93 <item barType="STANDARD" draw=" true " gridColumnWidth=" 114 ">
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< s c a l e a u t o S c a l e F a c t o r=" 1 " maxDimension=" 4 " maxValue=" 1000 " minValue=" 0 "
useAutoScale=" t rue " useMinDimension=" f a l s e " />

95 < l a b e l labe lThreshold=" 0 " mul t ip lyFactor=" 1 " numDecPlaces=" 0 " roundValue=" 1 "
showTitle=" f a l s e " showUnit=" f a l s e " showValue=" t rue " stringFormatType="DEFAULTFMT"
textContentType="TEXTFROMATTRIBUTEVALUE" t e x t P r i o r i t y =" 1 " useLabelThreshold=" t rue "
useMult iplyFactor=" f a l s e " useUserDef inedTit leText=" t rue " userDef inedTi t l eText=" BUS_1 − Seat
" />

<standardBar c l a s s i f i c a t i o n A t t r I D =" " negat iveSca leAt t r ID="PUTUE_SEAT_FLOW_1_BUS_1"
numDecPlaces=" 0 " s c a l e A t t r I D="PUTUE_SEAT_FLOW_1_BUS_1" useClassif iedMode=" f a l s e "
useLayerOrder=" f a l s e ">

97 <uniform draw=" true ">
<polygonStyle drawBorder=" t rue ">

99 < f i l l S t y l e c o l o r =" FFFF0000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />
<borderSty le c o l o r =" FFFF0000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

101 </polygonStyle >
</uniform>

103 </standardBar >
</item >

105 <item barType="STANDARD" draw=" true " gridColumnWidth=" 114 ">
< s c a l e a u t o S c a l e F a c t o r=" 1 " maxDimension=" 4 " maxValue=" 1000 " minValue=" 0 "

useAutoScale=" t rue " useMinDimension=" f a l s e " />
107 < l a b e l labe lThreshold=" 0 " mul t ip lyFactor=" 1 " numDecPlaces=" 0 " roundValue=" 1 "

showTitle=" f a l s e " showUnit=" f a l s e " showValue=" t rue " stringFormatType="DEFAULTFMT"
textContentType="TEXTFROMATTRIBUTEVALUE" t e x t P r i o r i t y =" 1 " useLabelThreshold=" t rue "
useMult iplyFactor=" f a l s e " useUserDef inedTit leText=" t rue " userDef inedTi t l eText=" BUS_1 −
Stand " />

<standardBar c l a s s i f i c a t i o n A t t r I D ="PUTUE_STAND_CONG_1_BUS_1" negat iveSca leAt t r ID="
PUTUE_STAND_FLOW_1_BUS_1" numDecPlaces=" 0 " s c a l e A t t r I D="PUTUE_STAND_FLOW_1_BUS_1"
useClassif iedMode=" t rue " useLayerOrder=" f a l s e ">

109 <uniform draw=" true ">
<polygonStyle drawBorder=" t rue ">

111 < f i l l S t y l e c o l o r =" FFFF0000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />
<borderSty le c o l o r =" FFFF0000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

113 </polygonStyle >
</uniform>

115 < c l a s s i f i e d >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 0 "

s t r ingValue=" * " upperLimit=" 0 ">
117 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
119 < f i l l S t y l e c o l o r =" FFFF0000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FFFF0000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
121 </polygonStyle >

</contents >
123 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 20 "
s t r ingValue=" * " upperLimit=" 20 ">

125 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

127 < f i l l S t y l e c o l o r =" FFCC0000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" FFCC0000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

129 </polygonStyle >
</contents >

131 </ c l a s s >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 40 "

s t r ingValue=" * " upperLimit=" 40 ">
133 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
135 < f i l l S t y l e c o l o r =" FF990000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FF990000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
137 </polygonStyle >

</contents >
139 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 60 "
s t r ingValue=" * " upperLimit=" 60 ">

141 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

143 < f i l l S t y l e c o l o r =" FF660000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" FF660000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />



Appendix A. Software IO methods and examples. 121

145 </polygonStyle >
</contents >

147 </ c l a s s >
< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 80 "

s t r ingValue=" * " upperLimit=" 80 ">
149 <contents draw=" true ">

<polygonStyle drawBorder=" t rue ">
151 < f i l l S t y l e c o l o r =" FF330000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

<borderSty le c o l o r =" FF330000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
153 </polygonStyle >

</contents >
155 </ c l a s s >

< c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; gt ; 0 . 4 "
s t r ingValue=" * " upperLimit=" INF ">

157 <contents draw=" true ">
<polygonStyle drawBorder=" t rue ">

159 < f i l l S t y l e c o l o r =" FF000000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
<borderSty le c o l o r =" FF000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

161 </polygonStyle >
</contents >

163 </ c l a s s >
</ c l a s s i f i e d >

165 </standardBar >
</item >

167 </items >
</bars >

169 </l inks >
<connectors >

171 < l a y e r s p a r t i a l =" t rue ">
< l a y e r draw=" true " type="BARLABELS" />

173 < l a y e r draw=" f a l s e " type="LABELS" />
< l a y e r draw=" true " type="BARS" />

175 </layers >
<bars >

177 <general barGap=" 0 " connectBars=" f a l s e " hideShortBars=" t rue " useCrossValues=" f a l s e ">
< l a b e l avoidOverlapping=" f a l s e " labelGap=" 0 " l a b e l I n s i d e B a r =" f a l s e "

l a b e l V i s i b i l i t y R u l e ="DRAWPOSITIONDEPENDENT" usePolyLineMidPos=" f a l s e ">
179 <textFormat drawFrame=" t rue " frameColor=" f f 0 0 0 0 0 0 " l ineSpac ing=" 30 " t e x t C o l o r="

f f 0 0 0 0 0 0 " textColorFromBar=" t rue " t e x t O r i e n t a t i o n ="VERTICAL" t e x t S i z e =" 2 . 3 " t ransparentText
=" f a l s e ">

< f o n t S t y l e bold=" f a l s e " fontFamilyName=" Ar ia l " i t a l i c =" f a l s e " />
181 </textFormat >

</l a b e l >
183 < o b j e c t S e l e c t i o n c l a s s i f i c a t i o n A t t r I D ="TYPENO" drawOnClosedObjects=" f a l s e "

drawOnlyOnActiveMainObjects=" f a l s e " drawOnlyOnActiveObjects=" t rue " numDecPlaces=" 0 "
useClassif iedMode=" f a l s e " useLayerOrder=" f a l s e " />

</general >
185 <items >

<item barType="STANDARD" draw=" true " gridColumnWidth=" 120 ">
187 < s c a l e a u t o S c a l e F a c t o r=" 1 " maxDimension=" 4 " maxValue=" 1000 " minValue=" 0 "

useAutoScale=" t rue " useMinDimension=" f a l s e " />
< l a b e l labe lThreshold=" 0 " mul t ip lyFactor=" 1 " numDecPlaces=" 0 " roundValue=" 1 "

showTitle=" f a l s e " showUnit=" f a l s e " showValue=" t rue " stringFormatType="DEFAULTFMT"
textContentType="TEXTFROMATTRIBUTEVALUE" t e x t P r i o r i t y =" 1 " useLabelThreshold=" t rue "
useMult iplyFactor=" f a l s e " useUserDef inedTit leText=" t rue " userDef inedTi t l eText="Walk" />

189 <standardBar c l a s s i f i c a t i o n A t t r I D ="PUTUE_WALK_CONG" negat iveSca leAt t r ID="
PUTUE_WALK_FLOW" numDecPlaces=" 0 " s c a l e A t t r I D="PUTUE_WALK_FLOW" useClassif iedMode=" t rue "
useLayerOrder=" f a l s e ">

<uniform draw=" true ">
191 <polygonStyle drawBorder=" t rue ">

< f i l l S t y l e c o l o r =" FFFF00FF " hatchType="SOLIDFILLING" hatchWidth=" 0 " />
193 <borderSty le c o l o r =" FFFF00FF " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

</polygonStyle >
195 </uniform>

< c l a s s i f i e d >
197 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 0 "

s t r ingValue=" * " upperLimit=" 0 ">
<contents draw=" true ">

199 <polygonStyle drawBorder=" t rue ">
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< f i l l S t y l e c o l o r =" FFFF00FF " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
201 <borderSty le c o l o r =" FFFF00FF " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

</polygonStyle >
203 </contents >

</ c l a s s >
205 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 20 "

s t r ingValue=" * " upperLimit=" 20 ">
<contents draw=" true ">

207 <polygonStyle drawBorder=" t rue ">
< f i l l S t y l e c o l o r ="FFCC00CC" hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

209 <borderSty le c o l o r ="FFCC00CC" dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
</polygonStyle >

211 </contents >
</ c l a s s >

213 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 40 "
s t r ingValue=" * " upperLimit=" 40 ">

<contents draw=" true ">
215 <polygonStyle drawBorder=" t rue ">

< f i l l S t y l e c o l o r =" FF990099 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
217 <borderSty le c o l o r =" FF990099 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

</polygonStyle >
219 </contents >

</ c l a s s >
221 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 60 "

s t r ingValue=" * " upperLimit=" 60 ">
<contents draw=" true ">

223 <polygonStyle drawBorder=" t rue ">
< f i l l S t y l e c o l o r =" FF660066 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

225 <borderSty le c o l o r =" FF660066 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
</polygonStyle >

227 </contents >
</ c l a s s >

229 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; l t ;= 80 "
s t r ingValue=" * " upperLimit=" 80 ">

<contents draw=" true ">
231 <polygonStyle drawBorder=" t rue ">

< f i l l S t y l e c o l o r =" FF330033 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
233 <borderSty le c o l o r =" FF330033 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

</polygonStyle >
235 </contents >

</ c l a s s >
237 < c l a s s hasCustomLegendName=" true " layerNo=" 1 " legendName="&amp ; gt ; 0 . 4 "

s t r ingValue=" * " upperLimit=" INF ">
<contents draw=" true ">

239 <polygonStyle drawBorder=" t rue ">
< f i l l S t y l e c o l o r =" FF000000 " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />

241 <borderSty le c o l o r =" FF000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
</polygonStyle >

243 </contents >
</ c l a s s >

245 </ c l a s s i f i e d >
</standardBar >

247 </item >
</items >

249 </bars >
</connectors >

251 <stopPoints avoidOverlapping=" t rue ">
<display >

253 < a c t i v e c l a s s i f i c a t i o n A t t r I D ="TYPENO" numDecPlaces=" 0 " useClassif iedMode=" f a l s e "
useLayerOrder=" f a l s e ">

<uniform draw=" true " drawChart=" t rue " drawTable=" t rue " drawUnti lScale=" f a l s e "
drawUntilScaleValue=" 10000 " pointObjectType="POINTOBJ_SYMBOL">

255 <symbol drawSymbolChar=" f a l s e " s ize=" 3 " symbolChar=" " symbolCharColor=" f f 0 0 0 0 0 0 "
symbolDisplayType="SYMBOL_STOP_GERMAN" />

</uniform>
257 </ac t ive >

<passive >
259 <uniform draw=" true " drawChart=" f a l s e " drawTable=" f a l s e " drawUnti lScale=" f a l s e "

drawUntilScaleValue=" 10000 " pointObjectType="POINTOBJ_SYMBOL">
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<symbol drawSymbolChar=" f a l s e " s ize=" 3 " symbolChar=" " symbolCharColor=" f f 0 0 0 0 0 0 "
symbolDisplayType="SYMBOL_CIRCLE">

261 <polygonStyle drawBorder=" t rue ">
< f i l l S t y l e c o l o r =" f f a 8 a 8 a 8 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

263 <borderSty le c o l o r =" f f a 8 a 8 a 8 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
</polygonStyle >

265 </symbol>
</uniform>

267 </passive >
<marked>

269 <uniform draw=" true " drawChart=" f a l s e " drawTable=" f a l s e " drawUnti lScale=" f a l s e "
drawUntilScaleValue=" 10000 " pointObjectType="POINTOBJ_TEXT">

< t e x t a t t r I D ="NO" drawFrame=" true " frameColor=" f f f f 4 0 4 0 " numDecPlaces=" 0 " roundValue
=" 1 " t e x t C o l o r=" f f f f 4 0 4 0 " t e x t S i z e =" 1 . 8 " t ransparent=" f a l s e ">

271 < f o n t S t y l e bold=" f a l s e " fontFamilyName=" Ar ia l " i t a l i c =" f a l s e " />
</ tex t >

273 </uniform>
</marked>

275 <traversed >
<uniform draw=" true " drawChart=" f a l s e " drawTable=" f a l s e " drawUnti lScale=" f a l s e "

drawUntilScaleValue=" 10000 " pointObjectType="POINTOBJ_SYMBOL">
277 <symbol drawSymbolChar=" f a l s e " s ize=" 2 " symbolChar=" " symbolCharColor=" f f 0 0 0 0 0 0 "

symbolDisplayType="SYMBOL_SQUARE">
<polygonStyle drawBorder=" t rue ">

279 < f i l l S t y l e c o l o r =" f f f f 4 0 4 0 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />
<borderSty le c o l o r =" f f f f 4 0 4 0 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />

281 </polygonStyle >
</symbol>

283 </uniform>
</traversed >

285 </display >
< t a b l e constantColor=" f f 0 0 0 0 0 0 " draw=" f a l s e " drawFrame=" t rue " frameColor=" f f 0 0 0 0 0 0 "

r e l T e x t S i z e D i s t a n c e =" 30 " tableAlignment="ADJUSTMENT_TOPCENTER" t a b l e D i s t a n c e =" 0 "
textAlignmentColumn1="ADJUSTMENT_TOPLEFT" textAlignmentColumn2="ADJUSTMENT_TOPRIGHT"
t e x t S i z e =" 2 " t ransparent=" f a l s e " useConstantColor=" t rue " />

287 <c ha r t a u t o S c a l e F a c t o r=" 1 " chartDisplayType="COLUMNS" columnWidth=" 3 "
displayNegativeValues=" f a l s e " draw=" true " drawLabel=" t rue " drawTextFrame=" f a l s e "
sameScaleForAllColumns=" t rue " scaleMaxColumnHeight=" 30 " scaleMaxPieArea=" 1000 "
scaleMaxValueColumn=" 1000 " scaleMaxValuePie=" 1000 " scaleMinValueColumn=" 0 " scaleMinValuePie
=" 0 " t e x t C o l o r=" f f 0 0 0 0 0 0 " textColorFromChartItem=" f a l s e " t e x t S i z e =" 2 " useAutoScale=" t rue ">

< f o n t S t y l e bold=" f a l s e " fontFamilyName=" Ar ia l " i t a l i c =" f a l s e " />
289 <textFrameStyle drawBorder=" f a l s e ">

< f i l l S t y l e c o l o r =" f f f f f f f f " hatchType="SOLIDFILLING" hatchWidth=" 1 . 5 " />
291 </textFrameStyle >

<items >
293 <item displayAsBaseColumn=" f a l s e " displayThreshold=" 0 " draw=" true " gridColumnWidth="

150 " numDecPlaces=" 0 " roundValue=" 1 " s c a l e A t t r I D="PUTUE_BOARD_FLOW_1_BUS_1"
scaleMaxColumnHeight=" 30 " scaleMaxValueColumn=" 1000 " scaleMinValueColumn=" 0 "
stringFormatType="DEFAULTFMT" useDisplayThreshold=" f a l s e ">

<polygonStyle drawBorder=" t rue ">
295 < f i l l S t y l e c o l o r =" FFFF0000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
297 </polygonStyle >

<negativeValuePolygonStyle drawBorder=" t rue ">
299 < f i l l S t y l e c o l o r =" 00000000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
301 </negativeValuePolygonStyle >

</item >
303 <item displayAsBaseColumn=" f a l s e " displayThreshold=" 0 " draw=" true " gridColumnWidth="

150 " numDecPlaces=" 0 " roundValue=" 1 " s c a l e A t t r I D="PUTUE_ALIGHT_FLOW_1_BUS_1"
scaleMaxColumnHeight=" 30 " scaleMaxValueColumn=" 1000 " scaleMinValueColumn=" 0 "
stringFormatType="DEFAULTFMT" useDisplayThreshold=" f a l s e ">

<polygonStyle drawBorder=" t rue ">
305 < f i l l S t y l e c o l o r =" FFCC0000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
307 </polygonStyle >

<negativeValuePolygonStyle drawBorder=" t rue ">
309 < f i l l S t y l e c o l o r =" 00000000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
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311 </negativeValuePolygonStyle >
</item >

313 <item displayAsBaseColumn=" f a l s e " displayThreshold=" 0 " draw=" true " gridColumnWidth="
150 " numDecPlaces=" 0 " roundValue=" 1 " s c a l e A t t r I D="PUTUE_WAIT_CONG_1_BUS_1"
scaleMaxColumnHeight=" 30 " scaleMaxValueColumn=" 1000 " scaleMinValueColumn=" 0 "
stringFormatType="DEFAULTFMT" useDisplayThreshold=" f a l s e ">

<polygonStyle drawBorder=" t rue ">
315 < f i l l S t y l e c o l o r =" FF8F0000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
317 </polygonStyle >

<negativeValuePolygonStyle drawBorder=" t rue ">
319 < f i l l S t y l e c o l o r =" 00000000 " hatchType="SOLIDFILLING" hatchWidth=" 0 " />

<borderSty le c o l o r =" 00000000 " dashPattern=" 1 " dashWidth=" 1 " width=" 0 . 3 " />
321 </negativeValuePolygonStyle >

</item >
323 </items >

</chart >
325 </stopPoints >

</netEditor2D >
327 <printParameters >

<contents drawTileGlueLine=" f a l s e " expandToPrintPage=" f a l s e " outputArea="CURRENTVIEW"
outputSize="FITTOPAGE" oversizeHandling="CUT" printMarkings=" t rue "
s c a l e A b s o l u t e M i l l i m e t e r S i z e s =" f a l s e " s c a l e F a c t o r =" 1 " t i l eOver lapping=" 0 " />

329 <pageSetup bottomMargin=" 0 " c e n t e r H o r i z o n t a l l y=" t rue " c e n t e r V e r t i c a l l y =" t rue " le f tMargin=" 0 "
o r i e n t a t i o n ="AUTOMATIC" rightMargin=" 0 " topMargin=" 0 " />

<printArea bottomMargin=" 0 .005 " f ixedAspectRat io=" 1 " le f tMargin=" −0.005 " rightMargin=" 0 .005 "
showPrintAreaOnScreen=" f a l s e " topMargin=" −0.005 " useFixedAspectRatio=" f a l s e " />

331 </printParameters >
</netEditorGraphicParameters >

LISTING A.2: OneLine_ThreeStops network, XML file representing the
graphics to import in Visum in order to represent results.
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