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The deep essence of sciences is  
to understand that problems exist  

but also that we are provided  

by many tools to solve them.  
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1. INTRODUCTION 

The life cycle of a machine, of a component, is gaining importance in this last period, representing 

a budget item inside a company. Preventing failures starts being considered from the project of 

the machine. 

 

A Failure is defined as the event in which an entity is no more able to perform its regular activity: 

this brings not only to repairing costs but also to indirect costs like: 

- Low quality of the product; 

- Missed supply of the service; 

- … 

 

There are many failure typologies in a machine 

lifetime [Figure 1]: 

 INFANT  FAILURE:  caused by inadequate 

construction techniques, solved by the break-

in; 

 ADULT FAILURE: caused by the normal 

activity of an element, by its solicitations; 

 AGEING FAILURE: caused by a not perfect 

maintenance. 

 

In this optics the maintenance has gained more relevance; usually it’s used to limit the arising of 

failures and to restore the component once the failure has risen. Now its role is to maximize the 

life of an element with the minimum global cost: in this contest we speak of Condition Based 

Management (or CBM) that differs from the maintenance at certain time with a maintenance 

bound to the knowledge of the actual state of the system. This can be done thanks to the 

Information and Communications Technologies (or ICT), allowing to send data to a calculation 

central. This system allows managing the so-called Big Data, an enormous amount of 

heterogeneous data coming from the machine. They need the definition of new tools and 

methodologies to manage these information in a reasonable time.  

 

Figure 1: Bath Tub Curve 
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Also the study and the implementation of Machine Learning techniques will be useful to manage 

the Big Data and to predict the behavior of a component and to evaluate the moment in which a 

component must be changed with a higher saving with respect to the Planned Maintenance. 

 

The aim of this work is the realization of a model able to analyze the Big Data coming from an ICT 

system, verifying the goodness of the prediction. To realize the model, the program Matlab was 

used, utilizing some tools able to manage Big Data.   

 

Many different techniques have been developed with example data related to rail system bearings 

also in collaboration with Bombardier. According to the type of data, a model can fit the problem 

in the right way or not, this is the problem to cope with, there is not a unique solution that solves 

any problem, but it depends case by case. 

 

In the first Application Case, general rolling bearings were analyzed for the training of the 

machine, but the intended use is not known, while in the second Application Case, bearings 

specific to rolling stock were taken in consideration for the analysis.  
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2. THE ROLLING STOCK MAINTENANCE 

There is not a single maintenance method that fits every situation, but the choose depends on the 

system characteristics and on the operation conditions. The traditional maintenance, as reported 

in the Guide Lines of the ANSF [1] (the Italian National Agency for Rail Safety) in collaboration with 

the CIFI [2],[3],[4] (the Board of Italian Rail Engineers) , is usually divided into: 

 CORRECTIVE MAINTENANCE: The set of tasks is destined to correct the defects to be found 

in the different equipment and that are communicated to the maintenance department by 

users of the same equipment; 

 PREVENTIVE MAINTENANCE: it’s characterized by all the processes suitable for maintaining 

the integrity and the effectiveness of the system, monitoring at the same time the normal 

degradation. This kind of maintenance is programmed inside the maintenance programs. 

The critical components are replaced independently from the their conditions. The great 

limits are the impossibility to replace all the critic components and the possibility to 

replace an item that has not yet reached its end; 

 PREDICTIVE MAINTENANCE: It pursues constantly know and report the status and 

operational capacity of the installations by knowing the values of certain variables, which 

represent such state and operational ability. To apply this maintenance, it is necessary to 

identify physical variables (temperature, vibration, power consumption, etc.). Which 

variation is indicative of problems that may be appearing on the equipment. This 

maintenance it is the most technical, since it requires advanced technical resources, and at 

times of strong mathematical, physical and / or technical knowledge; 

 PERIODIC MAINTENANCE: the basic maintenance of equipment made by the users of it. It 

consists of a series of elementary tasks (data collections, visual inspections, cleaning, 

lubrication, retightening screws,…) for which no extensive training is necessary, but 

perhaps only a brief training. This type of maintenance is the based on Total Productive 

Maintenance; 

 CONDITION-BASED MAINTENANCE: it happens just before the break of an element, when 

an indicator starts signaling that a component is going to break. It uses real-time data to 

determine system’s health in order to act at the correct time. It’s a good kind of 

maintenance, but the costs to install and monitoring are very high;  



 

4 
 

 REMEDIAL MAINTENANCE: it takes action at the moment in which a malfunction or a more 

severe failure happens, with consequent stop of the machinery. This is typically the most 

expensive type of maintenance because the missed use of the system and the repair of the 

component. 

 

This division of types of maintenance has the disadvantage of that each equipment needs a mix of 

each of these maintenance types. It’s difficult because, when a failure occurs, several steps must 

be faced: 

 

 IDENTIFICATION: when a problem occurs, identify where and when it happened as well as 

where and when it did not becomes relevant. Identification problems become relevant not 

only when trying to understand a situation but also when confusion reigns and the 

problem is hidden by a mass of effects. The former should be attacked by curiosity and the 

latter by analysis; 

 CAUSE AND EFFECT: typical effects are excessive heat, vibration and noise. A failed bearing 

or gear is also an effect. Simply changing the component is concentrating on the effect. 

Forgetting about the reason for the failure is neglecting the cause. Attack the symptom 

must not forget to unearth the root cause; 

 MEANS: these problems are generally characterized by questions .with “how”. The 

problem of selecting a goal or end has already been solved, so now focusing on how to 

achieve it; 

 ENDS: the goals may be very general at first but must be translated into detailed sub-goals 

to understand what are the critical parts of systems that must be constantly monitored, 

and how are problems categorized.  

 

The choice of the type of maintenance depends also on the pros and cons; nowadays, the general 

traditional maintenance has these characteristics: 

PROS CONS 

Less risk factor More money upfront 

Follows a schedule  

Longer Life Over Maintenance 

Money savings  

Less energy wastin More workers 

Less disruptions  
Table 1: Pros and Cons of ordinary maintenance 
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In Italy the guidelines are given by the National Agency for Railway Safety (or ANSF) that, referring 

to the international standards, defines how to realize maintenance plans, the elements, the 

documentations… 

 

2.1. Current maintenance operations in rail system 

The company carries out several levels of maintenance according to the deepness of the 

operations, each one made in different centers.  

 

2.1.1. First Level Maintenance 

It’s carried out in the IMC (or Impianti di Manutenzione Corrente). Preventive and Remedial 

Maintenances are used, with length or time deadlines: there are periodic controls programmed in 

the First Level Maintenance Plans that defines also standard times and equipment. Sometimes this 

type of maintenance can be carried out also when an anomaly is reported, with consequent 

substitution of the element. Usually it lasts from some hours to several days. 

 

2.1.2. Second Level Maintenance 

It’s carried out in the OMC (or Officina di Manutenzione Ciclica). The operations are more complex 

and deeper, sometimes also radical. They are programmed in the Second Level Maintenance 

Plans, that shows the replacements and the tracking. This type of maintenance is requested 

between 2 to 6 years, with ten days or also month of works before the restoration. 

 

Several disadvantages are brought by these approaches: first of all, the maintenance is made once 

the failure has occurred. It’s difficult to manage because the weak links between the wearing and 

the maintenance turns. Also the control systems are expensive.  

Also, this type of maintenance obliges the replacement of an element even if it has not reached its 

lifetime, with other costs also to dismantle the item. 

 

In Figure 2 it’s possible to see the deadlines of each type of maintenance for ETR trains, according 

to the km and to the years and the periods of maintenance. 
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Figure 2: Deadlines for maintenance operations ([3]) 

 

The codes for the type of operation are reported in Table 2: 

CODE EXPLANATION 

RT Traditional Maintenance 

VIS Intermediate Safety Analysis 

RO Ordinary Maintenance 

RG General Maintenance 
Table 2: Maintenance Codes 

 

2.2. The costs of traditional maintenance 

Railways produce transit capacity of the rolling stock which principal indicator of the networks is 

the train-km running on them in a given time interval [4]. But this is not the only indicators, 

because also pass-km and ton-km must be taken in consideration: it’s possible to say that the 

direct production is the train-km, while the indirect ones are the pass-km and tons-km. They allow 

calculating productivity indicators. 

The further step is the understanding of the costs rolling stock suffers, especially the one related 

to the maintenance: these depend on the type of maintenance must be faced, the corrective one 

or the preventive. The time interval at which the second type of maintenance could be scheduled 

depends on the expected life distribution of the components, while the corrective maintenance 

cannot be avoided when a random failure occurs. The total cost will depend on performing both 

the maintenances. As it was said before, a type of maintenance is not better than another one, but 
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usually the strategic plans take in consideration various combinations, affecting railway safety, 

passenger comfort and total operation costs.  

Every maintenance activity has a certain expiry and duration of operation [            Table 3]: 

 

            Table 3: Maintenance operations ([6]) 

The general problem is solved with the minimum cost (in terms of used units, empty runs and train 

movements) taking in consideration the timetables, the rolling stock assets and maintenance 

operations. 

A sequential method is developed to solve vary modules linked each other [Figure 3]:  

 

Figure 3: Maintenance Modules ([6]) 
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Usually the rostering problem is the first to be solved and then the other two involving passenger 

stations and workshop operations. 

 

2.2.1. Rolling Stock Rostering 

This module computes rostering to cover a set of commercial services and minimize the costs 

related to asset units. It optimizes the distance run between consecutive maintenance operations. 

The problem is solved as a kind of Travelling Salesmen problem with additional constraints and 

variables to guarantee the respect of maintenance’s expiry and guarantee maintenance efficieny. 

The output is a cyclic roaster including the schedule of maintenance activities and an assigned 

workshop location. 

 

2.2.2. Station and Workshop Scheduling 

There are constraints on maintenance activities that must be performed by each train in the right 

time interval given by the rostering. In a workshop many units are used at the same time and they 

must interfere as less as possible in the circulation. So a time window is given that is usually bigger 

than the sum of all activities and the workshop has some recovery time.  

 

All this procedure must guarantee at every time: 

- Safety; 

- Train availability; 

- Level of Service of the supply; 

- Cost control. 

 

As it can be seen, maintenance is a real management activity, monitoring constantly exercise costs 

and investments, guaranteeing environmental impacts and safety. Maintenance is performed 

inside the life-cycle of the system, to maintain in time the performances and the efficiency, but 

also to develop according to the markets. 

The maintainability (that it’s the probability to perform maintenance in a predetermined time 

interval) is a parameter that must be well evaluated especially in the project phase of the rolling 

stock in order to understand: 
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 Critical areas; 

 The right tool availability; 

 The development of tools dedicated to maintenance. 

 

A right maintainability must be realized to allow a good efficiency in cost management. In fact the 

total cost of maintenance is the sum of 

 Labor and Tool Cost; 

 Service unavailability Cost; 

 Replacement Stocking Cost. 

 

In this optic, it’s necessary to maintain low the Life Cycle Cost (or LCC), which is formed by the 40% 

by the only cost of maintenance. 

 

A problem is related to that rolling stock which haven’t had a maintenance consistent with the 

maintenance plans in terms of procedures and tools, which recovery will have a higher cost with 

respect to the estimated one and, usually, without obtaining results. 

Also the rise of new technologies has a cost to adapt the tools, the workshop and the labor to 

them, affecting a lot the maintenance costs. 
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3. THE MACHINE LEARNING 

As it’s defined by Phil Kim in his work explaining the many facets of the 

Machine Learning [7], it is defined as an analytic method able to realize 

models automatically. The term was coined by Arthur Lee Samuel but 

the best definition of Machine Learning was given by Tom Michael 

Mitchell: 

 

“A machine learns from the experience E  

with reference to some classes of tasks T 

and with performance measurement P,  

  if its performances in task T, as measured by P, 

gets better with experience E.” 

 

This sentence says that a machine learns from the experience: there is learning when the 

performances of the program after the development of a task are better than the past. There are 

many types of Machine Learning, according to the presence or not of complete example in the 

learning phase.  

 

3.1.1. Supervised Learning 

The machine has datasets as inputs and information regarding the desired results with the aim 

that the system identifies a general model linking inputs and outputs. Inputs and outputs must be 

in pairs. 

 

3.1.2. Unsupervised Learning 

The machine has datasets as inputs but no information regarding the desired results: the machine 

must find a scheme and a hidden model, identifying in the inputs a logical structure. 

 

3.1.3. Reinforcement Learning 

It’s a supervised learning in which also the error is included: the learning process is a sequence of 

reward and penalty.  

 

Figure 4: Machine Learning 
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3.1.4. Semi-supervised Learning 

It’s a hybrid model where the inputs are not completed: some inputs have the corresponding 

result, others no. 

3.1.5. Other practical approaches 

They are practical applications of Machine Learning, like the Decision Trees (with which it’s 

possible to define the outputs graphically), the Clustering (where every element is grouped 

according to mathematical models), Probabilistic Methods (basing the calculation on the statistical 

methods) and also the Neural Networks. 

 

It is important to distinct which are the training data 

to predict the model and which are the input data 

used to find outputs once defined the model. The 

distinctness of these two types of data defines 

heavily how well the generalization is accomplished.  

One of the primary causes of corruption of the 

generalization process is overfitting: it’s the error of 

division of the data in which the bounder doesn’t 

divide the sets correctly and some data can be not in the correct group [Figure 5]. A model is over-

fitted when the trained model brings to low level of performances.  

There are two methods to confront this problem: 

- REGULARIZATION is a method that to construct the simplest numerical model, avoiding 

overfitting effects at small costs of performances. 

- VALIDATION is a process that reserves a part of the training data to monitor performances. 

This set is not used for the training process [Figure 6]. 

When validation is involved, the process follows these 

steps: 

- Division of data; 

- Train the model with training set; 

- Validate the model with validation set. 

If the model yield to good performances, then the training 

is stopped, otherwise another model must be implemented and verified.  

Figure 5: Overfitting 

Figure 6: Division of data 
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Another type of validation is the cross-validation: 

there is a repetition of division of the data. It 

maintains the randomness of the division but better 

detect the overfitting of the model [Figure 7].  

 

 

3.2. Neural Networks 

Neural Networks are a new informatics technology that has a strong analogy with the brain 

structure, with many neurons strongly connected by synapses [Figure 9]. This analogy is 

represented by: 

 Strong parallelism; 

 Strong interconnection; 

 Fast communication; 

 Simple elaborative units; 

 Big memory; 

 Not programmed, but trained by automatic learning. 

The activity of a single unit is simple (represented by a transferability 

function) and the power of the model is inside connection 

configuration. A unit is not programmed, but trained by examples 

coming from the reality.  

 

There are many types of 

neural networks, 

according to the model, 

to the learning method 

and to the aim. In any 

case, it’s possible to 

characterize a General Neural Network Model (in 

Figure 8 they are represented the general 

characteristics): 

 

 

Figure 7: Cross-Validation 

Figure 9: A neural network 

Figure 8: General Neural Network 
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 aj(t) = activation value of the j-th unit; 

 netj = propagation function; 

 Fj(aj, netj) = activation function; 

 oj(t) = output; 

 fj(aj) = output function; 

 wij = connection weight from unit j to unit i. 

 

Each element is represented by a formula that was elaborated in precedent work, becoming 

spread inside this topic.  

 

3.2.1. Units 

Units are simple and uniform. Its activity consists on receiving an input among a set of inputs and 

calculates an output value to send to another set of units. The system is parallel because many 

units can effectuate their computations parallel. There are 3 types of units: input units, output 

units and hidden units. 

 

3.2.2. Connections 

A connection matrix W is defined, in which each element wij is characterized by: 

- Departure unit j; 

- Arrival unit i; 

- Connection force, that can be higher than 0 (excitatory connection), lower than 0 

(inhibitory connection) or null value. 

 

3.2.3. Activation Value 

Every unit is characterized by an activation value at time t: aj(t). Different models realize different 

assumptions regarding the activation values the units can assume: 

 Discrete Values 

o Binary; 

o Restricted values. 

 Continuous values 

o Limited; 

o Unlimited. 
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3.2.4. Output 

Units interact each other’s transmitting signals to the neighborhood units. An output function is 

associated to each unit that transforms the current activation value into the output signal 

oj(t)=fj(aj(t)). 

The function can assume different values. 

 

 

3.2.5. Propagation 

It’s the way in which outputs propagate along the connections. It occurs independently for each 

type of connection, in case of more different connections. 

Usually the generic rule expects simply the sum of the inputs weighted by connection intensity: 

 

𝑛𝑒𝑡𝑎𝑖 =∑𝑤𝑎𝑗𝑖𝑜𝑗
𝑗

 

 

3.2.6. Activation function 

It’s a function that takes the current activation value and the propagation value and gives back a 

new activation value: 

 

𝑎(𝑡 + 1) = 𝐹(𝑎(𝑡), 𝑛𝑒𝑡1(𝑡), 𝑛𝑒𝑡2(𝑡), … ) 

 

Usually F could be: 

 A threshold function; 

 A sigmoid function; 

 A stochastic function. 

 

Sets of nodes are structured on various layers 

[Figure 10]: the input layer transmits the input 

signals to the next nodes but doesn’t calculate 

the activation function.  The exiting results of the 

output layers are the results of the model. The 
Figure 10: Neural Network Layers 
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hidden layers have this name because they cannot be accessed by the outside of the NN. 

A simple-layer network is composed only by the input and the output layer, while a multi-layer 

one includes also one or more hidden layers: in particular, the presence of only one hidden layer is 

defined as shallow neural network, otherwise deep neural network [Table 4]. 

 

Single Layer Neural Network Input Layer – Output Layer 
 

Multi-Layer  
Neural Network 

Shallow Neural 
Network 

Input Layer – Hidden Layer - Output Layer 

Deep Neural Network Input Layer – Hidden Layers - Output Layer 
Table 4: Neural Network Recap  

 

Neural Networks are not programmed but they auto define themselves by an automatic learning. 

This learning consists in modification of the connections actuated by a learning rule, modification 

that can occur by: 

 Creation of new connection; 

 Losing of existing connection; 

 Modification of the weight. 

 

All the learning rules can be defined variants of Hebb’s rule enunciating: 

 

“If a unit ui receives an input from a unit uj and if both the units are strongly active, 

the weight wij from uj to ui must be reinforced” 

 

expressed by a function, 

 

∆𝑤𝑗𝑖 = 𝑔(𝑎𝑖(𝑡), 𝑑𝑖(𝑡)) ∙ ℎ(𝑜𝑗(𝑡), 𝑤𝑗𝑖) 

 

saying that the change of the connection between the two units is the product of the function g 

(depending on the activation value ai and a training input di) and function h (depending on the 

output oj and weight wji). The simplest version of this rule there is no trainer di and g and h are 

linear functions to the first argument, obtaining the classical Hebb’s rule (where η represents the 

learning speed) 
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∆𝑤𝑗𝑖 = 𝜂𝑎𝑖𝑜𝑗 

 

An important variant is the Delta rule, where the learning is proportional to the variation (or delta) 

between the current actual value and the desired one, provided by the trainer: 

 

∆𝑤𝑗𝑖 = 𝑔(𝑑𝑖(𝑡) − 𝑎𝑖(𝑡)) ∙ 𝑜𝑗 

This equation can be generalized as 

 

𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝛼𝛿𝑗𝑥𝑖  

 

where 

 

𝛿𝑗 = 𝜑′(𝑣𝑗)𝑒𝑗 

 

In this equation there are 

 e = error of the output node; 

 v = weighted sum of the output node; 

 φ’ = derivative of the activation function φ. 

 

 

Widely the activation function is represented by the 

sigmoid function [Figure 11]. The first derivative of 

this function is given by 

 

𝜑′ =  𝜑(𝑥)(1 − 𝜑(𝑥)) 

 

 

 

Substituting in δ it’s obtained 

 

𝛿𝑗 = 𝜑(𝑣𝑗)(1 − 𝜑(𝑣𝑗))𝑒𝑗 

 

Figure 11: Sigmoid Function 
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Finally, the following expression is obtained: 

 

𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝛼𝜑(𝑣𝑗)(1 − 𝜑(𝑣𝑗))𝑒𝑗𝑥𝑖  

 

Unfortunately the delta rule is not good to train a multi-layer neural network because the error, 

main element of the method, is not defined in the hidden layers (error given as difference 

between the given output and the neural network output). The introduction of the back-

propagation algorithm in 1986 has solved the problem of training a multi-layer network because it 

provides a method to determine the error [Figure 12].   

 

3.3. The back-propagation algorithm for neural networks 

The delta of the output nodes is defined as  

 

𝑒 = 𝑑 − 𝑦 

𝛿 = 𝜑′(𝑣)𝑒 

 

where v is the weighted sum of the forward signal at the respective node. Forward and backward 

processes are identically applied to the hidden nodes as well as the outputs nodes. This implies 

that the outputs and hidden nodes experience the same backward process. In summary, the error 

of the hidden nodes is calculated as the backward weighted sum of the delta, and the delta of the 

node is the product of the error and the derivative of the activation function. This process begins 

at the output layer and repeats for all the hidden layers. 

 

Figure 12: Back-propagation algorithm 
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The algorithm will be so composed: 

1) Initialize the weights with adequate values; 

2) Enter the input from the training data and obtain the neural network’s output. Calculate 

the error of the output to the correct output and the δ; 

 

𝑒 = 𝑑 − 𝑦 

𝛿 = 𝜑′(𝑣)𝑒 

 

3) Propagate the output node delta backward and calculate the deltas of the immediate next 

nodes; 

 

𝑒(𝑘) = 𝑊𝑇𝛿 

𝛿(𝑘) = 𝜑′(𝑣(𝑘))𝑒(𝑘) 

 

4) Repeat Step 3 until it reaches the last hidden layer; 

5) Adjust the weights; 

 

∆𝑤𝑗𝑖 = 𝛼𝛿𝑗𝑥𝑖 

𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + ∆𝑤𝑗𝑖 

 

6) Repeat from step 2 for each training point until the neural network is properly trained. 
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3.4. The Deep Learning 

The Deep Learning is the multi-layer neural 

network, composed by two or more hidden 

layers [Figure 13]. The single-layer network 

had some known limitations, but it took over 

30 years before other hidden layers were 

added, precisely with the introduction of the 

back-propagation algorithm. But initially 

there were problems regarding its 

performances. There were various attemps to overcome these limitations (as adding hidden layers 

and adding nodes in the hidden layer), but none worked well, someone also gave poorer results. 

These limitations sentenced the neural networks to oblivion, till the 2000s in which the concept of 

Deep Learning was introduced. The current technologies yielded dazzling levels of performances 

that overcame other learning techniques. The problem in the transition from single to multi-layer 

network was the lack of a learning rule and the second problem was related to the low levels of 

performances. 

Deep Learning innovation is related to many small technologies improvements. The reason of the 

late development of this technique was related to three difficulties of the back-propagation 

algorithm: 

 

- VANISHING GRADIENT: the gradient is a similar concept to the delta. The vanishing 

gradient occurs when the output error is more likely to fail to reach the farther nodes. It 

follows that the hidden layers closer to the input one are not well trained. The solution is 

the use of the Rectified Linear Unit (or RLU) function as activation function defined as 

 

𝜑(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 

  

Its first derivative will be 

 

𝜑′(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

 

Figure 13: Deep Learning Scheme 
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- OVERFITTING: the model becomes more complicated adding more hidden layers and so 

more weights. The most used solution is the dropout, which trains only some of the 

randomly chosen nodes than the entire network. It’s effective and the implementation not 

very complex. On each iteration nodes are randomly chosen and their outputs are set to 

zero to deactivate them [Figure 14]. 

The dropout prevents overfitting as it continuously alters the nodes and the weights.  

Another solution is adding regularization terms, simplifying the network as much as 

possible. 

 

- COMPUTATIONAL LOAD: it’s the time to complete the challenge. The increment of hidden 

layers (and weights) needs more training data and also the computation time increases.  

  

Figure 14: Dropout  
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3.5. The Big Data 

Many surveys were written about Big Data and its relationship with Machine Learning [8],[9]: Big 

Data generally refer to data that exceeds the typical storage, processing, and computing capacity 

of conventional databases and data analysis techniques. As a resource, Big Data requires tools and 

methods that can be applied to analyze and extract patterns from large-scale data. The rise of Big 

Data has been caused by increased data storage capabilities, increased computational processing 

power, and availability of increased volumes of data, which give organization more data than they 

have computing resources and technologies to process. The unmanageable large Volume of data 

poses an immediate challenge to conventional computing environments and requires scalable 

storage and a distributed strategy to data querying and analysis. A general theme in Big Data 

systems is that the raw data is increasingly diverse and complex: working with this variety among 

different data representations poses unique challenges with Big Data, which requires Big Data 

preprocessing of unstructured data in order to extract ordered representations of the data. 

Most of the current technologies that are used to handle Big Data challenges are focusing on 

seven main issues of that called Volume, Velocity, Variety, Veracity, Validity, Volatility and Value. 

 

 VOLUME: we are facing with huge amounts of data that most of traditional algorithms are not 

able to deal with this challenge (amount that can reach also ZB of data). The definition of high 

volume is not specified in predefined term and it is a relative measure depends on the current 

situation of an enterprise; 

 VARIETY: we are facing with variety types of file formats and even unstructured ones. These 

data should be unified for further processes;  

 VELOCITY: data are coming in a very fast manner, the rate at which data are coming is striking 

that may hang the system easily. It shows the need for real-time algorithms; 

 VERACITY & VALIDITY: data must be as clean, trustworthy, usefulness, result data should be 

valid, as possible for later processing phases. The more data sources and types, the more 

difficult sustaining trust; 

 VOLATILITY: how much time data should remain in the system so that they are useful for the 

system; 

 VALUE: the amount of hidden knowledge inside Big Data. 
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We also can consider open research problems from another viewpoint as follows, six parameters: 

Availability, Scalability, Integrity, Heterogeneity, Resource Optimization, and Velocity (related to 

stream processing). 

 

 AVAILABILITY: Means data should be accessible and available whenever and wherever user 

requests data even in the case of failure occurrence; 

 SCALABILITY: if a system supports large amounts of increasing data efficiently or not; 

 INTEGRITY: points to data accuracy. The situation becomes worse when different users 

with different privileges change data in the cloud. Cloud is in charge of managing 

databases; 

 HETEROGENITY: refers to different types of data such as structured, unstructured and 

semi-structured; 

 RESOURCE OPTIMIZATION: means using existing resources efficiently. A precise policy for 

resource optimization is needed for guaranteeing distributed access to Big Data; 

 VELOCITY: means the speed of data creation and data analysis. The need for real-time 

analyses is obligatory. These are very application dependent that means can differ for each 

application to another application. 

 

Big Data area can be divided into three main Phases: Big Data Preprocessing, means doing some 

preliminary actions toward data with the aim of data preparation such as data cleansing and so 

on. Big Data storage means how data should be stored. Big Data management means how we 

should manage data. 

 

3.5.1. Preprocessing 

Preprocessing data means transforming, inconsistency, incomplete data that have many errors 

into an appropriate format for further analyses. In other words, data must be structured prior to 

analysis stage for further processing and analysis. There are some steps for achieving 

preprocessing section goal as described as follows: 

 

  



 

23 
 

1. Data cleansing: Removing inaccuracies, incompleteness, and inconsistencies of data;  

2.   Data transformation: Means doing additional processes like aggregation, or transformation; 

3.   Data integration: It provides a single view over distributed data from different sources; 

4.   Data transmission: Defines a method for transferring raw data to storage system such as object   

storage, data center or distributed cloud storage; 

5.   Data reduction: reducing the size of large databases for real-time applications; 

6.   Data discretization: it refers to attribute intervals so that obtained values will be reduced. 

 

The preprocess phase includes the following sub-sections:  

 

3.5.2. Data transmission 

It means sending raw data to data storage. One example of proposed method in this area is 

sending data through a high-capacity pipe from data source to data center. This type of 

transmission needs to know networks architecture along with transportation protocol. 

 

3.5.3. Data cleansing 

It means detecting incomplete and irrational data. It’s possible to modify or delete these kinds of 

data in order to achieve quality improvement for further processing steps. There are five stages in 

order to achieve clean data:  

1) Recognizing types of errors;   

2) Finding error instances;   

3) Correct error instances and error types;   

4) Update data input procedure in order to reduce further errors that may occur;  

5) Checking data affairs like limitations, formats, and rationalities.  

Data cleansing is an indispensable and principal part of data analysis step.  

In brief, there are two main problems in data cleansing step:   

i) Data are imprecise; 

ii) Data are incomplete. 
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3.5.4. Stream processing 

The stream requirements are completely different with traditional batch processing. In more 

detail, there are some emerging applications producing large amounts of dedicated data to servers 

in order to real-time processing. While large volumes of data are received by servers for 

processing, it’s not possible to use traditional centralized techniques, but there are many open 

research topics: 

1. Data Mobility: the number of steps that are required to get the final result;  

2. Data Division or Partitioning: The algorithms are used for partitioning data. In the brief, 

partitioning strategies should be used in order to achieve better data parallelism;  

3. Data Availability: a technique that guarantees data availability in case of failures 

occurrence;  

4. Query Processing: a query processor for distributed data processing efficiently with 

considering data streams. One possibility of this is doing deterministic processing (always 

get the same answer) and another one is non-deterministic (the output depends on the 

current situation) one; 

5. Data Storage: Another open research problem in Big Data is how to store data for future 

usage;  

6. Stream Imperfections: Techniques dealing with data stream imperfections like delayed 

messages or out-of-order messages. 

 

3.5.5. Data storage 

Storing data in petabyte scale is a challenge not only for researchers but also for internet 

organizations. Although Cloud Computing reveals a shift to a new computing paradigm, it cannot 

assure consistency easily when storing Big Data in cloud storage. It is not a good way to waste data 

since it may contribute to better decision-making. So it is critical to have a storage management 

system in order to provide enough data storage, and optimized information retrieval. 
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3.5.6. Replication 

Replication is a big activity that makes data available and accessible whenever user asks. When 

data are variable, the accuracy of each replicated copy is much more challenging. The two factors 

to take in consideration are replication sites and consistency. These two factors play more 

important role in Big Data environment as managing these huge amounts of data are more 

difficult than usual form 

 

3.5.7. Indexing 

Indexing data improves the performance of storage manager. So proposing a suitable indexing 

mechanism is challenging. There are three challenges in indexing area 

1) Multi-variable and multi-site searching;  

2) Performing different types of queries;  

3) Data search when they are numerical. 

 

A new method uses a tree based index structure and adopts sharing of a single list of event indices 

to speed up query responses. Index load time is a challenge now same as space consumption. A 

Support Vector Machine indexing algorithm was introduced: It changes transition probability 

calculation mechanism and applies different states to determine the score of input data. While it 

produces a relatively accurate query result with minimum time, it is time-consuming in learning 

process. A fuzzy-based method can be used for indexing of moving objects where indexing images 

are captured during object’s movements. It provides a trade-off between query response time and 

index regeneration. The index supports data variables and it is scalable. 

 

3.5.8. Big Data Management and Processing 

There are four types of data models in Big Data area:  

 

 Data stored in relational  Graph data 
 

 Semi-structured data (e.g. XML)  Unstructured data (texts, hand-written articles) 
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Most of the relational databases are not designed to scale to thousands of loosely coupled 

machines. Because of two reasons, companies tended to leave traditional databases: the first one 

is traditional databases are not scalable and the second one is that using non distributed 

traditional database along with adding layers on top is very expensive. So companies decided to 

implement their own file system, distributed storage systems, distributed programming 

frameworks and even distributed database management systems. 

 

Furthermore, Big Data management is a complex process especially when data are gathered from 

heterogeneous sources to be used for decision-making and scoping out a strategy. About 75 

percent of organizations apply at least one form of Big Data. Big Data management area brought 

new challenges in terms of data fusion complexity, storage of data, analytical tools and shortage of 

governance. 

In Figure 15 known methods of storage, pre-processing and processing of Big Data are reported, 

defining problems and proposed solutions while in Figure 16 a comparison of the methods is 

shown. 

 

  

Figure 15: Big Data Management methods ([9]) 



 

27 
 

 

Figure 16: Big Data Methods Comparison ([9]) 
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3.5.9. Deep Learning for Big Data 

Deep Learning deals mainly with two V’s of Big Data characteristics: Volume and Variety. It means 

that Deep Learning are suited for analyzing and extracting useful knowledge from both large huge 

amounts of data and data collected from different sources. When we want to apply Deep 

Learning, we face some challenges: 

 

 DEEP LEARNING FOR HIGH VOLUME DATAS 

o We apply Deep Learning algorithms in a portion of available Big Data for training 

goal and we use the rest of data for extracting abstract representations; 

o Another open problem is domain adaptation, in applications which training data is 

different from the distribution of test data; 

o Another problem is defining criteria for allowing data representations to provide 

useful future semantic meanings; 

o Another one is that most of the DL algorithms need a specified loss; 

o The other problem is that most of them do not provide analytical results that can 

be understandable easily; 

o Deep Learning seems suitable for the integration of heterogeneous data with 

multiple modalities due to its capability of learning abstract representations; 

o They need labeled data. 

 

 DEEP LEARNING FOR HIGH VARIETY DATAS 

These days, data come in all types of formats from a variety sources, probably with different 

distributions. There are open questions in this regard that need to be addressed. 

 

 DEEP LEARNING FOR HIGH VELOCITY DATAS 

Data are generating at extremely high speed and need to be processed at fast speed. One solution 

for learning from such high-velocity data is online learning approaches that can be done by deep 

learning. Only limited progress in online deep learning has been made in recent years.  
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3.6. Future Progresses  

3.6.1. Big Data Preprocessing 

One challenge is data integrity that means sharing data among users efficiently. Even though, data 

integration definition is not much clear in most of the applications. The two challenging research 

topics in this field are generating and facilitating integration tools. The quality of data is not 

predetermined. After using data, we are able to find its quality. The more quality data, the better 

results. Data providers demand error-free data and it is relatively impossible to use only one 

method of data cleaning to achieve the best quality data is a challenge. 

 

3.6.2. Big Data Analytics 

It relates to database searching, mining, and analysis. With the usage of data mining in the big 

data area, a business can enhance its services. Big Data Mining is a challenge because of data 

complexity and scalability. The two salient goals of data analyses are: first detecting relationships 

between data features and second predicting future instances. Additional applications and Cloud 

infrastructures are needed to deal with data parallelism. Algorithm orders increase exponentially 

with the increase of data size. There are four types of analyses in simple words:  

• Descriptive Analysis: What is happening in data now;  

• Predictive Analysis: What will happen in the future;  

• Discovery Analysis: Discovering an existing rule from existing data;  

• Perceptive Analysis: What should we do in future based on current data. 

 

3.6.3. Semantic Indexing 

Another usage of DL and open challenge is using it for semantic indexing with the aim of better 

information retrieval. It means we should store semantic indexes rather than storing as raw data 

bytes due to massive amounts of data and low storage capacity. 

 

3.6.4. Data Governance 

It is another important core of Big Data Management and it means defining rules, laws and 

controlling over data. One example is that if Big Data should be stored in the cloud, we must take 

some policies like which type of data needs to be stored, how quickly data should be accessed, 

rules for data such as transparency, integrity, check and balances, and last but not the least 

change management. 
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3.6.5. Big Data Integration 

It means collecting data from multiple sources and storing them with the aim of providing a 

unified view. Integrating different types of data is a complex issue that can be even worse when 

we have different applications. Many open research topics are associated with data integration 

like real-time data access, the performance of the system, and overlapping of the same data. 
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4. THE PREDICTIVE MAINTENANCE 

The predictive maintenance is a process that takes benefits from the machine learning algorithms 

with predictive capacities. The process is related on the forecasting of the conditions that are 

going to happen and on the moment in which 

a machine will break [10].  

Ideally, predictive maintenance has to reduce 

the maintenance frequency, preventing 

unplanned reactive maintenance, without 

incurring in the costs associated with doing 

too much preventive maintenance. Prediction 

can be done with one of many techniques, 

which must be effective at predict failures 

with a sufficient warning time.  

To build a failure model, historical data are 

required, allowing capturing information 

about events leading to failure. The need to 

implement data driven strategies emerged in 

the 90s when relational database were already widespread. Also general static features can 

provide valuable information, like mechanical properties, average usage and operating conditions. 

The life span of machines is usually in the order of years, so the data must be collected for long 

periods to observe the system throughout its degradation process. In this way maintenance work 

can be better planned, transforming unplanned stops into planned ones, shorter and fewer. 

This type of maintenance utilizes non-invasive technologies such as infrared, acoustic, corona 

detection, vibration analysis, sound level, oil analysis… These tools are used to measure the actual 

equipment together with measurement of process performance. According to the analyzed item, a 

technology is better than another one else: for example, a high-speed rotating element can be 

measured by a vibration analysis, evaluating the condition of the equipment and avoiding the 

failure [11].  

The introduction of the Internet of Things (or IOT) allows the elements to geo-localize themselves, 

measure their own parameters and communicate to the software, to the analytic systems and to 

the AI platforms [12],[13]. The Machine Learning uses the data coming from different sources, 

internal and external, to feed and to train the AI systems, data like historical series of the 

Figure 17: Maintenance comparison 
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performances of the components, contextual information, real data inputs. AI platforms learn to 

determine by statistical calculation the cause-effect relationship and, in this way, forecast   (more 

and more reliably) the behavior of the machines and the items in real and simulated situations, 

forecasting failures, disservices and malfunctions. This means passing from a protocolled 

maintenance (based on periodic and, maybe, unnecessary interventions) to a new model, a system 

that is able to alert what kind of critical issues and with which kind of probability they can happen. 

It’s possible in this way to analyze all the advantages related to this approach: 

 Fast identification of anomalies in the machines and avoid economic, environmental and 

safety consequences; 

 Possibility of control and of reduction of the costs with the same quality; 

 Possibility to enlarge and maximize the life of the system; 

 Possibility to measure the performances and do the maintenance when it’s required. 

In Figure 17 it’s possible to compare the availability and the cost efficiency of the Predictive 

Maintenance with respect to the other types of maintenance. 

 

4.1. The Predictive Maintenance for the rail system 

In rail industry the predictive maintenance uses data collected on equipment during operation to 

identify maintenance issues in real time. In this way maintenance can be properly planned, 

avoiding the possibility to take out of service a train because of an emergency or of an 

unnecessary routine control. If it is possible to forecast which parts are likely to fail in the near 

future, this will lead to the possibility to achieve a value close to the 100% of availability, because 

the faults are fixed according to an efficient planning when units are out of service, avoiding  

breakdowns. These are techniques that have started to be used in rail systems recently, but 

obtaining good results in terms of performances [14],[15].  

As the number and heterogeneity of the rolling stock increases, rail companies have to face the 

problems related to traditional approaches to maintenance. A trend toward digitalization has 

emerged to tackle recurrent problems. The first implementation was the Maintenance 

Information System (or MIS) that allows, in real time, to check the operating status of each 

individual maintenance plan, to know the progress of each intervention, to build databases with 

the history of interventions according to the type and to the plant and to obtain statistical data on 

the various types of operations. 
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Recently the rail industry, with the increment of new computational and wireless technologies, 

has added a further step to the digitalization of maintenance with the introduction of the tele-

diagnostics, able to show and store data not only on the train but also on the monitors of the 

control rooms. Usually a tele-diagnostic architecture is composed by two subsystems: 

 

 ON-BOARD SUBSYSTEM: it contains a server that collects data on a local database and 

analyzes them. It’s important the logic inside, able to model the rolling stock events. The 

system will send diagnostic data to the ground with two different channels: 

o Communication in near real time: variables are constantly sent to the ground with 

protocols, allowing monitoring the fleet in operation; 

o Batch Communication: all the signals collected according to the various events are 

sent at regular interval. 

 ON-GROUND SUBSYSTEM: it’s a convergent IT solution communicating with the other 

subsystem, sending data and signals to the various stakeholders and sending maintenance 

warnings.  

 

Usually a fleet of trains lasts a long time because a strategic focus tends to keep them in service 

for as long as possible to get value out of the considerable initial investment. In this optic, a 

technology enabling predictive maintenance, able to reduce operating costs and extend fleet’s 

lifetime, can have the potentiality to deliver huge financial rewards. But this brings also the 

necessity to renew the technology of the older trains. 

It’s important to predict the failure of the most critical systems, among the ones that levels huge 

amount of data to build a consistent predictive model. Also look at system selection would be a 

good approach, finding where prediction is more effective from a maintenance point of view, for 

example mechanical and electrical systems that follow a bathtub curve. The choice of the data 

must remember the objectives behind their collection. 

The Predictive Maintenance in a rail system can be performed following two different approaches: 

 KNOWLEDGE-BASED: it considers competencies and know-how acquired by designers and 

maintainers and utilizes Failure Mode, Effects and Criticality Analysis and analysis of 

Reliability, Availability, Maintainability and Safety. It’s possible to identify a priori the train 

abnormal behavior; 
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 DATA-DRIVEN: the maintenance has an increasing volume of multi-source and 

heterogeneous data. It’s possible to utilize distributed file systems and big data platforms. 

It has been created the conditions to identify the relationships between apparently 

independent data, extracting insights, devices’ behavioral patterns and dependencies 

previously unknown and now usable to predict abnormal behaviors. 

To perform an effective railway predictive maintenance, four steps must be followed: 

1) PREDICTION POSSIBILITIES AND 

RELATED EFFECTIVENESS: an 

effective selection of trains’ 

subsystems is fundamental. Critical 

events that leave enough digital 

footprints is crucial to build a 

consistent predictive model: trying to 

predict everything could lead to 

misleading results and wasting resources. It’s required to map processes to obtain not only 

the areas in which the occurrence of an event has a higher frequency, but also graphs 

representing the period in which the predictions are more effective over the useful life of 

the system [Figure 18]. The goal is to identify the prediction feasibility of the most critical 

subsystems, with the risk that they can provide little data to build a model; 

2) EXTRACT THE RIGHT DATA: two factors must be taken to deal with: all the variables 

potentially assessable and the measurement techniques. There are many elements from 

which it’s possible to obtain data (f.e. the axes, the bogies, the wheel bearings…) and 

different techniques to collect digital values (f.e. the speed rotation, the temperature, 

vibrations…). Normal mechanics failure modes degrade at a speed directly proportional to 

their severity: if the problem is detected early, major repairs can be prevented; 

3) The success of the predictive maintenance consists in the careful selection of the train 

systems to be analyzed, in the construction of an appropriate data ecosystem and in the 

right combination of experts in railway field. It’s essential to identify the evolution of the 

fault in function of time: this can be achieved identifying mathematical relations able to 

describe the phenomenon, foreseeing its evolution in function of time and operation. This 

step can be split in three phases: 

Figure 18: Effectiveness of the prediction 
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a. Learning Phase: the available time series are analyzed to identify general rules and 

patterns; 

b. Formalization Phase: known and precise rules are created to codify the knowledge 

of the different failure modes; 

c. Execution Phase: the models constructed and calibrated are validated through the 

application to the historical time series in order to test the real predictive 

effectiveness and evaluating a further fine-tuning. 

 

 

4) IDENTIFY THE ACHIEVABLE VALUE-ADD: this approach is not only able to bring to an 

effective predictive maintenance  solution to predict failure, but it can also rely on the root 

cause analysis related to the design of the parts, the construction processes, the life cycle 

and so on. It can be used to identify various business scenarios and build appropriate 

prescriptive actions. 

 

 

 

4.2. Example of Predictive Maintenance in rail systems 

 

4.2.1. Smart Motors 

It’s a company that was found in 2009 after a 3-year collaborations between academic realities 

and the Transports Metropolitans de Barcelona, which goal is to provide new systems to generate 

useful information about the status of rolling stock in order to improve operation and breakdown 

management. This company provides software able to record service details and train subsystems 

information. Events and alarms are controlled and recent analysis has brought to an 

implementation that can identify complex pathologies and classifies alarms according to their 

severity. The software takes the historical data of the trains to forecast the moment in which 

maintenance must be provided. 
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4.2.2. Cyient  

Founded in 1991, Cyient provides engineering, manufacturing, geospatial, network, and 

operations management services to global industry leaders. It delivers innovative solutions that 

add value to businesses through the deployment of robust processes and state-of-the-art 

technology. Its high quality products and services help clients leverage market opportunities and 

gain the competitive advantage. The company has first developed software for predictive 

maintenance in air industry, obtaining cost reduction for maintenance up to 8% and, successively, 

it’s going to use the same technologies in rail transport [16]. 

 

4.2.3. Hitachi 

One of the older train company, founded in 1910, during the last centuries it has grown up 

becoming one of the most important company in rail industry. In recent years, with the 

development of IoT, it has developed predictive maintenance techniques able to reduce costs up 

to 40%. The system takes information from many sensors planted inside the vehicle, in the 

wheelsets and in the engine. 
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5. REALIZATION OF THE PROGRAM 

Nowadays there are many tools able to forecast the trend of a component in order to evaluate the 

moment in which the maintenance must be carried out.  Matlab provides many of these tools. The 

main problem is related to the type and amount of data: the Big Data provoke the so called Out-

of-Memory Error because the program is not able to manage the huge amount of data. In 

addition, it’s important to choose the right type of data. 

 

Usually a program follows these steps [Figure 19]: 

a. CHOOSE OF THE DATASET: it’s possible to choose the dataset and to rearrange it, so that it 

will be possible to divide the data into Training and Learning Set; 

b. CHOOSE OF THE LEARNING PROCESS: it’s possible to choose several processes of learning 

according to the ones allowed by the tall array process, to choose the variables and to 

predict the goodness of it; 

c. SOLUTION OF THE PROBLEM:  once found the coefficients of the equation, it’s possible to 

solve the problem equaling to the maximum allowable value; 

d. EVALUATION OF THE RESULTS: it calculates the error with respect to the real solution and 

analyzes it. 

 

Figure 19: Program flow-chart ([7]) 

 

It uses several functions for machine learning:  

 k-Means clustering 

 Linear regression 

 Generalized linear regression 

 Logistic regression 

 Discriminant analysis 
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5.1.1. K-means clustering 

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled 

data. The goal of this algorithm is to find K groups composed by data with similarity and 

represented by a centroid and labels of the training data. This method allows analyzing directly the 

groups that have formed organically. The centroid represents a collection of feature values.  

It uses iterative refinement to obtain the results. The data set is composed by the features of each 

data point. Each iteration includes two steps: 

1. Each point is assigned to the nearest centroid, according to the squared Euclidean distance: 

 

𝐚𝐫𝐠𝐦𝐢𝐧
𝒄𝒊

𝒅𝒊𝒔𝒕(𝒄𝒊, 𝒙)
𝟐 

 

2. The centroids are recomputed, taking the mean of all the points in the cluster data set: 

 

𝒄𝒊 =
𝟏

𝑺𝒊
∑ 𝒙𝒊
𝒙𝒊∈𝑺𝒊

 

 

 

The choosing of the number of groups K is not defined, but it’s possible to have a good solution 

calculating the mean distance to the centroid as a function of K and plotting to find the elbow 

point [Figure 20]: 

 

Figure 20: Elbow point for K-mean cluster 
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5.1.2. Linear Regression 

Linear regression attempts to model the relationship between two variables by fitting a linear 

equation to observed data. Usually the existence of a relationship between these two variables 

must be verified even if one variable doesn’t cause necessarily the other, otherwise this model will 

not be useful. One variable is considered to be an explanatory variable, and the other is 

considered to be a dependent variable. A general equation is: 

 

𝒚 = 𝜷𝒙 + 𝜷𝟎 

 

The most common method for fitting a regression line is the method of least-squares. This method 

calculates the best-fitting line for the observed data by minimizing the sum of the squares of the 

vertical deviations from each data point to the line. 

 

5.1.3. Generalized Linear Regression 

A general representation of a GLR model is  

 

𝒚 = 𝜷𝟎 +∑𝜷𝒊 ∙ 𝒙𝒊
𝒊

+ 𝜺 

 

This type of model is linear in the parameter β. The error is usually independently and identically 

distributed as ε = N(0,σ2). 

 

5.1.4. Logistic regression 

It’s the method used to solve binary 

classification problems. In the core of the 

method there is the sigmoid function, a S-

shaped function taking every value and 

mapping it in a value between 0 and 1 

[Figure 21]: 

 

𝒚 =
𝟏

𝟏 + 𝒆𝒙
 

Input value x is a linear combination using weights or coefficient values to predict a value y. 

Figure 21: Sigmoid Function 
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5.1.5. Discriminant analysis 

The objective of discriminant analysis is to develop discriminant functions that are nothing but the 

linear combination of independent variables that will discriminate between the categories of the 

dependent variable in a perfect manner. It enables to examine whether significant differences 

exist among the groups, in terms of the predictor variables. 

 

5.2.   Estimating the Remaining Useful Life (RUL) 

The program was developed to estimate the life status of the bearings in analysis in order to 

estimate their Remaining Useful Life (or RUL), the usage time left before the machine requires 

repair or replacement, which prediction is the main aim of the predictive maintenance techniques. 

RUL estimation models provide methods for training the model using historical data and using it 

for performing prediction of the remaining useful life. 

The term lifetime or usage time here refers to the life of the machine defined in terms of whatever 

quantity you use to measure system life. Units of lifetime can be quantities such as the distance 

travelled, fuel consumed , repetition cycles performed, or time since the start of operation. 

Similarly time evolution can mean the evolution of a value with any such quantity. 

Typically, RUL is estimated by developing a model that can perform the estimation based on the 

time evolution or statistical properties of condition indicator values, such as: 

 A model that fits the time evolution of a condition indicator and predicts how long it will be 

before the condition indicator crosses some threshold value indicative of a fault 

condition; 

 A model that compares the time evolution of a condition indicator to measured or 

simulated time series from systems that ran to failure. Such a model can compute the 

most likely time-to-failure of the current system. 

There are three families of RUL estimation models, each one with different solutions [Figure 22]: 

 SIMILARITY MODELS; 

 DEGRADATION MODELS; 

 SURVIVAL MODELS. 
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Figure 22. RUL Estimation Models 

 

 

5.2.1. Similarity Models 

Similarity models base the RUL prediction of a test machine on known behavior of similar 

machines from a historical database. Such models compare a trend in test data or condition-

indicator values to the same information extracted from other, similar systems. 

Similarity models are useful when: 

 Having run-to-failure data from similar systems (components). Run-to-failure data is data 

that starts during healthy operation and ends when the machine is in a state close to 

failure or maintenance; 

 The run-to-failure data shows similar degradation behaviors. That is, the data changes in 

some characteristic way as the system degrades. 

 

These models use three estimators to compare the degradation history of a test data set and the 

degradation history of data sets in the ensemble: 

 

 Hashed-feature similarity model: this model transforms historical degradation data from 

each member of the ensemble into fixed-size, condensed, information such as the mean, 

total power, maximum or minimum values, or other quantities. 
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The Hashed-feature Similarity Model is useful when having large amounts of degradation 

data, because it reduces the amount of data storage necessary for prediction. However, 

its accuracy depends on the accuracy of the hash function that the model uses; 

 

 Pairwise similarity model: Pairwise similarity estimation determines RUL by finding the 

components whose historical degradation paths are most correlated to that of the test 

component. In other words, it computes the distance between different time series, 

where distance is defined as correlation, dynamic time warping or a custom metric that is 

provided. By taking into account the degradation profile as it changes over time, Pairwise 

Similarity Estimation can give better results than the Hash Similarity Model; 

 

 Residual similarity model: Residual-based estimation fits prior data to model such as an 

ARMA model or a model that is linear or exponential in usage time. It then computes the 

residuals between data predicted from the ensemble models and the data from the test 

component. The Residual Similarity Model can be seen as a variation of the Pairwise 

Similarity Model, where the magnitude of the residuals is the distance metric. The 

Residual Similarity approach is useful when the knowledge of the system includes a form 

for the degradation model. 

 

 

5.2.2. Degradation Models 

Degradation models extrapolate past behavior to predict the future condition. This type of RUL 

calculation fits a linear or exponential model to degradation profile of a condition indicator, given 

the degradation profiles in the ensemble. It then uses the degradation profile of the test 

component to statistically compute the remaining time until the indicator reaches some 

prescribed threshold. These models are most useful when there is a known value of the condition 

indicator that indicates failure. The two available degradation model types are: 

 

 Linear degradation model: describes the degradation behavior as a linear stochastic 

process with an offset term. Linear degradation models are useful when the system does 

not experience cumulative degradation; 
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 Exponential degradation model: describes the degradation behavior as an exponential 

stochastic process with an offset term. Exponential degradation models are useful when 

the test component experiences cumulative degradation. 

 

5.2.3. Survival Models 

Survival analysis is a statistical method used to model time-to-event data. It is useful when having 

not complete run-to-failure histories, but instead having: 

 Only data about the life span of similar components. Given the historical information on failure 

times of a fleet of similar components, this model estimates the probability distribution of the 

failure times. The distribution is used to estimate the RUL of the test component; 

 Both life spans and some other variable data (covariates) that correlates with the RUL. Covariates, 

also called environmental variables or explanatory variables, comprise information such as the 

component provider, regimes in which the component was used, or manufacturing batch. This 

model is a proportional hazard survival model which uses the life spans and covariates to compute 

the survival probability of a test component. 
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6. APPLICATION CASE 1 

In 2012 FEMTO and IEEE Reliability Society 

organized the IEEE PHM 2012 Data 

Challenge in order to find a way to calculate 

the RUL of the bearings [17]. Challenge data 

sets were obtained by experiments carried 

out on a laboratory experimental table 

(PRONOSTIA) that enables accelerated 

degradation of the bearings in many 

conditions [Figure 23]; it’s composed by 

three elements: 

 ROTATING PART: there is an asynchronous motor with a 250 W power, able to reach 2850 

rpm. The bearing support shaft leads the bearing through its inner race. The shaft is 

composed of only one piece and is held by two pillow blocks. An interface allows setting 

the speed, selecting the direction of the rotation and to setting the monitoring parameters; 

 LOADING PART: this part is composed by an aluminum plate supporting a pneumatic jack, 

a vertical axis, a sensor, the bearing and two pillow blocks with their bearing. It’s the core 

of the system, allow a fast degradation of a test bearing applying a load with a maximum 

of 4000 N; 

 MEASURAMENT PART: analyses are measured according to many factors: the radial force, 

the torque and the speed of rotation. Each bearing is characterized by two elements: 

vibrations and temperature. The vibration sensor consists of two miniature 

accelerometers positioned at 90 to each other, while the temperature sensor is a RTD 

platinum PT10 probe. 

 

 

 

 

 

 

 

Figure 23: Pronostia table ([17])  
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A set of 17 bearings was given, divided into Learning Set and Test Set [Table 6] for different 

conditions (the number of revolutions per minute (or rpm) and the loads), as seen in Table 5.  

 

 Condition 1 Condition 2 Condition 3 

Learning Set 
Bearing 1_1 
Bearing 1_2 

Bearing 2_1 
Bearing 2_2 

Bearing 3_1 
Bearing3_2 

Test Set 

Bearing 1_3 
Bearing 1_4 
Bearing 1_5 
Bearing 1_6 
Bearing 1_7 

Bearing 2_3 
Bearing 2_4 
Bearing 2_5 
Bearing 2_6 
Bearing 2_7 

Bearing 3_3 
 

Table 6: Bearing Set 

The test runs until amplitude of 20g is reached in order 

to avoid propagation of damage to the whole table. A 

vibration raw signal is represented in Figure 24, but the 

failure behavior can assume different aspects. 

The 6 fail-to-run datasets have a wide spread life 

duration, between 1 h and 7 h. RUL is defined as the 

moment in which the acceleration (horizontal or 

vertical) reaches the value of 20g. 

The datasets are given in 

ASCII files and the information is taken with these modalities: 

 VIBRATION (HORIZONTAL AND VERTICAL): a frequency of 25.6 

kHz, recording 2560 samples (1/10 s) each 10 s; 

 TEMPERATURE: a frequency of 10 Hz, recording 600 samples 

each minute. 

 

 

 

CONDITION Revolutions per Minute  Load [N] 

Condition 1 1800 4000 
Condition 2 1650 4200 
Condition 3 1500 5000 

Table 5: Conditions of operability of the bearings 

BEARING RUL [s] 

Bearing1_3 5730 

Bearing1_4 339 

Bearing1_5 1610 

Bearing1_6 1460 

Bearing1_7 7570 

Bearing2_3 7530 

Bearing2_4 1390 

Bearing2_5 3090 

Bearing2_6 1290 

Bearing2_7 580 

Bearing3_3 820 
Table 7: Bearing RUL 

Figure 24: Vibration raw signal ([17]) 
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The ASCII data are presented as shown in Table 8: 

COLUMN 1 2 3 4 5 6 

ACCELERATION Hour Minute Second µ-second 
Horizontal 

Acceleration 

Vertical 

Acceleration 

TEMPERATURE Hour Minute Second µ-second Temperature  
Table 8: ASCII File 

Also the result RULs of the Test Set were given, for each bearing of the Test Set [Table 7].These 

values are used to convert the predicted values into percent error of prediction. Let note RULi and 

ActRULi respectively the RUL of the bearing estimated by the model and the actual RUL to be 

predicted: the percent error of prediction is defined as: 

 

%𝑬𝒓𝒊 = 𝟏𝟎𝟎 ×
𝑨𝒄𝒕𝑹𝑼𝑳𝒊 − 𝑹𝑼𝑳𝒊

𝑨𝒄𝒕𝑹𝑼𝑳𝒊
 

 

Overestimation and underestimation were not considered at the same way: to understand the 

goodness of the model, the factor A is calculated for each result: in case of negative values of Er a 

more severe deduction is actuated, while for the other cases an early removal was actuated. 

These two situations are defined by these accuracy functions: 

 

𝑨𝒊 =

{
 
 

 
 𝐞𝐱𝐩 [−𝐥𝐧 (𝟎. 𝟓) ∙ (

𝑬𝒓𝒊
𝟓⁄ )]          𝒇𝒐𝒓 𝑬𝒓𝒊 ≤ 𝟎

𝐞𝐱𝐩 [+𝐥𝐧 (𝟎. 𝟓) ∙ (
𝑬𝒓𝒊

𝟐𝟎⁄ )]        𝒇𝒐𝒓 𝑬𝒓𝒊 > 𝟎

 

 

The final score and the goodness of the model will 

be represented by the mean value of all the 

results Ai, which score is reported in Figure 25: 

𝐒𝐜 =
𝟏

𝐧
∑𝐀𝐢

𝐧

𝐢=𝟏

 

 

 

 

Figure 25: Error-Result Relation ([17]) 



 

47 
 

The huge amount of data provoked the Out-of-Memory error: to solve this problem, Tall Arrays 

were used: these arrays allow blocking the process until it is not request to do it, so in this way it’s 

possible to clean the data, to split them in Training, Test and Validation Data, reducing the data to 

be analyzed in the process. For each Learning and Test Set, about 1.5~2.0 million of data are given: 

all the data inside the Learning Sets are used for the Training phase, while, regarding each Test 

Set, the data were divided into Test and Validation Dataset, with a ratio of 2/3 for the Test phase 

(an amount of about 1.0 million of data) and the remaining 1/3 for the Validation phase (an 

amount of about 0.5 million of data). 

To test the program, it was decided to analyze only the first condition specimens, the one in which 

the revolutions are 1800 rpm and the applied load equal to 4000 N. Furthermore only the time 

was taken as independent variable, divided into “Hour”, “Minute”, “Second” and “Microsecond”. 

The Generalized Linear Regression was chosen and the result equation was the one reported 

below: 

 

𝑓[𝑠] = 𝛽0 + 𝛽1𝑡ℎ + 𝛽2𝑡𝑚𝑖𝑛 + 𝛽3𝑡𝑠 + 𝛽4𝑡𝜇𝑠 + 𝛽5𝑡ℎ𝑡𝑚𝑖𝑛 + 𝛽6𝑡ℎ𝑡𝑠 + 𝛽7𝑡ℎ𝑡𝜇𝑠 + 𝛽8𝑡ℎ𝑡𝜇𝑠 + 𝛽9𝑡𝑚𝑖𝑛𝑡𝑠

+ 𝛽10𝑡𝑚𝑖𝑛𝑡𝜇𝑠 + 𝛽11𝑡𝑠𝑡𝜇𝑠 + 𝛽12𝑇𝑒𝑚𝑝 

 

𝑓[𝑠] = �⃗⃗� ∘ �⃗⃗�  

 

A number of 20 iterations were chosen for each bearing and both analyses on the vertical and 

horizontal acceleration were done.  A RUL of 20g was chosen.  

The provided Learning Sets were used to study the goodness of the code before using it for the 

Test Sets, of which nothing was known about the cause of breakages. In Table 9 the results of the 

tests are reported. 

 

BEARING ACTUAL RUL [s] RUL [s] ERROR [%] A 

Bearing 13 5730 5092 16 0.995 

Bearing 14 339 878 -147 0.813 

Bearing 15 1610 1607 2 0.999 

Bearing 16 1460 1192 18 0.994 

Bearing 17 7570 1139 85 0.971 
Table 9: Results of the specimens 
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As it can be seen, the model well fits the actual RUL in most of the cases, in the other cases it 

seems that the model doesn’t fit well: the reason of this could be found in the fact that, looking at 

the actual RULs, the average time of reaching the value is included in a range between 1500 and 

5000 s, so for the other specimens a 

different structural composition could bring 

to those different values. The results were 

reported in an Error-Result graph, obtaining 

a trend similar to the one seen above and 

shown in Figure 26. 

Also the other types of model shown in the 

previous chapter were used to train the 

model (specifically the Linear and the Exponential Regression, the K-Means Clustering and the 

Logistic Regression), but the obtained results were far from the expected ones reported below, in 

Table 9. In average the 

predicted RULs found in 

these ways were 

increased up to 100% with 

respect to the Generalized 

Linear Regression. This 

represents the fact that 

it’s important to choose 

the right model to 

represent the behavior of 

data. 

In Appendix A the code of 

the program for the analysis of this type of bearings is reported, while in Errore. L'origine 

riferimento non è stata trovata. the flow chart of the program is reported. 

 

 

Figure 26: Error-A for Application Case 1 

Figure 27: Application Case 1 Flow-Chart 
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7. BEARING CLASSIFICATION 

Rolling stock axle bearings [Figure 28] are 

subject to radial impact loads caused by rail 

joints, switches and sometimes wheel flats, as 

well as to the static and dynamic radial loads of 

vehicle weight. They are also liable to receive 

axial loads generated by lateral movement as 

trains run on curved rails or in a snaking 

motion. All of these loads together form complex combinations that act on axle bearings. Axle 

bearings must therefore be designed on the basis of not only dimensional requirements of the 

axle journal and bearing box geometry, but also these complex load conditions. Additionally, as 

axle bearings play a critical role in the safety of railroad operation, they are periodically 

disassembled for inspection. For this reason, simple and dependable procedures for disassembly, 

inspection and re-assembly are important design factors as well. All types of radial roller bearings, 

including tapered roller bearings, spherical roller bearings and cylindrical roller bearings, have 

been used in rolling stock axles based on the particular merits of each type. 

 

To improve operating efficiency, bearings must offer longer inspection intervals, simplified 

maintenance procedures and increased integration of bearing components and adjacent parts. To 

meet these needs, unitized bearings with advanced sealing devices have been introduced and are 

now widely used in modern rolling stock [18]. 

Axle bearings are divided into six typologies: 

›› RCT Bearings (Sealed-Clean Rotating End Cap Tapered Roller Bearings); 

›› RCC Bearings (Sealed-Clean Rotating End Cap Cylindrical Roller Bearings); 

›› Spherical roller bearings; 

›› Cylindrical roller bearings combined with ball bearings; 

›› Cylindrical roller bearings with ribs; 

›› Tapered roller bearings. 

To ensure a good load capacity, usually all these types of bearings are manufactured in double-

row configurations.   

Figure 28: An axle bearing 
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A. RCT Bearing 

Preventing grease deterioration and leakage, as well as the 

intrusion of water and other foreign matter into the grease 

are vital for eliminating bearing trouble and lengthening 

maintenance intervals. Clearly, bearing seals offer the best 

way of achieving these objectives. RCT bearings are highly 

integrated with surrounding components and incorporate 

advanced sealing mechanisms. They offer outstanding 

performance, durability and ease of handling. 

Generally, RCT bearings consist of an end cap, cap screws, a locking plate for fastening the end 

cap, a seal wear ring, a double-row tapered roller bearing and a backing ring. The latest variation 

has a backing ring that also serves as a seal wear ring [Figure 30]. 

  

 

 

 

 

 

Oil seals, mounted in seal cases, are press-fitted onto both 

ends of the outer ring and are in contact with the seal wear 

rings with a specified interference and pressure. The seals are 

spring-loaded contact seals. They are capable of preventing 

grease leakage and the intrusion of water and foreign matter 

into the bearing. For the assembly of bogies with axles 

supported by RCT bearings, saddle-type adapters are used 

instead of the bearing boxes commonly used for ordinary 

bearings. The use of such adapters can reduce the weight of 

the bogie and make assembly work easier.  

 

B. RCC Bearing 

This bearing is like the RTC, but the only difference is related 

to the end cap: in RTC it is tapered, while in RCC it’s cylindrical [Figure 31]. 

Figure 29: RCT Bearing ([18]) 

Figure 30: RCT Bearing Component ([18]) 

Figure 31: RTC and RCC Bearing ([18]) 
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C. Spherical Rolling Bearing 

The spherical bearing box [Figure 32] is allowed to move 

freely in relation to the axle center because of the self-

aligning property of the bearing. When a single spherical 

roller bearing is used, the use of a wing-type bearing box is 

recommended.   

A spherical bearing by itself consists of an outer ring and an 

inner ring and a locking feature that makes the inner ring 

captive within the outer ring in the axial direction 

only. Spherical bearings are used in countless applications, 

wherever rotational motion must be allowed to change the 

alignment of its rotation axis.  

 

 

D. Cylindrical Rolling Bearing 

Compared with tapered or spherical roller bearings, 

cylindrical roller bearings [Figure 33] have several strong 

advantages as journal bearings. These are: 

›› The outer diameter is smaller and the weight is lower for 

the same load capacity; 

›› Assembly and disassembly are easier facilitating 

maintenance and inspection; 

›› The speed capability is higher because of the lower 

friction coefficient; 

›› They allow the free setup of their axial clearance. 

Usually, the axial loads are borne by a single-row ball bearing such as a deep groove ball bearing or 

an angular contact ball bearing installed between the bearing box front cover and the axle end. 

With this type of bearing which is referred as the UIC type and has been standardized in Europe, 

axial loads are borne by ribs of the outer and inner rings and by the end of rollers. Compared with 

cylindrical roller bearings combined with ball bearings, this type offers simpler and compact 

housing construction owing to the absence of the ball bearing. 

 

Figure 32: Spherical Rolling Bearing ([18]) 

Figure 33: Cylindrical Bearing ([18]) 
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E. Tapered Roller Bearing 

Tapered roller bearings can carry radial and axial loads 

simultaneously and therefore permit compact design of the 

bearing and its adjacent parts. This type of bearing, however, 

requires precise internal clearance adjustment in order to 

perform properly.  

Tapered roller bearings are used either in sets of two, or in a 

double-row configuration in which there is one outer ring or 

one inner ring for the two rows of rollers. There are two types 

of duplex arrangements: back-to-back and face-to-face. For 

rolling stock axle applications where heavy moment loads are 

expected, the back-to-back arrangement, which provides a 

greater distance between load centers, is preferable. When the rollers are rolling under load, part 

of their load is transferred to the large rib of the inner ring. The rollers maintain sliding contact 

with and are guided by the rib. This results in the friction coefficient of these bearings being higher 

than that of cylindrical bearings. Recently, however, improvements in surface roughness and 

contact geometry have virtually eliminated the friction problems associated with tapered roller 

bearings for axles. This type of axle bearing can be designed with a sealed arrangement between 

the rear cover and the bearing box or, as described in the section on RCT bearings, they can have 

an internally sealed construction. 

  

Figure 34: Tapered Roller Bearing ([18]) 
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7.1. The bearings in railway systems 

From the first use in railway systems, bearings have shown the capability to save energy and 

lubricant. The groups composed by two wheels and an axle 

rotating on bearings stayed more or less the same. But, 

because of their use, bearings represent the most critical 

part of a railway vehicle. The study of tribology and wearing 

has let know more about the interactions between surfaces 

in reciprocal movement. 

 

There were some patent tools, but the first documented 

use is related to a three-axle passenger coach in 1903, 

equipped with two spherical radial bearings [Figure 35]: it allows having  a reduction of  86% of the 

traction force needed to move a two-coach set of total weight 33 t (passing from 4.4 kN to 0.62 

kN).Other tests were done in 1905 in Syracuse University of New York regarding the energy 

consumption, testing two trams: one was equipped with bushings, the other with roller bearings. 

The latter had an energy consumption of 3.10 kWh, while the other of 6.45 kWh, with a saving of 

52%. The use of the roller bearings by the Syracuse Rapid Transit on its trams brought to the lack 

of wear on the bearings after 4 years and 400000 km run, with a save of 260 $ per year per 

vehicle. 

 

In addition to energy savings, the use of bearing brings also to lubricant savings, both in terms of 

costs and in terms of environmental costs, reducing the production of oils and greases for the 

bearings, that must be emptied after several years of use and the products must be disposed of: a 

reduction of this phase has a good impact on the environment. At the beginning of railway 

transport, lubricated bearings were used, filled with 1.3 kg of lubricant, divided between 0.5 for 

the bushings and 0.8 for the fuel-tank. The controls were frequent and a loss of 0.2 kg of lubricant 

each 1000 km was measured. An important increment was given by the introduction of greased 

roller bearings, which needed often no re-lubrication. Initially 1.7 kg was used, but some studies 

analyzed that it was possible to use less product without problems. From the 50s less and less oil 

was used, till reaching the actual 0.7 kg. Another important step was reached by the pre-

lubricated cylindrical roller bearings with incorporated protection (or CRU) that use only 0.2-0.3 kg 

of grease, reducing working temperatures and increasing in this way the exercise time.    

Figure 35: 1903 Bearing ([18]) 
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Today trains can reach up to 300-350 km/h, modifying the geography of the Countries and 

connecting cities in a way that the distance can be count in terms of time and not of distance. 

Their use will be the future of passenger mobility in terms of speed and sustainability. Usually 

bearings are standardized, but they can be built according to specific needs; many of them are 

equipped with tools to monitor the performances. Same bearings are used for the wheel-sets of 

freight trains; above all bearing units are used with respect to the simple bearings.  

A unit simplifies the installation phase and increments also the affordability and the safety 

because their maintenance is realized by the same companies that sell the product. These units 

have tapered or cylindrical rollers with specific advantages and used in all the kinds of vehicles. 

The choice of a unit rather than one other depends on many factors: 

 Legislations and rules of the Country; 

 Experience; 

 Maintenance processes applied in the workshops; 

 Type of vehicles. 

 

In some countries practical and lab tests are required before every operation of modification: they 

are needed for conditioned (and then unconditioned) approval before put in circulation a new 

vehicle. 

 

The protection system is included inside the bearing, sliding on the internal ring of it, allowing 

using shorter pivots in order to reduce the deformation on the axle and giving many advantages to 

the technical designer. The structure is made of polymer despite of steel and bronze, contributing 

heavily to safety and affordability. 

 

Vehicles have many sensors installed on the bearing and used to measure operational parameters 

like speed, temperature and vibrations that give information to the control systems, like the 

braking system or the monitoring one. 
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7.2. Bearing Failure 

As it can be read and understood in the previous 

chapter and in many work [19],[20],[21], lubrication 

plays an important role because the failure of one 

bearing doesn’t stop only the vehicle but also the 

whole system. The amount of grease depends on 

many factors, above all the temperature and the 

speed. Damage or failure of a bearing is often the 

result of several mechanisms operating 

simultaneously. It is the complex combination of 

design, manufacture, assembly, operation and 

maintenance that often causes difficulty in 

establishing the primary cause of failure.  

The evolution of tribological research during recent 

decades has led to a remarkable increase of new 

knowledge describing failure mechanisms. The data 

from this research field show that improper 

lubrication is the most commonly cited cause of 

bearing failure and accounts approximately 80% of 

breakdowns [Figure 37]. 

In the event of extensive damage to or catastrophic 

failure of the bearing, the evidence is likely to be lost 

and then it will be impossible to identify 

the primary cause of failure. In all cases, 

knowledge of the actual operating 

conditions of the assembly and the 

maintenance history is of the utmost 

importance. Typically, the causes of 

bearing failure can be classified in five 

groups and various sub-groups as shown 

in Figure 36.  

Figure 36: Failure scheme ([21]) 

Figure 37: Percentage of failure ([21]) 
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7.2.1. Improper lubrication 

The selection of adequate bearing lubricants is based on decisions around whether to choose oil 

or grease, and determining what kind of additive is required. This decision depends on some 

factors, such as operating load, speed and temperature. Lubrication is a key factor that can make 

or break bearing service life. Some researches in the bearing industry have stated that improper 

lubrication can account around 80% of bearing failures. Failure can be the result of excessively 

long time lubrication without renewing, unsuitable lubrication and lubrication contamination. 

Abrasive wear can be the result of inadequate lubrication. The surfaces become dull to a degree 

that varies according to the coarseness and nature of the abrasive particles. These particles 

gradually increase in number as material is worn away from the running surfaces and cage. Finally, 

the wear becomes an accelerating process that results in the failure of the bearing. Improper 

lubricant viscosity is one the major causes of bearing failure. As for lubricating oils, viscosity is one 

of the most important properties and determines oil lubricating efficiency. In order to form an 

adequate lubricant film between the rolling contact surfaces, the lubricant must retain a certain 

minimum viscosity while at operating temperature. The bearing life may be extended by 

increasing the operating viscosity. If viscosity is too low, the oil film will not form, and damage will 

occur to the bearing contact surfaces. On the contrary, when viscosity is too high, viscous 

resistance will also be great and temperature due to friction will be high. In either case, the 

asperities (microscopic machined high points) of the bearing component surfaces may contact 

each other, initially causing a frosted or smearing condition, followed by adhesion at the contact 

points. Contamination from water, chemicals, and particles is especially harmful to rolling 

bearings: when the lubricant is contaminated with wear solid particles, permanent micro cracks on 

the bearing raceway can be generated when these particles are over rolled. The appearance of 

these micro cracks can generate local stresses, which will lead to a reduced life of the rolling 

bearing. When steel, used for rolling bearing components, is in contact with moisture, oxidation of 

surfaces takes place. Subsequently the formation of corrosion pits occurs and finally flaking of the 

surface. A specific form of moisture corrosion can be observed in the contact areas between 

rolling elements and bearing rings, where the water content in the lubricant or the degraded 

lubricant reacts with the surfaces of the adjacent bearing elements. 
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Many bearings are simply brought to failure receiving insufficient lubricant quantity or no 

lubrication throughout their short life. Among others, the most common causes are simple 

neglect, incorrect lubrication intervals and failed lubrication system. For proper application, 

bearings must be monitored to ensure that lubricant intervals are not too frequent, causing over-

lubrication, and not too infrequent, causing under-lubrication. Over-lubrication occurs when a 

rolling bearing is greased excessively or when too much oil is added to the housing. Excessive 

grease or oil quantity may cause internal friction between rolling parts, which generates excessive 

temperature that can create stress and deformity of the bearing. 

 

 

7.2.2. Inadequate bearing selection 

The selection of bearing made by the original equipment manufacturer is the correct selection for 

the application. Of course there are some exceptions, and there is always the possibility that a 

wrong bearing is used for the application.  

Another common mistake is the use of a larger or stronger bearing, believing that this 

arrangement will increase radial load capacity. The larger or stronger bearing will not solve the 

true root cause problems. On the contrary, this new layout may create additional problems as, for 

instance that the selected bearing may have a speed lower than the nominal one and may not 

work properly in an environment with relatively high trust. In some cases, bearings require to be 

preloaded to facilitate rolling motion and to prevent roller skidding. Replacing the original bearing 

with a new one may actually lead to failures that are more rapid if it is not properly loaded. As a 

general rule, the replacement of a bearing has to be done with the same type of bearing, selected 

by the original equipment manufacturer.  

Inadequate bearing selection represents about 10% of all premature bearing failures.  
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7.2.3. Improper mounting 

Improper mounting accounts for about 5% of all premature bearing failures. Improper installation 

can lead to bearing failure through load imbalance, misalignment or improper load distributions.  

A change of misalignment of 0.01/10 mm is enough to cause huge rise in vibration and 

temperature in the bearing. These sudden changes may introduce heavy wear in the ball or roller 

pockets where they run. These problems can be detected as a non-parallel running mark of the 

ball on the outer raceway and as means of extra wide ball or roller pathway on the inner raceway.  

Improper mounting can also lead to failure due to excessive or uneven heating of the bearing, 

when this is mounted on a shaft or housing.  

 

 

7.2.4. Indirect failure 

Indirect failures, such as unacceptable operating conditions, transport, storage and handling 

represent 4% of premature bearing failures. Among other indirect causes, the worst operating 

conditions are overloading, over-speeding, excessive vibrations, high temperature and electrical 

discharge. Furthermore, overloading can occur by excessive preloading or incorrect handling 

during mounting. 

Vibration represents a huge problem as for bearing failures. In fact, vibration in a bearing while 

stationary can cause damage, called false brinelling. The damages can be identified as bright 

polished depressions or reddish stain common to fretting. These marks left by false brinelling will 

be equal to the distance between the rolling elements, just as it is in the cases of true brinelling, so 

these two conditions are often difficult to be distinguished. Electrical discharge is becoming a 

serious problem for bearings. During equipment operations, drive systems may produce a high 

level of static electricity that can be dissipated through the bearings to ground, causing pits or 

fluting to form on the bearing. Initially the surface damage takes the shape of shallow craters, 

which are closely positioned to one another and small in size. This happens even if the intensity of 

the current is comparatively low. Flutes will develop from the craters in time. Higher temperatures 

than those recommended by the manufacturer represent a risk factor for bearing life, no matter 

what type, quality or amount of lubricant is used. To highlight the importance of this point, 

consider the fact that a good quality mineral oil begins to oxidize at 71 °C. The same result will 

occur in greases where such oils are used as the lubricating agent.  
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Handling starts when a rolling bearing leaves the factory to the point when it is installed on a 

machine, and continues if the machine is to be transported after it is installed. Proper 

transportation and storage are essential to prevent damages from occurring before the machine is 

even placed in service. 

 

 

7.2.5. Material defects and manufacturing errors 

Rolling bearing failures due to manufacturing defects make up less than one percent of overall 

bearing failures around the world. This percentage is being continuously reduced by 

improvements in manufacturing process and material technology. Today bearing manufacturers 

use sophisticated instruments to detect surface and subsurface bearing material defects, 

eliminating in this way poor quality products during the manufacturing process. 

 

In Appendix B several images of the above failures are reported, according to the type of failure 

that a bearing can suffer. 

 

7.3. The Shock Pulse Method to measure bearing conditions 

It’s a method realized in 1969 and now 

used for monitoring a system. The SPM 

Institute offers a software that is 

represented in this chapter. 

The bearing consists of two metal pieces 

contacting each other: when it happens, 

a shock or propagation wave develops 

and quickly propagates through the metal: this signal is in the ultrasonic frequency band, with a 

typical center of 36 kHz. As the signal expands from its point of origin, it is dissipated by carbon 

and other imperfections in the metal.  

To measure the propagation, the Shock Pulse Method (or SPM) is used [Figure 38]: it is a patented 

technique for using signals from rotating rolling bearings as the basis for efficient condition 

monitoring of machines. The shock is caught by a transducer that converts the shock into an 

electric signal that will be processed to give a carpet and a peak value. The signal is also magnified 

because it has very low amplitude, by the use of an accelerometer design for this purpose. 

Figure 38: Shock Pulse Method 
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Figure 39: Carpet and Peak Value 

The shock pulse meter counts the rate of occurrence and varies the gain until two amplitude levels 

are determined [Figure 39]: 

 Carpet Value: in absence of bearing damage, it’s the background noise. When lubrication starts to 

degrade, there are more metal-to-metal contacts and this parameter increases; 

 Peak Value: in case of bearing damage, the impacts have a periodicity depending on the place and 

entity of the defect, causing high amplitude waves. 

The method requires more precise data on the 

bearing, because bearing geometry, as well as size and 

speed, affect the shock carpet and thus the analysis of 

oil film condition in undamaged bearings. The rpm is 

needed, plus a definition of the bearing type and size.  

Shocks generated by damaged bearings will typically 

have an occurrence pattern matching the ball pass 

frequency over the rotating race. Shocks from 

damaged gears have different patterns, while random 

shocks from disturbance sources have none [Figure 

40]. 

 

 

 

 

 

 

 

Figure 40: Shock analysis 
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7.4. Events related to bearing failure 

The importance of bearing maintenance is increasing in these last years: many accidents have 

occurred all around the world related to the failure of bearings. Every accident results in 

discomforts related to the block of the circulation but often also in loss of human lives. 

 

 USA FAILURES: in the period between the 2001 and 2010, about 4000 derailments 

occurred, among which the 7% is related to bearing failures, involving about 7 cars in 

each accident [22]; 

 

 NEW ZELAND FAILURES: between 2007 and 2008 in New Zeland many bearing failures 

were registered on many freight trains, some bringing to derailment, without fatalities 

but with discomforts on the lines [23]; 

 

 FREIGHT TRAIN 50325: in 2009 a freight train, carrying 14 tank wagons filled with LPG, 

suffered the breakup of a bearing for fatigue near the city of Viareggio and the first coach 

blew up, with the death of 32 people. A lack of maintenance was revealed to be the cause 

of the missed replacement [24]; 

 

 CANADIAN PACIFIC RAILWAY TRAIN 119-01: the train derailed while crossing the bridge 

over Wanapitei River because of a breakup of the bearings because of the high 

temperature; there were no injuries but the bridge collapsed [25]; 

 

 FREIGHT TRAIN 2AD1: in 2014 the train, carrying distillate fuel, suffered a bearing failure 

because of a lack of lubrication; no injuries but only damages to the track [26]; 

 

 CSX FREIGHT TRAIN: in 2015 a freight train, carrying toxic chemicals, derailed near 

Maryville in Tennessee, suffering the overheating of one of its bearings. 5000 people 

were evacuated; 
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8. APPLICATION CASE 2 

Hypothetical data were provided data 

concerning gear train bearings [Figure 41], 

assumed obtained by two sensors installed 

inside the transmission box of the trains 

composing the fleet. The data collected are 

divided among Measurement Information 

(the data regarding the vehicle and the 

sensor and, in general, the physical part of the train) and Detected Values (the information 

detected by the sensors inside the transmission box): 

 

All the data are referred to one year, with an average time step of 2 days between each couple of 

detection. During this year of analysis, 14 cases of break were registered, preceded by an 

increment of the carpet value before the event. The availability of these events together with the 

other cases allows using similarity models, in particular Pairwise Similarity Models because similar 

behaviors are given but not a maximum value.  

For the development of the analysis, only the data related to the sensor S1 of the gearbox where 

taken. In addition, only the data that are useful for the analysis and correlated to the failure were 

taken: 

 Train; 

 Bearing; 

 Carpet Value; 

 Peak Value; 

 Speed; 

 Heading.  

 

 

 

 

Figure 41: General Representation of a Gear Train 
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The data have usually these envelops: 

 

Figure 42: Peak Value 

 

 

Figure 43: Carpet Value 

 

As it can be seen in the representations of the peak and the carpet values, it’s possible to detect 

an increment of the values before the failure event. This is caused by the reduction of the oil film 

and the increment of the direct impact of the metals with deterioration of the bearing: this causes 

the increment of the temperature together with fatigue of the metal and the formation of cracks, 

until the complete breakup of the bearing. 

 

After the training of the model with all the POSITIVE (Yes Break) and NEGATIVE (No Break) series, 

it was decided at first to test the model to predict the breakup of the positive specimen: to do it, 

taking only data 60 days after the first day was necessary, obtaining the results in Table 10: 
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Case 
Difference between 

Real RUL and Predicted RUL [day] 
Predicted RUL 

[day] 

a 0 78 

b 12 50 

c 10 66 

d 8 55 

e -6 161 

f -8 215 

g 2 83 

h -2 127 

Table 10: Test on the known specimen 

 

It’s possible to see that the error has an expected value of 2 days, with a standard deviation of 1 

week: usually in maintenance a 15-day analysis is chosen, in which the possible failure in that 

period is requested to be evaluated for the next 2 weeks in order to manage maintenance of the 

bearings.  

 

Then the analysis was spread to the other elements with given data. In a first attempt, the training 

was done with only the positive cases, obtaining the following results [Table 11] with respect to the 

last detection (after about 250 days from the first one): 

 

Case Forecasting RULs [day] 

I 216 

II 163 

III 141 

IV 144 

V 157 

VI 125 

Table 11: RUL Estimation with only positive element testing 
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The results could seem to be right, but in the reality this is not true: the type of bearings realized 

for that type of train could last for years, while, with this training, they could break after a couple 

of years that is problematic because stop a train for maintenance presents a high cost and there 

are also clauses for not guaranteeing a certain operability of a train.  

These results are caused by the wrong training of the model with only the positive series: in this 

way the machine is “induced” to bring the bearing to breakup in the fastest way possible, because 

it cannot “accept” that the item can have a longer life and not break in some months. So the 

model was trained with also negative series, obtaining some results of RULs reported below, with 

respect to the last detection: 
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Figure 44: RUL Example 

      

The RULs have a huge variety of values, from some months till many years, with an average RUL of 

2 years. The results seem to be reliable with the expected life of the bearing, but they should be 

monitored each week because the situation could vary very fast in few weeks: the evolution of 

degradation of a broken bearing is shown in the pictures below, with an increment of 1 week: 

 

 

Figure 45: Breakup 
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Figure 46: One weeks before breakup 

 

Figure 47: Two weeks before breakup 

 

Figure 48: Three weeks before breakup 
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Figure 49: Four weeks before brakeup 

 

The easy of the evolution of the degradation can be seen easily in the graphs above: the carpet 

value follows a normal trend till eight weeks before the breakup, swinging around a central value, 

but then it starts to increase in the following weeks, with a peek in the increment in the last three, 

increasing of the 200% before the breakup. This demonstrates the necessity to continuously 

monitoring the trend of the RUL week by week to have the right time to manage maintenance 

operations and take the right countermeasures. In Figure 50 the model gives the variation of the 

RUL during the weeks from the first day of detection, analyzing the bearing conditions week by 

week: as it is reasonable, after a first period in which the specimen seems to last many years 

because new, the RUL starts to decrease, reaching the same RUL registered at the end of 

detection.   

 

 

Figure 50: RUL Variation 
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9. OTHER SYSTEMS ANALYZABLE BY THE NEURAL NETWORKS 

It is in the common interest of travelers and train operators try to avoid rolling stocks failures, for 

the passengers to experience comfortable trip and for the railway undertaking to save the costs of 

corrective maintenance activities. Maintenance is not only the one related to the mechanical 

components of the train, but also related to other systems inside the vehicle: the converters and 

the refrigerator compressors. These two components were analyzed in other thesis works by 

Filippo Rea in 2016 [27] and Lorenzo Roazzi in 2017 [28]. 

 

9.1.  The Converters 

From the evidences of the analysis, the converters are the third direct cause of warnings. 

Nevertheless, the large amount of warnings on the other many train components supplied by the 

converter shows the real impact of this typology of failures: in fact a converter provides energy to 

many subsystems of the train, like the door system, the plug system, the light system and so on 

[Figure 51]. 

 

 

Figure 51: Train sub-systems [28] 

 

Analysis were done related to the occurrence of failures of the converter system in the Universal 

Service coaches according to the FMCA analysis, affecting time by time different components. The 

corrective maintenance interventions are temporary solutions, the fact that the failures are very 
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spread risks to make it difficult to face the problem with a reactive approach, and in the long term 

to extend the repair times. There are many small defects influencing the systems performance, 

but they are now immediately detected once happened. The maintenance operations found were 

estimated in around 1000€/coach, especially due to the time of non-operability of the vehicle.   

Monitoring the right indicators is the first step, as it was reported in the work. For a bearing, the 

indicators shown in Errore. L'origine riferimento non è stata trovata. were used because they’re 

the ones that better represent the bearing conditions. For the converter system, other types of 

indicators should be chosen: 

 

- Current Intensity; 

- Temperature; 

- External Temperature; 

- Number of operations of opening and closing door; 

- Number of passengers; 

- Number of stops; 

- Voltage. 

 

The failure analysis has brought to low reliability of the model: the use of self-learning simulation 

models can result a useful tool to prevent the failures. Thanks to on-board sensors, the acquisition 

and processing of a large amount of data will possible. The data contain the information on the 

component condition and behavioral range, in order to link the description of the effects of the 

failures with its real physical parameters. In this way the replacement and the maintenance 

activities of converter components will be optimized by checking the actual status of an item.   

 

9.2.  The Compressor Refrigerators 

For long journey times, comfort plays a key role in the quality of service, and between the various 

aspects, to be the most critical is the HVAC (heating, ventilation and air conditioning) system 

[Figure 52]: the strong variability of the seasons and microclimates as well as temperature 

excursions between day and night, require a great adaptability and versatility of the system, 

fundamental characteristics for the maintenance of a pleasant temperature inside the carriage 

and therefore for passenger comfort, but that result in frequent failures of climate system, 

especially in the summer and winter peaks where the effort is maximum, resulting in detention of 
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carriages and replacement of faulty elements that cause in turn lack of carriages available for the 

service and great amount of money for corrective measures. In particular, the compressors are 

system parts which have a greater anomaly in the frequency of failures because sometimes they 

have a life cycle drastically lower than that expected, even with repeated replacements in the 

same system in a short period of time, due to internal and external factors. Several types of failure 

were found: 

 Mechanical Failures caused by Liquid Shots, occurred by the use of virtually 

incompressible liquid in the compressor chamber that provoked hammering and breaking 

of the aspiration valve; 

 Mechanical Failures caused by Lubrication, occurred by the excessive dilution of the oil 

with result an improper lubrication; 

 Mechanical Failures caused by Refrigerant Circuit Contamination Problems, caused by the 

presence in the refrigerant circuit oil of rust, corrosion, refrigerant decomposition, mud 

deposits, provoking friction and overheating; 

 Electrical Failures, usually linked to other irregularities of the systems; 

 Indeterminate Failures that cannot be determined by the maintainers because of many 

external factors (lack of time, freedom of operation…). 

 

The specific cause of frequent failures of the compressors seems to be in the relationship between 

these and static converters, another key element of the carriage, equally dated, and despite some 

elements are modernized and changed, the converter remains the same, and with time it can't 

afford the increasing request of electric current.  

There were proposed various possible solutions: to increase, with minimal cost, the converter 

period of transition in order to ensure full satisfaction of the starting of the compressors; with 

higher cost but better results, to replace the low-power converters with other powered, or to 

replace existing compressors with other little. More difficult to realize, but great for a future 

design, it is the installation of a continuous conduct that could carry heat and cool to the adjacent 

carriages in the event of compressor failure. 

These solutions could represent good solutions for the old coaches analyzed, but cannot be the 

only ones in the future development: a monitoring of the temperature, of the energy expenditure, 

also of the vibrations, through few sensors rightly located, could be used for training a machine 
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10. CONCLUSIONS 

The Machine Learning is starting looking out the railway systems and, in general, in the other 

transports systems too. The actual traditional maintenance suffers many problems, related to its 

efficiency but, above all, to the costs: unnecessary replacements present costs that could be 

avoided, but, in the other hand, costs related to the corrective maintenance occurred for a not 

performed maintenance because the vehicle hasn’t reached the expiry date, taking into account 

also the costs for the not granted service and, unfortunately, the cost in terms of injuries and 

fatalities in case of accidents.  

 

Also the importance of lubrication has been shown off: all the bearings have suffered breakup 

after a reduction of the oil film during its utilization, suffering meanwhile the formation of creeks 

and breaks on the surface, increasing during time till the failure is reached and the element 

breaks. This usually goes along with the increasing of the temperature due to the friction between 

the metal surfaces. 

  

The use of Machine Learning in this work has shown that a different and better approach to the 

life state of a component is possible to measure its Remaining Useful Life: the most difficult step is 

the definition of the parameters to be analyzed in their historical trends, for the programmer, and 

the cost to install the specific sensors inside the vehicles, for the transport company. These are not 

two completely different views of the same problem, as it’s written, they are the SAME problem 

and only with a synergic work is possible to bring to a good resolution. It’s obvious that the initial 

cost will be high with long time for installing the mechanical components and that these new 

techniques will not be introduced inside the old rolling stock, but the future advantages will be a 

able to compensate them. 

 

The results have shown that there is a good response, demonstrated by the application of the 

models to the cases, in which the failure event was occurred, with variations every week: this fact 

assumes, anyway, that a constant monitoring of the data must be granted because a fast variation 

of the conditions could occur in 7-15 days. In addition, it’s important, in the learning phase, to use 

not only the cases in which a failure is occurred, but also the other cases: like a human brain, a 

machine learned with only the first type of data could have a “pessimistic” view, forcing a 

component to end its life too early, with useless replacements. On the contrary, using only the 
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negative results will give the model an “optimistic” view, giving a life longer than the real one and 

risking un-estimated failures. But learning with all the possibilities will give a “realistic” view of the 

component life. 

  

The analysis is related only to the bearings, but, as it was reported in chapter 9, there are other 

subsystems inside a vehicle that can be interested by the use of Machine Learning and that cannot 

be represented by the traditional maintenance models. 

 

But there are many cons related to the Neural Networks: first of all, every tool will not provide 

each passage, each weight used for the learning phase, an available equation of the model found 

by the machine, but it will only provide a black box, in which inputs are put and outputs are 

obtained. It’s possible to decide the type of model to use, but nothing else. 

Another problem related to the programming phase is the yet reported difficulty in indicator 

choice: different subsystems have different indicators for their own and this provides a large 

availability of input but this is related to the set up cost of the sensors for a transport company: in 

this point programmers and companies must find a common ground, between the type of data to 

collect and the sensors to set up. 
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APPENDIX A: Matlab Code for Application Case 1 

clear 

clc 

  

%Number of observations 

noss=input('Define the number of observations = ');  

%Number of relevament for each observations 

nril=input('Define the number of relevament = ');  

%Define the total number of rows 

prod=noss*nril; 

  

%Open the folder where there are the results 

cd('C:\Users\mario\Dropbox\Tesi 

Magistrale\Pronostia\Training\Learning'); 

  

%Define the RUL to test the code 

Solmax=input('Define the RUL = ');  

%Define the iterations 

jmax=input('Define the number of iterations = ') 

 

%Read the csv file with the data 

Z=csvread('TEST13.csv',0,0,[0,0,prod-1,5]);  

i1=1:prod; 

%Create the arrays 

u1=Z(:,1); u2=Z(:,2); u3=Z(:,3); u4=Z(:,4); u5=Z(:,5); u6=Z(:,6);  

t1=table(u1,u2,u3,u4,u5); %Create the table 

tt1=tall(t1); %Create the tall arrays 

idx1=tt1.u5>0; %Define the constraints 

tt1=tt1(idx1,:); 

tt1=gather(tt1); 

  

for j=1:jmax 

        

    j %Counter 

%Divide the data into training and test data 

c = cvpartition(tt.u5,'HoldOut',1/3);  

dataTrain=tt1(training(c),:); %Define the training data 

dataTest=tt1(test(c),:);; %Define the test data 

mdl1=fitlm(dataTrain,'interactions','ResponseVar','u5') %Realuze 

the model 

pred1=predict(mdl1,dataTest); %Predict the model 

err1 = pred1 - dataTest.u5; %Evaluate the error 

  

syms tm 

K=mdl1.Coefficients.Estimate 

%Define the angular coefficient 

SU=K(2,1)*3600+K(3,1)*60+K(4,1)+K(5,1)*10^-

6+K(6,1)*3600*60+K(7,1)*3600 ... 

+K(8,1)*3600*10^-6+K(9,1)*60+K(10,1)*60*10^-6+K(11,1)*10^-6; 

%Define the equation 

TE=K(1,1)+SU*tm==200; 
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%Solve the problem 

Sol=solve(TE,tm); 

  

%Define the coefficients 

K1(j)=K(1,1);K2(j)=K(2,1);K3=K(3,1);K4=K(4,1);K5=K(5,1);K6=K(6,1); 

K7(j)=K(7,1);K8(j)=K(8,1);K9=K(9,1);K10=K(10,1);K11=K(11,1); 

  

end 

 

Sol=gather(Sol); %Start the calculation of the tall arrays 

Sol=vpa(simplify(Fol),4); 

 

%Plot the result 

plot(Sol),xlabel('Iterations'),ylabel('Seconds [s]'),... 

    title('Test at n = jmax') 

  

%Evaluate the mean and the standard deviation 

m=mean(Sol) 

SM=(Sol-m)^2; 

SD=sqrt(sum(SM)/(length(SM)-1)) 

  

%Evaluate %Er 

Er=(Solmax-mean)/Solmax 

  

%Er 

if Er>0 

    A=exp(log(0.5)*(Er/20)) 

else 

    A=exp(-log(0.5)*(Er/5)) 

end 
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APPENDIX B: Matlab Code for Application Case 2 

clear 

clc 

  

%Read each column of the data, converting the dates into numbers 

TR=xlsread('NAMEFILE.xlsx','Sheetname','a2:a677624'); 

AS=xlsread('NAMEFILE.xlsx','Sheetname','c2:c677624'); 

[n,pi,valo]=xlsread('NAMEFILE.xlsx','Sheetname','d2:d677624'); 

TI=datenum(datetime(pi,'inputformat','dd/MM/yyyy')); 

RE=xlsread('NAMEFILE.xlsx','Sheetname','e2:h677624'); 

  

clear n valo pi %Clear useless variables  

  

%Divisions of the data according to the train and the axis 

ji=50; %Trains 

ki=16; %Bearings 

  

for j=1:ji 

for k=1:ki 

data=[TR AS TI RE]; 

  

data=data(data(:,1)==j,:); %Filter for the train     

data=data(data(:,2)==k,:); %Filter for the axis 

po=data(:,4:7);  

t=cumsum([0;diff(data(:,3))]);  

sim=[t po]; 

[~,idx] = unique(sim(:,1)); 

sim = sim(idx,:); 

string=['Sit' num2str(j) num2str(k)]; 

v=genvarname(string); 

eval([v '=sim;']); 

end  

end 

  

clear  idx j  k  po sim string v t %Clear useless variables  

  

%Put in cell format the results  

for j=1:ji 

  for k=1:ki 

        sit=['Sit' num2str(j) num2str(k)]; 

    col(j)={eval(sit) }; 

  end  

end 

cell=col'; 

  

clear AS col data j k RE sit TI TR %Clear useless variables  
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%Learning Phase 

mdl = pairwiseSimilarityModel; 

fit(mdl,cell) 

 

  

%RUL Estimation 

for j=1:ji 

cas=['b' num2str(j+3) ':' 'q' num2str(j+3) ];  

 

for k=1:ki       

sit=eval(['Sit' num2str(j) num2str(k)]); 

d=sit(:,1);  

s=mean(d); 

 

y=round(s*(predictRUL(mdl,sit))); 

  

q(k)=[y]; 

  

xlswrite('RESULT.xlsx',q,'Risultati2',cas)      

end 

end 
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APPENDIX C: Typologies of bearing failure 

 

IMPROPER LUBRICATION 
 

 
 
 
INADEQUATE BEARING SELECTION     IMPROPER MOUNTING 

 
 
 
 
 
 
 
 

 
 
 
INDIRECT FAILURES 
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APPENDIX D: FEMTO Testing Bearing Characteristics 

 

De = Outer Diameter = 29.1 mm 

Di = Inner Diameter = 22.1 mm 

Dm = Mean Diameter = 25.6 mm 

d = Rolling Element Diameter = 3.5 mm 

Z = Number of Rolling Elements = 13   

 
 
 
APPENDIX E: FEMTO Sensor Characteristics 

Accelerometer Sensor 
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Temperature Sensor 
 
Nominal Resistance = 100 Ω 

Usage Range = -200 to +600 řC 

Diameter = 2.8 mm 

Length = 25 mm 

 

 

 


