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Preface 

 

For decades, researchers and practitioners have commonly relied on socio-demographic statistics and 

actively collected data to infer human mobility. For example, the gravity model predicts people movements 

based on coarse statistics about the population. However, this approach has the tendency to oversimplify 

human behaviour and to predict biased mobility patterns. Another option is to use Activity Based models 

to recreate individual mobility patterns. While this approach provides predictions that are more realistic, it 

relies on individual data, which are usually limited in sizes. 

 Recent advances in sensing technology and data collection offer an unprecedented opportunity to enhance 

travel demand models by leveraging more complete and abundant information. Regardless of their source, 

these data can be broadly classified into two main categories: small and passive data. The first class includes 

information at a user level that is actively collected through self-reporting processes and usually captures 

only a sample of the population. The second involves the collection of an immense amount of information 

(big-data), which is less accurate but more representative of the entire population.     

The goal of this paper is to bridge the fundamental gap between individual and aggregate travel demand 

models by exploiting the wide range of GIS (Geographic Information Systems) data freely available on the 

internet. Specifically, we propose to use a conventional gravity model to capture the home-work commute 

and then to exploit temporal and spatial constraints derived from spatial geography to calculate the most 

likely distribution of secondary activities. The choice for leisure activities is thus based on topological 

characteristics of the network and some initial guess of the individual human behaviour for the given 

population. 

In the proposed case study, we use activity patterns observed in Belgium to model human mobility in 

Luxembourg and, in addition, to test the sensitivity of the model, substantial changes have been applied to 

the inputs, simulating a workplace relocation, and obtaining consistent results. 
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1. Introduction 

1.1. Transport Modelling 

In the last decades the development of technology and globalization has caused a strong advancement in 

accessibility of urban realities, generating a notable rise in mobility demand. This, in addition to the growth 

of urban population, has led to always more congested cities, with severe economic and environmental 

repercussions on users and communities. In the same time period, the development of the infrastructural 

network did not manage to follow the same pace, and since it is unlikely it ever will, the efforts to a solution 

to these problems are always more directed to a more adequate operation management (Cascetta, 2009). In 

Transportation Planning, in order for the modeller to intervene in the best possible way, it is necessary not 

only to predict and estimate actual traffic states with significant accuracy, but also to see the effects that 

any modifications or interventions will have on them. For an optimal management and planning, modellers 

can rely on decisional support tools known as Traffic Assignment Models. 

TA models are very sensitive to their inputs, even a small variation may generate relevantly different 

results, due to the delicateness of the phenomena these models want to simulate. The essential inputs are 

the network and the mobility demand, and if any of them do not respect reality TA will probably lead to 

biased congestion patters. Since achieving the network is not a complex task, estimating the demand is the 

most influential factor for precise modelling. Typically, mobility demand is represented as a set of Origin-

Destination (OD) demand matrixes, where each cell will contain information about the number of trips 

from one traffic zone to another. One OD matrix can be related to a certain time period, a set of users, a 

mode of transport and even more, depending on the desired representation. To have the dynamic case, time 

is usually discretised in a determined number of intervals, to each of which a matrix is dedicated. 

Measuring directly the mobility demand is normally not a pursuable direction, since it implies enormous 

resources: this is why Demand Modelling has achieved such a momentum in Transportation Engineering. 

Classical modelling, also known as Four-Step Modelling, tries to estimate travel demand as an outcome of 

aggregate attributes of each zone. The characteristics of this approach will be discussed in section 2.1. 

However, this process is not able to account for the complexity of mobility patterns, which reflect traffic 

flow variability and congestion issues, which may appear in different points in time and space. Travel 

behaviour is influenced not only by commuting trips, on which most of the work focuses, but also in large 

measure by the presence of secondary activities, how the interact between them and between commuting. 

Trip-Based approaches often overestimate the commuting demand, which instead is only around 20% of 

the overall mobility demand. Activity-Based models try to overcome these limitations estimating demand 

as an outcome of the need of users to participate in different activities: in this case secondary activities play 

a fundamental role in the determination of travel demand. 
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1.2. BigData 

For many decades, transport research has been mainly based on actively collected data, such as travel 

survey, and census information. With the late exponential growth of technology, ubiquitous sensing of 

human mobility flows became possible through mobile phones, public transport smart card transactions or 

Global Positioning System (GPS)-enabled devices (Anda, Erath, & Fourie, 2017). These Big Data sources 

allow to observe mobility at an incredibly higher level of detail, and overcome the difficulties and the costs 

of gathering large scale samples for the development of travel demand models. 

However, since these new sources are not actively collected, the available information must be 

understood, contextualized, and accordingly inferred and processed in order to be valuable for demand 

modelling. To achieve this, according to (Chen C. M., 2016), the joint work of travel behavior researchers, 

who have long relied on household travel surveys, and big data researchers, has the potential to drive 

fundamental advances in human mobility studies. The paper stresses that cross-disciplinary research should 

concentrate on three areas: identification of behavioural factors, modelling of travel behaviour, and 

recognition of human mobility patterns. 

1.3. Objective 

Considering the difficulties of estimating travel demand in terms of individual behaviours, and the cost at 

which the generally required data is available, the following work emphasizes the need of directing 

transport research by chasing the opportunities that the development of technology has brought to. 

The scope of this thesis is to estimate travel demand accounting for activity and spatial behaviours by 

exploiting the wide range of possibilities that can be found on internet. The proposed methodology relies 

on opensource data, network topology and spatial relationships to develop a within a day dynamic gravity 

model that includes activity tours and captures behavioural aspects in terms of spatial dependancies. 

In addition, one of the goals that have inspired the following work has been to exploit the features of the 

two fundamental modelling approaches presented in chapter two. On one side, the aggregated macroscopic 

approach of gravity models, which is more suited for simulating flows and for demand modelling of large 

congested networks, and, on the other, the fine-grained properties of activity based models for modelling 

trip chains and activity-travel behaviour. While an intensive work has been done to achieve a more 

comprehensive understanding of human behaviour, we believe that the difference between aggregate and 

disaggregate models is still significant. Disaggregate approaches requires an immense volume of small data 

to provide realistic predictions, while aggregate approaches often provide a representation of the demand 

which is too coarse. The methodology presented in this paper tries to fill this gap by providing an aggregate 

representation of the demand that still takes into account individual mobility on a daily basis. 
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1.4. Summary 

The following thesis is structured in five chapters. The first one is the introduction, it ends with this 

paragraph and it aimed to present the context in which the work started in the first place. Chapter two is 

dedicated to a literature Review: two big families of demand modelling are introduced, discussing the 

theorical fundamentals that underline all the assumptions and considerations that hold this thesis. In Chapter 

three the methodology is finally presented, structured in three parts and with some theorical premises from 

which the model begins. In order to test the model on a real case and have a feedback on its accuracy, in 

chapter four it will be applied to estimate the total demand of Luxemburg city, and to test the sensitivity of 

the model, a new scenario with a workplace relocation will be proposed, analysing all the results. The 

effects of considering secondary activities will be compared to Chapter 5 concludes the thesis with a 

discussion on the results and an overview of the future developments. 
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2. Literature Review 
We aim in this section to provide an overview of the theory underlying the methodology presented in this 

thesis by describing some relevant aspects of the state of the art of demand modelling. 

Travel demand models provide information about the need for transportation of a given population around 

a chosen study area; they are used to predict travel characteristics and usage of transport services under 

alternate socio-economic scenarios, and for alternative transport service and land use configurations (Bhat 

& Koppelman, 1999). Forecasting traffic flows, they are an essential tool to support the decision-making 

process. 

This review is structured as follows. First, all the steps of conventional demand modelling will be 

discussed, and particular attention will be paid to Gravity Models and their state of the art; the second part 

of this section will be dedicated to Activity Based Approaches, with a special focus on synthetic populations 

and space-time behaviour. To conclude, a list of key points summarizes all the notions and concepts that 

have inspired this methodology. 

 

2.1. Conventional Models 

During the late 1950s, the pioneering research and experimentation developed the fundamentals of 

transport modelling (Bates J. , 2007), which was destined to remain the “classic” transport model. It quickly 

assumed the structure of the so-called Four Step Model, due to its sequential procedure that was introduced 

piecewise (McNally, 2007a). Even though in the past 60 years it has been significantly enhanced, the 

framework deriving from those years has remained more or less unaltered (Ortúzar & Willumsen, 2011). 

These models follow a trip-based approach, which relies on the simplified assumption that the choices 

concerning to each trip are made independently of the choices for other trips made by the same user within 

the same journey (Cascetta, 2009). 

The Four Step Model predicts travel demand by aggregating trips with given characteristics into average 

trip flows between zones, and decomposing global demand into a product of submodels, each of which 

relates to one or more choice dimensions (Cascetta, 2009). The sequence in which it is presented (Figure 

1) addresses four specific questions, one for each stage of the model: how many travel movements will be 

made, where will they go, by what mode will the travel be carried out, and what route will be taken? (Bates 

J. , 2007) 

The first trip generation model estimates the number of trips produced and attracted by each zone, and 

effectively serves to scale the problem. Next, trip distribution models allocate the generated trips between 

pairs of zones, reflecting travel impedance and yielding Origin-Destination matrixes. The third step is mode 

choice, where trip tables are divided according to the proportions of use of alternative modes. In the last 

submodel, assignment is performed for the identified demand, introducing route choice issues and 

congestion effects. The delays deriving from congestion may affect not only the route choice model, but 

have influence also on mode choice and trip distribution. Feedback loops are usually introduced for these 
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stages, so as to address the issues regarding the fixed sequential order in which stages are applied (McNally, 

2007a). 

 

Figure 1:  McNally: The Four Step Model 

Data for Four Step modelling mainly consists in household travel surveys, with travel-activity diaries and 

census data, along with a representation of transportation networks. These data, and observed traffic count 

and speed, provide also much of the data needed for the validation of the representativeness of the sample 

(McNally, 2007a). 

Despite the fortune that this classic modelling approach has encountered, it was clear from the beginning 

that the derived nature of the demand for transportation was understood and accepted, but not reflected by 

it (McNally, 2007b). It is generally recognized that travel decisions are not actually taken in this type of 

sequence, since attention is concentrated only a limited range of travellers’ responses (Ortúzar & 

Willumsen, 2011). The focus on individual trips ignores the spatial and temporal interrelations between the 

different trips of an individual activity pattern, misrepresenting overall behaviour as an outcome of a choice 

process, rather than as a differentiated set of choices delimitated by various constraints (McNally, 2007b). 

 

2.1.1 Gravity Models 

Due to the complexity of the interactions between origins and destinations, distribution models have been 

a main focus of transportation research, but still represent a point of weakness in the Four Step Model, and 

while this weakness has always been recognized, it has probably been underestimated (Bates & Dasgupta, 

1990). The objective of distribution models is to recombine and match the trip ends from the generation 

process into trips with origin and destination, expressing the probabilities of reaching a certain destination 

given an origin. 

Distribution models of a different kind have been developed to assist in forecasting future trip patterns 

when important changes in the network take place. They start from assumptions about group trip making 

behaviour and the way this is influenced by external factors such as total trip ends and distance travelled 

(Ortúzar & Willumsen, 2011). Gravity models are the most known distribution models; rather than 
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providing the destination shares, their modelling process can be seen as the prediction of a trip matrix 

consisting of elements Tod, where the number of trips from o to d are likely to be related to: (Bates J. , 2007) 

• The characteristics of the origin/production zone o, 

• The characteristics of the destination/attraction zone d, 

• The characteristics of the "separation", or "cost" of travel, between zones o and d. 

Gravity models originally derived their name according to these three features, since they suggested the 

main factors of the first formulations: 

𝑇𝑜𝑑 =  𝑎𝑜 ∙ 𝑏𝑑 ∙ 𝑓𝑜𝑑 

where fod can be characterised as the inverse of the square of the distance between o and d. Even though 

this formulation changed over the years, the initially obvious analogy with Newton’s law of universal 

gravitation established the name with which they are most known nowadays. 

Cascetta (2009) expresses its typical formulation as:  

𝑑𝑜𝑑[𝑠ℎ] =  𝛼 ∙ 𝑑𝑜[𝑠ℎ] ∙ 𝑑𝑑[𝑠ℎ] ∙ 𝑓(𝐶𝑜𝑑) 

where α is a constant, 𝑑𝑜[𝑠ℎ] and 𝑑𝑜[𝑠ℎ] represent, respectively, the total trip production from o and total 

trip attraction to d for purpose s in period h. 𝐶𝑜𝑑 represents the notion of generalized transportation cost and 

𝑓(𝐶𝑜𝑑) is an impedence function that decreases with 𝐶𝑜𝑑. Popular versions for this function are: (Ortúzar 

& Willumsen, 2011) 

𝑓(𝐶𝑜𝑑) = exp(−𝛽𝐶𝑜𝑑)  exponential function 

𝑓(𝐶𝑜𝑑) = 𝐶𝑜𝑑
−𝛽  power function 

𝑓(𝐶𝑜𝑑) = 𝐶𝑜𝑑
−𝛽exp(−𝛽𝐶𝑜𝑑)  combined function 

These models can be increasingly developed by a better fitting impedance function, or by further defining 

α. The substitution of α with two factors, which depend on the origin and destination zones, gives rise to 

the doubly constrained gravity model: 

𝑑𝑜𝑑[𝑠ℎ] =  𝐴𝑜 ∙ 𝐵𝑑 ∙ 𝑑𝑜[𝑠ℎ] ∙ 𝑑𝑑[𝑠ℎ] ∙ 𝑓(𝐶𝑜𝑑) 

where the following equations are mutually dependent and 𝐴𝑜 and 𝐵𝑑 can be solved by an iterative 

procedure. 

𝐴𝑜 = 1/ ∑ 𝐵𝑑′ ∙ 𝑑𝑑′[𝑠ℎ] ∙ 𝑓(𝐶𝑜𝑑′)                            𝐵𝑑 = 1/ ∑ 𝐴𝑜′ ∙ 𝑑𝑜′[𝑠ℎ] ∙ 𝑓(𝐶𝑜′𝑑)

𝑜′

 

𝑑′

 

The singly constrained gravity model comes from only one of the two equations being verified, such as 

𝐵𝑑 = 1 and  

𝑑𝑜𝑑[𝑠ℎ] =  
𝑑𝑜[𝑠ℎ] ∙ 𝑑𝑑[𝑠ℎ] ∙ 𝑓(𝐶𝑜𝑑)

∑ 𝑑𝑑′[𝑠ℎ] ∙ 𝑓(𝐶𝑜𝑑′)𝑑′
 

Gravity models have also been furtherly developed in many directions. One is surely the Entropy 

Maximising Approach (Wilson, 1974), that is generally acknowledged as one of the important contributions 

to improved modelling in transport (Ortúzar & Willumsen, 2011). A stochastic process which captures local 
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mobility decisions (Simini, González, Maritan, & Barabási, 2012) was implemented in order to overcome 

the need of traffic data for the validation of the model’s parameters. It analytically derives commuting and 

mobility fluxes requiring as input only information on the population and employment opportunities 

distribution. Contrarily, other studies have concentrated in particular on the use of Big Data. Di Donna et 

al. (2015) has exploited Call Detail Records to dynamically model trip generation and distribution among 

different zones within the day. The modelled variations of CDR in time and space have been used as a 

proxy for trip distribution. Kings et al. (2009) instead have worked on the anonymous communication 

patterns between 571 cities in Belgium. They arrived to show that inter-city communication intensity is 

characterized by a gravity model: the communication intensity between two cities is proportional to the 

product of their sizes divided by the square of their distance. 

 

2.2. Activity-Based Models 

The link between travel and activities was firstly established by Mitchell & Rapkin (1954), who also 

called for a comprehensive framework and inquiries into travel behaviour. The pioneering work of Chapin 

(1974) and Hägerstraand (1970) based this approach on the analysis of travelactivity patterns. Chapin 

focused on understanding the factors that lead individuals to participate in various activities, by analysing 

activity patterns at the level of daily routines, while Hägerstrand directed his work in the determination of 

constraints that limit individuals’ opportunities in time and space (Ettema, 1996). Their works will be better 

discussed in the following section for their importance in space-time relations. 

Activity-Based Models were introduced to overcome the limitations of the Four Step Model, since looking 

at trips independently misses some of the behavioural richness of linking activities in different locations 

and with different time windows and constraints (Ortúzar & Willumsen, 2011). The interest in these models 

is due to their capability of representing the complex trip making behaviour that is always more frequent in 

urban realities. Travel is considered as a derived demand, manifested by the necessity of participating in 

activities that take place at different times and in different locations. This permits a better representation of 

travel behaviour, since all trips are considered in the context of activity patterns, and decisions regard a 

higher number of choice dimensions in respect to trip-based models (Ettema, 1996). Travel demand is 

estimated in function of the need of users to participate in different activities, where the relevant unit of 

analysis are the sequences, or patterns, of activities, and not individual trips (McNally, 2007b). 

Even with the absence of a widely accepted general framework for Activity-Based Models (McNally, 

2007b), Ben-Akiva and Bowman (1998) distinguish two most common applications. Econometric activity-

based models focus on representing the choice process in a multidimensional way and are based on random 

utility theory: the choice probabilities result from a system of mathematical expressions and systematic 

utility functions. Alternatively, simulation models work by generating a discrete choice set, aiming to 

reduce it as much as possible through the implementation of sequential decisional rules, aiming to predict 

the results of the decision-making process. 

In general, activity-based models are implemented at the level of individual households, emphasising on 

the household as the decision-making unit (Ettema, 1996). Representing household dynamics and 
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characteristic is necessary to determine feasibility constraint and interpersonal linkages that influence 

activity patterns. Practical examples regard allocation of resources, such as car ownership, or appointments, 

such as having to eat at the same time. This requires a highly detailed information about geographic and 

socioeconomic characteristics of the households, and often determines the need of the generation of a 

synthetic population, to which the following section is dedicated. 

However, despite the strong emphasis of Activity-Based Models on household behaviour, real activity 

scheduling is still hard to achieve with microsimulation tour-based models using a random utility choice-

modelling framework (Ortúzar & Willumsen, 2011). Trying to include activity decisions spanning a day or 

more is difficult: the variety of available schedules is immense, and the factors underlying household 

decisions are still not well understood (Bowman & Ben-Akiva, 2001). Accordingly, state of the art under 

this aspect is still at experimental level, where the most promising research consists in Computation Process 

Models (Ortúzar & Willumsen, 2011). 

The following paragraphs are dedicated to two aspects of activity-based modelling which had a strong 

influence in the determination of the methodology presented in this thesis: population synthesis and space-

time behaviour. 

2.2.1 Synthetic Population 

The generation of a Synthetic Population is not exclusively used for activity-based modelling. It is needed 

for a wide range of microsimulation models who necessitate extensive disaggregated data, that is prohibitive 

to collect directly due to the significant cost of travel surveys, and the restrictive privacy policies in certain 

countries. Population synthesis consists in generating an artificial population by expanding disaggregate 

sample data to match known aggregate distributions of household and person characteristics, typically 

extracted from existing census sources (Ortúzar & Willumsen, 2011). 

A synthetic population can be generated either through Synthetic Reconstruction (SR), or with 

Combinatorial Optimization (CO) (Barthelemy & Toint, 2013). In the SR method two steps are involved: 

first the attributes’ joint distribution is estimated preserving the known marginal distribution; then agents 

from the sample are assigned to the population generally using an Iterative Proportional Fitting Procedure 

(IPFP) according to the previously computed distributions. With IPFP, a Contingency Table (CT) is 

estimated using an iterative procedure to minimize the deviation between estimated and observed marginal 

distributions. The CO method, which is not as common, divides the area of interest in zones of known 

marginal distributions, and the sample is fitted for each zone according to the given set of margins. Selecting 

iteratively a combination of househoulds from the sample, replacing the chosen set only if an improvement 

in the goodness of fit is observed (Saadi, Mustafa, Teller, Farooq, & Cools, 2016). During the last years, a 

third family of population synthesis has emerged with outstanding results: Monte Carlo Markov Chain 

(MCMC) simulations (Sceffer, Cantelmo, & Viti, 2017). 

However, all approaches rely on very strong assumptions on the requirements for data, and research is 

trying to obviate this limitation. Barthelemy and Toint (2013) managed to overcome the need of a Sample 

developing a Synthetic Reconstruction Method, while Saadi et al (2016) presented an extended Hidden 

Markov model, which is able to reproduce the structural configuration of a given population from an 

unlimited number of micro-samples and a marginal distribution. 
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2.2.2 Space - Time Behaviour 

Since the 1960s, research in geography and urban planning has studied how human activity patterns are 

associated to transportation, focusing on the central role of the individual, and developing what will from 

there be known as behavioural research.   

One of the first researchers to recognize the importance of time and space in urban planning was Chapin 

(1974). His theory firmly stresses the importance of activity patterns, recognising the fundamental role that 

space and time play in their definition. One key factor is opportunity, which reflects the role of time and 

space in the definition of activity choice probabilities, underlining how the location and availability in time 

of determined facilities influence the decision-making. He also introduces the concept of appropriateness 

of timing and circumstances, which may depend on many factors, going from past involvements in that 

certain activity, to commitments made to participate in that or other activities, concluding with opening 

hours of the visited places. It also takes into account that the activity must be performed for its full duration, 

accordingly to the existence of other activities. 

However, Chapin’s theory does not process the spatial and temporal dimensions in the same framework. 

This issue was therefore addressed in the space-time geography of the Lund school, led by Hägerstraand 

(1970). Space-time geography systematically explores the opportunity to unfold activity patterns in a 

specific spatio-temporal environment. It is assumed that time and space are scarce goods and that, 

consequently, daily activity patterns are largely determined by space-time constraints (Ettema, 1996). It is 

possible to visualize the interdependency between time and space in the daily schedule of a user in a three-

dimensional space (Figure 2). 

 

Figure 2:  Example of a Space-Time Path (source: Ettema, 1996) 
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However, the space time path of each user is subject to three types of limitations: 

• Capability constraints refer to physical limitations, such as the need to sleep at home or the 

maximum speed a vehicle can travel to. 

• Coupling constraints define where, when and for how long the individual has to join other 

individuals, tools and materials in order to produce, consume and transact (Hägerstrand, 1970) 

• Authority constraints, finally, define the periods at which certain facilities or activities will be 

available. 

The effects of these constraints result in the definition of the time-space prism (Figure 3).  

 

Figure 3: Space time prism (Source: (Lenntorp, 1976)) 

We will now discuss how the concept of space time prism, and more in general space time geography, 

has been widely used and expanded in the last years for transportation issues. 

Since also most activity-based models take residence and work location as given, also many studies that 

exploited a time-geography approach benefited from the application of one of the main notions from trip 

chaining, where each journey is associated with a primary activity (or purpose), and that this activity is 

conducted in a particular place, known as the primary destination (Cascetta, 2009). 

 Dijst and Vidakovic (2000) have used these concepts to introduce the travel time ratio, that expresses the 

relation between travel time and idle time, focusing on the time people are willing to spend on reaching 

activity places, and arrive to show that values of this ratio are in accordance for similar types of activity 
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places. Time geography has been applied conditionally to individual’s basic places, such as home, work or 

school. The time available for visits to other activity places is bounded by the departure from a base and 

arrival on the same or another base. The space time prism led to the definition of the potential action space: 

the area containing all activity places which are reachable, subject to a set of temporal and spatial conditions 

(Dijst & Vidakovic, 2000). 

Schönfelder and Axhausen (2003) have also pursued in the study of activity space, defining three 

approaches of increasing complexity with the aim of computing a more precise measure to the size of human 

activity spaces. The first method concerned the definition of confidence ellipse, initially relying on the 

recognition of the home location as the peg of daily mobility, and then adjusting to the aforementioned 

geometrical figure due to the revelation of two focal points for most travellers. The paper then perfections 

the achieved results by proposing kernel densities estimates, and minimum spanning trees. 

Also Sprumont and Viti (2017) have focused on the consideration of homes and workplaces as anchor 

locations of daily mobility patterns. They have seen how the entire daily activity travel chain has been 

affected by a workplace relocation, using descriptive statistics as well as Standard Deviational Ellipse 

(SDE) theory. 

 

2.3. Key Points of Review 

The following key points have been the landmarks of this work, and the integration of these three issues 

is the gap that we want to fill with this research. 

• Simplicity and effectiveness of trip-based macroscopic approach of Gravity Models for 

evaluating large congested networks 

 

• Importance of Mobility Patterns for travel demand estimation, that can outcome from daily 

scheduling, trip chaining or activity participation 

 

• Users resent of constraints in time and space: home and work location represent two pegs of daily 

mobility 
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3. Methodology 
 

This section will present the formulation of the model, whose development has been driven by the goal 

of including activity tours and activity locations within a dynamic gravity model. The classical gravity 

model will be extended to include this information, explaining how the use of internet data, socio-

demographic data and a travel survey bring to the definition of dynamic OD matrices that take account of 

activity patterns.  

The whole process will be exhaustively explained in the paragraphs of this section, but it can be 

summarized in the following way. In order to generate and distribute purpose-dependent flows in a dynamic 

way, one of the activity patterns extracted from e.g. a travel diary will be assigned to the population of the 

study area generated from the sociodemographic information. The location where each user will perform 

its activities will then be assigned through the exploitation of spatial relationships deriving from the 

coordinates of all the possible places where activities can be performed. However, one single trace is not 

going to reproduce any real user, instead, constraints work at an aggregate level to capture phenomena like 

activity relocation and the correlation between demand flows belonging to different traffic zones. The logic 

behind this approach is that the temporal distribution of activity-travel patterns does not significantly 

depend on the study area, while the spatial distribution depends on the geographical distribution of the 

different activity locations. 

This section starts with a premise, which consists in a brief description of how the theories presented in 

the literature review have been adapted to our means. It precedes the actual methodology, that is broken up 

in three parts. Starting from the end, the real aim and heart of the methodology are immediately explained. 

The following two sections introduce the two initial parallel processes, respectively reflecting the spatial 

and temporal aspects of the model. Section 3.5 concludes with an overview on the whole process. 

 

3.1. Premise 

This section addresses the issue of how two different research fields, gravity models and space-time 

geography, have been exploited in order to achieve a better representation of travel behaviour. In brief, we 

aim to extend the classical gravity theory, where flows are spatially distributed following the gravity force 

principles, with time geography principles, where the space-time distribution of activity patterns is 

modelled, but at an individual level. 

 

3.1.1 Gravity Model extension 

As stated in chapter 2.1.1.1., OD matrixes deriving from gravity models are a direct function of generation 

and attraction parameters, of the total production of the origin, of the total attraction of the destination, and 
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of the impedance. This means that the distance between two zones will directly influence the number of 

trips from a zone to another. 

The key difference in the proposed methodology, stands essentially in the level at which these factors are 

introduced. Generation and attraction are almost exclusively used to define how many of the people living 

in one zone go to work in each zone. The impedance function steps in subsequently: it will not have a 

central role in defining the exchange between zones, but, on the contrary, will be the main parameter in the 

choice of secondary activities, for users going from home to work with predetermined activity patterns. 

The concept of attractiveness depending principally on the masses and on the distance between them is 

still present, but it has been reassembled in successive steps, as showed in Figure 4, in order to include 

activity patterns and replicate behaviours that conventional gravity models are not able to capture. 

 

 

Figure 4: splitting of Gravity Model 

 

3.1.2 Ellipse Theory 

From the enormous amount of research compiled on space time geography, of which a brief explanation 

is given in the literature, only a very simple assumption has been taken into consideration for the 

development of the model. 

According to Hägerstraand’s theory of the space-time constraints affecting daily activity patterns, 

individuals need to trade off between travel time and activity duration (Timmermans, Arentze, & Joh, 

2002). It is supposed that people going to work have limited time budget to perform secondary activities, 

and are not keen on wasting too much time for travelling.  Dijst and Vidakovic (2000) note that people do 

have choices: for example, they can choose between a long stay in an activity place in the neighbourhood, 

to perform one or more activities, or a short stay in an activity place at a large distance from home. This 

methodology wants to represent this choice dimension assuming that workers will not likely take part in 

secondary activities that deviate them too much from their home-work journey. 

This results in the definition of an ellipse of influence for each home-work zone couple, with the two 

centroids of the zones representing its focal points. Each user of the network, living in zone h and working 

in zone w, will then consider performing his/her tasks choosing between the locations inside an ellipse, 

whose two focal points are the centroids of zone h and w. The limitation will obviously be posed only upon 

the users that go to work, and it will impede them from considering to perform secondary activities outside 

of the ellipse they belong to.  

Generation and Attraction

• create population of 
study area

Impedence function

• choose location of 
secondary activities
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By aggregating individuals’ ellipses at a zone level, the total number of ellipses will be equal to the number 

of OD couples. For n zones, there will be n2 ellipses, including the OD couples where origin and destination 

coincide, for which the ellipses will collapse in a circle. The first consideration to do before the creation of 

these ellipses will regard their shape how much they differ in size. Since for each one of them the distance 

between the focal points is already set, the only parameter on which their shape depends on is the 

eccentricity (Figure 5). 

 

Figure 5: Difference in shape for values of eccentricity 

 

Imposing the same eccentricity value to all of the OD couples, produces ellipses of the same precise shape, 

but with surface values completely different. This has been supposed to respect reality poorly, since we 

expect users to perceive their influence areas of more or less the same size. In order to account for this 

behaviour, a different value of eccentricity should be taken for each ellipse, and since the only available 

parameter denoting them is the distance between centroids, it is logical to assume the eccentricity to be a 

function of this distance. For example, two centroids very close to each other will produce an ellipse with 

a very low eccentricity, going towards a circular shape; while if the two centroids are very far apart, the 

eccentricity will be very close to 1, resulting in a very flat ellipse. These properties derive not only from 

logical assumptions on users’ behaviours, but it represents dynamics that appear often in literature. For 

example, in (Sprumont & Viti, 2017), the spatial distribution of activities resulted in the generation of the 

ellipses shown in Figure 6: the further the focal points, the thinner the ellipse. 

This means that users who spend significant amount of time commuting, will try to find a secondary 

activity very close to their home-work path. Contrariwise, people who live very close to their working 

location have more time to dedicate to travel, also because the shorter the path, the lower the chances of 

finding a location that gives the opportunity to perform a specific activity.  
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Figure 6: Ellipses for representatives of different clusters (source: Sprumont and Viti, 2017) 

Realization: Sprumont Francois

MobiLab, University of Luxembourg

a) Representative of cluster 1 b) Representative of cluster 2

c) Representative of cluster 3
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Practically, it’s through the manipulation of this geometrical parameter that we can represents this very 

intuitive behaviour. The eccentricity can be seen as an indicator of how much each user is prone to extend 

his/her home-work trip in order to include a secondary activity. Mathematically, it is equal to the ratio of 

the distance between centroids, over the sum of the maximum distance a user is willing to cover to go from 

one centroid to the other passing through a certain activity location. 

 

 
𝑒 =  

𝑑𝑖𝑠𝑡 (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 −  𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

max 𝑑𝑖𝑠𝑡( 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)
  

 

For example, an eccentricity of ½ will determine that users will not consider performing secondary 

activities in places for which the time to go from home to that location to work is more than the double of 

the home work commute time. 

Regarding the formulation of the eccentricity, the only variable it should depend on is the distance 

between focal points and, more precisely, it must increase as this distance increases. There are many 

functions that are suitable for this purpose: exponential, parabolic or even linear. However, the equation 

used in this methodology, derives from assuming a different point of view: the eccentricity is not directly 

explicated. It is in fact easier to express directly the maximum distance that can be travelled as a linear 

function of the distance between centroids. Graph 1 shows an example of this relationship and the 

consequent trend of the eccentricity. 

 

 

Graph 1: Characteristics of Ellipses depending of distance between centroids 
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3.2. Core of the model 

The scope of the research done in this thesis can be intuitively shown through the description of the final 

steps of the model. Figure 7 shows how the dynamic OD matrixes are finally estimated: first all the trips 

that have been generated are stored into a matrix, that will then be processed by aggregating all these trips 

given their origin, their destination, and the time of day at which they have been performed. 

 

Figure 7: Determination of Dynamic OD matrixes 

These final processes start from two important set of variables, the explanation of how they are determined 

will be addressed in the next two sections. The first one accounts for the temporal aspect and for the 

magnitude of the scenario: the list of the daily activity pattern for all of the required population. An activity 

pattern is expressed as the sequence of the activities that are done in a day, Figure 8 reports some examples. 

In our case, the daily activity pattern of each user must also contain information about the time at which 

each activity is performed. 

 

Figure 8: Activity List and Patterns (source: Cascetta, 2009) 
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The second set of variables provides the model with the spatial information needed to transform the 

activity patterns in a travelled path: a series of successive trips where the destination of one coincides with 

the origin of the following. These variables are under the form of probabilities, which express the likelihood 

of choosing a determined location for carrying out an activity of a certain kind. These probabilities depend 

mainly upon the distance between the respective location and the zone of home and work. The further the 

location from the home-work commute of a user, the less likely the user will choose this location. 

According to these probabilities, a location is assigned to each activity from the activity pattern of each 

user. The results can directly be stored as individual trips, creating the list of all the trips performed by all 

users during one day. With each trip characterized by zone and time of departure, zone of arrival, and 

purpose of the trip, it is possible to proceed to the aggregation process, creating a set of dynamic OD 

matrixes for each activity cluster. 

 

3.3. Probabilities (spatial) 

This section describes the process that leads to the definition of probabilities, starting from the basic 

inputs, thoroughly explaining the involved procedures, and clarifying the theoretical constraints that have 

been considered. Each relation featured in Figure 9 will be extensively described in the following 

paragraphs. 

 

Figure 9: Determination of Spatial probabilities 
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3.3.1 Inputs 

As previously stated, the model is based on the exploitation of internet data. This part of the methodology 

relies on two fundamental inputs: 

• The list of POI inside the study area 

Google gives us the opportunity to download, for any POI, information about its position (address and 

coordinates), phone number, users’ rating, the searchterms (that represent the kind of business, the category 

it belongs to) and the flows during the hours the activity is open. In our model, we have mainly benefited 

from the use of coordinates and searchterms, but the hourly flows remain available for a wide range of 

possibilities, mostly for validation issues. 

 

Figure 10: Example of Point Of Interest 

• Network 

The goal of this part of the methodology is to use geographical characteristics to estimate the probability 

of choosing a certain zone instead of another for performing a certain activity. In order to exploit the spatial 

relationships deriving from the knowledge of the coordinates of the POIs, appropriate topological data is 

necessary. This topological information has to be detailed enough to capture the geographical differences 

between POIs: it cannot be too much approximate since it will have to include also relatively small roads. 
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However, since our objective is not to enter in microsimulation fields, the network does not need an 

incredibly high level of accuracy. 

Hence, an open source such as OpenStreetMaps, which has generated data for almost all the roads and 

networks of the world, is perfect for our scope. It uses a topological structure, where one layer for nodes, 

one for edges and one for the cartographic map are the only needed for representation issues. The list of 

nodes is very important for the first process of the model, while information about relations between nodes 

and edges, such as restrictions on roads or permitted turns, will be also used further on in this methodology, 

but without the need of downloading them. The QGIS software facilitates the visual representation of the 

desired network, and permits to manage the desired elements across layers, or even to upload external 

features. 

 

3.3.2 Mapping POIs on Network 

The first step consists in the merging of the two datasets. Since POIs are represented through a pair of 

coordinates, it may happen that some of these points do not belong to the network from OSM. To overcome 

this problem, each POI is matched to the closest node of the network using a Python code. From this 

moment on, each POI’s location will be considered the one of the node to which it has been matched. The 

error given by this approximation will not interfere with the effectiveness of this model due to its small 

order of magnitude since intersections are very dense in urban networks. Additionally, more than one POI 

can be matched to the same node; this neither will affect our model. 

 

3.3.3 Skim Matrix 

The network will be now including all POIs, making it possible to derive spatial relations between them 

and the zones. This has been done with the use of a tool called OSMnx created by Geoff Boeing and 

available on his website and on GitHub. In (Boeing, 2017) OSMnx is presented as “a free, open-source 

Python package that downloads political/administrative boundary geometries, building footprints, and 

street networks from OpenStreetMap. It enables researchers to easily construct, project, visualize, and 

analyze non-planar complex street networks consistently by constructing a city's or neighborhood's 

walking, driving, or biking network with a single line of Python code.” 

This library was used to extract and assemble an algorithm that, given a starting point, graphs the network 

around it and plots the nodes belonging to it in various colours. Each colour represents a precise distance 

from the starting point, and each set of equidistant nodes having the same colour forms an isochrone (Figure 

11).  

Different networks are available: one for cars, one for pedestrians, and one for bicycles. The choice of 

which one to use must relate to the dimensions of the study area and to the behaviours the modeller wants 

to capture. An important parameter to choose is the average speed for the users: it will strongly affect the 

number of isochrones, since each isochrone is matched to a certain time interval. The resulting number of 
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isochrones must be sufficiently large to permit an accurate representation and to cover all the nodes of the 

study area. 

 

Figure 11: Isochrones 

By extracting the time referred to each colour, the algorithm is finally able to extract the array of distances 

from any node to all the other nodes of the network. This resulting algorithm has then been run for the 

centroids of all zones, finding the distances between each centroid and all nodes of the network. Since all 

centroids, all POIs and all schools are linked to a node, it was possible to create the needed skim matrixes. 

The final output consists of two matrixes: one referred to the distance between the centroids of each zone, 

and the other one to the distances between each POI and each centroid. These two matrixes will be the 

major inputs for our following process: the distances from POI will be the primary attribute in determining 

probabilities, while the comparison between these and distances between centroids will be used for the 

definition of the ellipses. 
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3.3.4 Clustering POI categories 

In order to use an appropriate location for a certain activity, that means going to a restaurant for “eat” or 

going to a store for “shop”, it is fundamental to cluster each POI according to what kind of activities people 

perform there. Each POI comes with various searchterms that define what category it belongs to. The 

complete list of types and information about the logical order in which these are divided can be found here: 

https://developers.google.com/places/supported_types. However, the searchterms, after the first one, do not 

bring further information and, consequently, only the first column can be used for the clustering. 

This step is very important for a correct geographic distribution of activities, since an error in the 

searchterm clustering will bring to a biased database. Even though an automatic clustering can be done, the 

results to which it will bring might not be reliable enough. The induced error could still be reduced through 

the utilization of through machine learning techniques, but it is not unlikely to find cases where this might 

still not be enough. Since the insertion of details of Google Places are left to the everyday users of this 

platform, and there is not a certified or reliable source, for some POI information is not precise and it should 

be manually added or modified. 

 

3.3.5 Probabilities 

With the final skim matrixes, a correct clustering, and the theory related to the choices of secondary 

activities presented in section 3.1.2., it is possible to compute the probabilities of choosing a certain POI 

for a certain type of activity for each OD couple. All users living in zone h and working in zone w, must 

have a set of possibilities for each activity type, that accounts for the propensity of choosing one out of the 

POIs belonging to their predetermined ellipse. 

For each OD couple and for each activity, probabilities relative to a POI have been assigned using a 

Multinomial Logit Model, where the only attribute defining each POI is the sum of the travel time to reach 

that location from home and from work. The inverse of these distances will represent the utility 𝑉𝑗 of each 

POI[j], while the whole model is governed by the only parameter θ. 

𝑉𝑗 =  1
𝑑𝑖𝑠𝑡⁄                                     𝑝[𝑗] =  

exp (𝑉𝑗/θ)

∑ exp (𝑉𝑖/θ)𝑖
 

The influence of θ is very strong: a high value raises strong stochasticity; lower values make the choices 

become deterministic. This trend is explained in Figure 12 (Cascetta, 2009), where three curves report the 

values of the probability of choosing alternative A or alternative B, in function of their difference in utility, 

for three different θ values.  
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Figure 12: Diagram of choice probability p[A] of a binomial logit model (source: Cascetta, 2009) 

The choice of this parameter is the most powerful tool for the modeller to define the expected behaviour 

of the users, but bearing in mind that it also strongly depends on the size chosen for the ellipses and on the 

characteristics of the study area. If a network is highly dispersive and many users are actually obliged to 

endure long journeys to take part in different activities, the model should have a greater θ than if the network 

was small and dense. 

People who do not go to work, or people who work and live in the same zone, represent a particular case. 

For them, the ellipse of influence collapses in a circle, since the distance between focal points will result to 

be 0. This circular area can still result from the parametrization of the ellipse in function of the distance of 

centroids, if not, it is possible to choose a different radius that must be coherent with the size of the other 

ellipses. Another possibility is to rely on the logit model to reflect this behaviour: ignoring any geographical 

limitation, since locations at a big distance from home would have very small probabilities, not many users 

would be directed so far away from the starting point. 

The final arrays of probabilities come out structured in two sets. One set refers to people who do not work: 

it contains one matrix for each secondary activity, each matrix containing an array of probabilities of POIs 

for each zone. The second set considers the ellipses, with again one matrix for each activity, but this time 

containing an array of probabilities for each OD couple. For couples where origin and destination coincide, 

the array will be taken from the array of the respective zone of the first set. 

 

3.4. Total Daily Patterns (magnitude and 

temporal) 

This branch on the methodology addresses two key aspects: it accounts for the magnitude of the users and 

for the temporal dimension. Again, two are the main steps that bring to the definition of the daily patterns 

of all the users of the network (Figure 13).  
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Figure 13: Creation of daily patterns for total population 

3.4.1 Inputs 

• Daily Patterns 

This is the only set of data which is not available in opensource format, and is probably the most limiting 

weakness of this methodology. The easiest way of achieving these patterns is using travel diaries, in order 

to have a reasonable set of activity patterns and attempting to generate a heterogeneous behaviour on the 

network. Nowadays, other methods of achieving daily patterns is subject of a huge amount of research. 

Especially with the surge of Big Data in transportation, many researchers have worked on the possible ways 

to infer activity patterns from users’ trajectories (González, Hidalgo, & Barabasi, 2008), that could derive 

from GPS (Xie, Deng, & Zhou, 2009) (Huang, Li, & Yue, 2010) or mobile phone (Phithakkitnukoon, 

Horanont, Di Lorenzo, Shibasaki, & Ratti, 2010) (Alexander, Jiang, Murga, & González, 2015) data. In 

addition, many papers (Spinsanti, Celli, & Renso, 2010) (Chen, Bian, & Ma, 2015) also exploit the same 

POI information used in this thesis, therefore research to integrate these models inside this methodology is 

strongly encouraged. 

• Socio-demographic information 

The first step of this process relies only on this data. For each zone, the number of inhabitants and the 

number of workers is required. This should be done after or together with the zoning, since the data on 

official websites is structured according to administrative boundaries. 
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3.4.2 Population Synthesis 

Along with the choice of the study area, a stage that is fundamental for the proposed methodology is the 

creation of a desired population to assign the daily patterns to. A great deal of research has been spent on 

the topic of synthetic population generation, and a brief explanation of the state of the art has been presented 

in section 2.2.2.. However, this methodology does not require an excessively sophisticated population: there 

is no need to represent the multiple facets of society distribution by extracting highly detailed 

socioeconomic and demographic attributes.  

The information that the final population must reflect is how many people live in each zone, how many 

of them go to work and where they go to work. Addressing the three issues in sequence, the number of 

people living in each zone is usually always available as inhabitants’ information on official websites. 

Deciding how much of the population actually has a job can be done or according to employment 

information again from the census, or to the ratio of workers that results from travel survey. Generally, 

since the total number of inhabitants rarely matches the total number of employees, the number of workers 

will just function as an attraction parameter, and workers will be distributed proportionally to them. 

 

3.4.3 Stochastic assignments 

With an appropriate number of daily patterns, we then proceed to randomly assign one of these daily 

patterns to all of our population. 

The sample of daily patterns is split into two sets, the first one containing patterns that have at least one 

work activity during the day, while the other one contains the rest and will have no work activity in it. 

Randomly, one pattern belonging to the first group will be assigned to each worker, while the rest of the 

population will have a pattern assigned from the second set. 

These procedures will result in a matrix with the daily activity pattern of all the users of the population. 
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3.5. The Model at a glance 

Figure 14: The whole model 
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Figure 14 captures the whole development of this methodology: starting from the four main inputs, 

arriving to the final OD matrices. Inputs and Outputs are the ones represented in the blue squared oval. 

In green, the processes are presented, and to each of these green boxes, a Matlab or Python code is 

correlated, and all can be found in appendix. The mapping of the POIs on the network (A.1.) and the creation 

of isochrones (A.2.) are both achieved on python. Matlab was used firstly for the simple activity clustering 

(B.1.) and then, along with the skim matrix deriving from the isochrones, was used to include the ellipse 

theory and perform the logit model, determining the probabilities (B.2.). Parallely, working on the 

population, other Matlab codes have been written to extract the sample daily patterns from the BMW 

survey, and then stochastically assigning one of them to each user (B.3.). Finally, also the last two 

procedures, the assignment of locations to each trip (B.4.) and the aggregation process (B.5.), are run on 

Matlab. 
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4. Case Study 
The methodology presented in the previous chapter will here be applied to the population of Luxembourg 

City. First, results are analysed and compared with official statistical data. Then, a case study is presented 

to show that the model properly captures complex macro-dynamics that take place in the city.  

Firstly, a brief description of the case study area is presented, underlining the most important details that 

must be taken into consideration when applying the methodology. Section 4.2. will then present the results 

of this application, and a primary validation can be found. In the last section, the sensitivity of the 

methodology was tested by changing some input data, studying the comparison with the initial scenario. 

4.1. Luxembourg City 

4.1.1 Overview of city and state 

The city of Luxembourg is the capital of the Grand Duchy of Luxembourg, and with 115000 inhabitants 

is the largest city of the nation. Some characteristics of the state, such as its small size, a high level of 

prosperity, and its centrality and importance in Europe, have determined the city to be a very peculiar 

reality. Luxembourg has become an extremely multi-ethnic city, attracting not only a high number of 

foreigners from the bordering countries of France, Germany and Belgium, but also many people from all 

parts of Europe and all across the world. One of the peculiarities of this region stands indeed in its share of 

non-Luxembourgers: 48% of the total population of the Grand Duchy is foreign, reaching a peak of 70% in 

the city. Graph 3 shows how much the share between local and foreigners has risen in the last 30 years. 

 

Graph 2: Population in Luxembourg city 
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Such a higher percentage of foreigners is principally explained by the fact that most of the job offers that 

attract people from different countries come from businesses and industries located inside or close to the 

city. With a strong lead of the financial sector, that alone amounts to 36% of Luxembourg’s GDP, services 

drive Luxembourg’s economy, demanding many more work places that the ones its workforce can cover.  

The state in fact accounts for more than 430 000 available jobs, that far exceed the number of employees 

the nation can produce. This is due to the presence of a significant number of cross border workers, who 

enter every workday in the city from the confining France, Germany and Belgium (respectively around 

50%, 25% and 25%). The number of cross border workers has arrived in 2017 to 190 000, representing the 

43% of the total, and two main causes explain the magnitude of this phenomenon. “Transfrontaliers” are 

attracted to Luxembourg by the higher wages and greater working opportunities, but in the same time find 

their convenience in this long commute due to the high cost of housing in the Grand Duchy, that increases 

drastically in the city. Figures show the evolution in time since 2000 of national and cross border workers, 

and the distribution of transfrontaliers between confining countries. 

 

Graph 3: Distribution of workers in Luxembourg 

To conclude, the city of Luxembourg, despite being a small city, is a very attractive site and the area from 

which it attracts employees goes much beyond its borders, and furtherly beyond the ones of the country. 

This must be one important aspect to take into consideration during the following validation and analysis 

of results. 

4.1.2 Network and study area 

The area that has been considered embraces the whole city of Luxembourg, in addition to some peripheral 

neighbourhoods. These have been included due to the absence of a clear discontinuity between them and 
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the city centre. Furthermore, one of these areas contains an important shopping centre, which is expected 

to be an important factor in the distribution of activities. 

Firstly, the network of the interested study area was downloaded from OpenStreetMap, exporting the list 

of the all the nodes, each one expressed by an ID and its coordinates. 

Zoning has been performed considering the structure in which socio-demographic information was 

available: it has been downloaded from two sources. Data about the city population comes from a brochure 

from the official site of the city (https://www.vdl.lu), while the rest from a new open-data portal 

(https://data.public.lu) developed from the Grand Duchy. The first source lists the total number of 

inhabitants for each one of the 24 neighbourhoods, while the portal gives information about each canton, 

but only the communes contiguous to the city have been considered. In order to have regions of reasonable 

sizes, some of the city neighbourhoods have been merged, resulting in the definition of 22 traffic zones, as 

it can be seen in Figure 15. The creation of the zones was performed on Visum software, but OSM was 

used for the choice of the centroid of each zone, by identifying the node closest to a hypothetical 

geographical barycentre of the respective zone.  

 

Figure 15: Zoning of study area 

Regarding socio-demographic information, for each zone the number of residents was calculated merging 

and splitting the population of the neighbourhoods according to the zoning process. An attraction factor 

was determined from a presentation from LuxTram (http://www.luxtram.lu), that is proportional to the 

amount of employees who worked in each zone. Finally, the 18 biggest and most important schools of the 

city have been manually chosen and mapped. 

https://www.vdl.lu/
https://data.public.lu/
http://www.luxtram.lu/


Case Study 

_____________________________________________________________________________________ 

___________________________________________________________________________________

31 

 

For the same study area, more than 700 POIs have been downloaded, covering around 60 different 

categories. After a manual filtering, in order to delete doubles or errors, the total list of locations where 

users could perform secondary activities consisted in 652 POIs, distributed as in Figure 16. 

 

 

Figure 16: POIs inside the study area 

4.1.3 Travel patterns 

As for the daily patterns the user of our network had to carry out, we relied on the BMW dataset (Castaigne 

et al., 2009) which was collected by the University of Namur in 2008. 717 users have been traced for an 

entire week (not same week for everyone), registering times of departure and arrival, purpose of trips, mode 

of transport, day of the week and of the year. The most precious data for our model consisted in the purpose, 

the time of departure and the sequence of each trip during a user’s day. The survey revealed more than 3500 

daily patterns, containing trips of more than 700 users for 7 days. After filtering only the workdays Monday 

to Friday, we had a list of 2624 patterns, of which 996 did not have the activity work among their trips.  We 

also kept note of the time of departure of each trip. 

The decision of using the travel survey of a different city for our study area, was made assuming small or 

no difference in daily scheduling between the two populations, considering the similar culture and socio-

demographic characteristics of Ghent and Luxembourg. A second travel survey, containing two weeks of 

trips from users working at the university of Luxembourg, in the Kirchberg district, was used to confirm 

this hypothesis. A comparison between the two surveys showed that activity patterns performed by citizens 

of Luxembourg City, can be considered analogous to the ones of Ghent. 
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4.2. Results 

With the network and the POIs, probabilities have been assigned as described in section 3.3.; in parallel, 

travel patterns have been assigned to the population created from the socio-demographic data, following 

the method of section 3.4.. The results coming from this first application are analysed in this section, that 

represents the first step toward the proof of the effectiveness of this methodology. 

Firstly, the total generation of trips around the city will be put in comparison with data from a document 

of the ministry of Infrastructures of Luxembourg, where graphs also represent the share of different 

activities. Following, to see if the distribution of trips across the zones has worked properly, generation and 

attraction of relevant zones will be analysed for each activity. 

4.2.1 Total Generation of Trips 

The following graphs show the hourly distribution of the total number of trips according to the achieved 

results (graphs on the left), and to the results of the Enquête Luxmobil 2017 (graphs on the right). 

The strong resemblance of results, that both for the magnitude and for the profile matches the official data 

from the ministry, validates two strong assumptions: 

1. It is appropriate to use the information of the BMW survey, that has been collected on users from 

Belgium, to represent the activity-specific demand in Luxembourg (data transferability). 

2. Since the demand has been scaled using population from census data, it is reasonable to assume 

that the methodology will bring reliable results for each traffic zone, for each of which the 

population has been created following the same approach. 

The graphs released from the ministry are divided per main activity purposes and do not follow the same 

activity clustering that has been done in BMW travel survey. The enquête had trips divided in “work”, 

“education”, “leisure” and “other”, while the results of the applied methodology had also “home”, “eat” 

and “shopping". To make a coherent comparison, the trips according to these last three clusters could not 

have been ignored, so in the following graphs on the left, eat activities were included in leisure, shopping 

was included in other, while for home activities a more complex decision had to be made. In the Enquête, 

all the trips directed to home have been included in the graphs relative to the activity in which the user was 

occupied before. For example, an activity pattern such as home-work-leisure-home, would generate in 

order, a trip for work, one for leisure, and another one for leisure, even though the destination of the last 

activity would have been home. For this, all the trips with home purpose have been distributed among the 

four activities of the Enquête, proportionally to how often a trip for that certain activity appears among the 

results of the application of our model. 

In addition, the data of the ministry included the trips of all the cross borders, but the model is able to 

predict trips only for the inserted population. Thus, for this validation, we decided to assign travel patterns 

also to 160 000 other workers, assigning randomly among the patterns that included at least one work 

activity. It is not important to model their behaviour geographically, since the graphs show the overall 

generation of trips of all the study area, with no distinction in zones.  
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The comparison between graphs is firstly presented by pairing the graphs of the single activities education, 

work and other (Graph 5). We can notice that the model was able not only to reproduce the general trend 

of the day, but also to recognise the time at which each activity has a peak and to accurately predict the 

magnitude of most of these peaks. Despite the interesting results, two differences can be found in these 

graphs: our model strongly underestimated the morning peak of trips with education purpose; and inside 

the afternoon peak some of the work-related trips have been counted as trips belonging to the other activity. 

 

Graph 4: Comparison of trips for Education, Work and Other purpose 
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The sum of the trips for all activities gives the general idea of the effectiveness of the model (Graph 6). 

Apart from the absence of the morning education peak, we can appreciate its ability of representing reality, 

such as the recognition of the three different daily peaks, and the high similarity in terms of magnitude. 

 

Graph 5: Comparison of total trips 
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4.2.2 Generation and attraction of single zones 

The previous graphs were used to confirm that the model was able to capture the overall number of trips 

for each activity and that they were correctly spread throughout the day. Since the temporal distribution has 

then be validated, this section concentrates instead on the single zones, analysing the goodness of the 

approach for modelling the spatial distribution of flows. In general, we want to see if activities are 

distributed among zones according to our predictions: we will analyse an industrial zone (Kirchberg), a 

residential zone with a high number of schools (Limpetrsberg) and the city centre. Graph 7 introduces their 

total flows during the day, where we can see a strong difference between these zones. Following, these 

differences will be explained by analysing the repartition of trips among activities for each of the three 

zones.  

 

Graph 6: Temporal distribution of Generation and Attraction of different zones 
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The industrial zone with the highest number of employees was found to be Kirchberg. Graph 8 shows the 

generation and the attraction of trips of this zone, with a curve representing each activity. The two images 

well represent what we expected: a strong attraction of workers in the morning, and a more dispersed peak 

in generation of home trips for people who go back from work in the afternoon. 

 

Graph 7: Temporal distribution of activity-specific Generation and Attraction in Kirchberg 
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Limpetrsberg, with its strong residential nature and its numerous big schools, is ideal to verify other 

dynamics. As we can see in Graph 9, there are several peaks. In the morning, generation shows people 

going to work, while in attraction it captures the users who bring their children to school. The afternoon 

peaks are also present, because in attraction there are the people coming back home from work, but also 

people accumulated during the day for education, work or secondary activities that leave the zone to go 

back home. 

 

Graph 8: Temporal distribution of activity-specific Generation and Attraction in Limpertsberg 
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The last zone that has been considered also shows significant results. The city centre is in fact very 

important for the dynamics of the city, due to the high presence of POIs, its centrality, and the cultural 

relevance for the whole state. Graph 10 indeed captures interesting details: a high presence of secondary 

activities during the afternoon, confirmed by the huge amount of people leaving the zone to go back home 

in the evening; it also has a relevant attraction of workers in the morning, since the city centre contains 

many businesses, shops and activities. 

 

Graph 9: Temporal distribution of activity-specific Generation and Attraction in Luxembourg Centre 
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4.3. Application of the Model to a Demand 

Forecasting future scenario 

Now that the results have shown how the model is able to capture interzonal movements according to the 

different kinds of zones, this section aims at testing and verifying the sensitivity of the model to substantial 

changes in the input data. The model was tested by shifting a significant number of employees from one 

part of the city to the opposite side, in this case 20 000 employees have been relocated from Kirchberg all 

across to Howald and Gasperich (10 000 employees more for each zone). This was simulated by changing 

the attraction parameters of the single zones, increasing it for Howald and Gasperich of the amount for 

which Kirchberg has been decreased. 

 

Figure 17: Workplace relocation of 20 000 users 

The relevancy of this new scenario will not be in the variation of the generated and attracted commuting 

trips regarding the interested zones, since these will be a direct product of the attraction parameter. What 

would be far more interesting to achieve, is to prove that our model is able to capture the dynamics regarding 

how and where workers perform secondary activities. This is where this methodology majorly benefits from 

the knowledge of activity patterns, and how we want to exploit the information about the tours of our users. 

10 000 

10 000 
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The main objective will then be to recognise a decrease in the secondary activities performed around 

Kirchberg, and their increase between Howald and Gasperich (section 4.3.3.). 

This will be due to the variation of the number of users who perform their secondary activities in a certain 

ellipse. For these 20 000 hypothetical employees, the focal point referred to their zone of residence does 

not change, but the other one most certainly does, leading to 20 000 activity tours that will then be 

performed in ellipses located in a totally different part of the city. 

Two logical steps have directed us towards the final demonstration of these dynamic: section 4.3.1. 

contains considerations about the teta parameter and explains how the final value was chosen; instead in 

section 4.3.2. a first analysis of the variations of OD flows has been performed. 

4.3.1 Dependence of probabilities on theta 

The most effective way for the modeller to manage the sensitivity of the model is to work on the parameter 

theta. As explained in section 3.3.3., the lower the theta, the shorter the distance to the POI that the users 

will choose. To have a clear idea of the effect of this parameter, Graph 10 presents the probabilities of 

choosing a certain POI change according to it. 

The two sets of graphs each belong to one out of the 652 alternative locations, and each graph represents 

the probabilities of choosing that precise location for each of the 22 ellipses of which Kirchberg is one of 

the focal points. 
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Graph 10: Probabilities of two POIs according to 22 different ellipses 

The behaviour of theta is clearly explained by the differences in height of the singular bars, since higher 

thetas bring to a stochastic choice and low thetas narrow down the possible choices. In particular we can 

see that decreasing theta, for some ellipses the probabilities of choosing the first POI decrease and for others 

strongly increase, while for the second set of graphs all the probabilities decrease and many tend to zero. 

The choice of which value of theta to use, should derive from a calibration process, where users are traced 

and their choices of locations for secondary activities are compared to the home and work pegs, as it has 

been done in (Sprumont & Viti, 2017). However, for a qualitative validation of this methodology, the theta 

that has been fixed for the future analyses is 0.005, considering that higher values still had a strong 

stochastic weight, and 0.001 made the model too much deterministic, not allowing enough choice for longer 

alternatives to users. 

4.3.2 Scatter diagrams, differences in OD flows 

The first analysis that has been performed to determine the sensitivity of the new scenario regard the 

variation of OD flows. The following scatter diagrams (Figure 19 and 20) represent how many and how 

much the hourly flows have changed due to the relocation. Each point represents the flow from one zone 

to another in a certain hour of the day. Since our interest mainly concerns secondary activities, only the 

afternoon hours from 15PM to 20 PM have been considered. 

Figure 19 shows the change of the flows originated from only the primarily interested zones: Kirchberg, 

Howald and Gasperich 
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Figure 18: Variation of hourly OD flows generated from Kirchberg, Howald and Gasperich 

These results clearly show that there are big variations, but this is normal since 20 000 workers have been 

relocated from Kirchberg to the other two zones. 

What really states that our model is able to capture the variations in secondary activities and urges us to 

go deeper with the analyses is the following Figure 20. The points represent the variation of flows originated 

from all the other zones, where the total number of employees has stayed the same, and consequently work 

related trips have not changed much. This means that all the dots that are not close to the central line are 

due to people changing the location of their secondary activities. 
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Figure 19: Variation of hourly OD flows generated from all zones except Kirchberg, Howald and Gasperich 

A more accurate analysis on the individual zones and on the single secondary activities will better explain 

the variation in flows with the old scenario, but this is a first important step in realizing how sensitive the 

model is. 

 

4.3.3 Secondary activities (map of flow) 

To conclude the analysis of results, this section aims to demonstrate the effectiveness of the 

methodology by showing how much this job relocation has influenced the daily mobility. We expect that 

with a significant share of workers being transferred from one side of the city to the other, many zones 

will perceive a substantial variation of flows not only due to commuting, but also in relevant part due to 

secondary activities. With the conventional gravity model, differences in flows would be observable only 
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for areas directly interested from the relocation, proportionally to how much the attributes of these zones 

would change. This methodology aims at better representing the complex spectrum of urban variations 

that would consequence from this shift of workplace destination. 

The following figures represents how the attractiveness for secondary activities has changed for all the 

zones. The stronger the colour, the higher the variation of trips attracted for shopping, eating, leisure or 

other reasons, excluding work and going back home. 

 

Figure 20: Variations of Attraction for secondary activities in each zone in absolute value  

The map from Figure 21 clearly shows that the zones which have lost more in terms of attractivity for 

secondary activities are Kirchberg and Luxembourg Centre, while Howald and Gasperich have attracted 

much more than the first scenario. It seems that all other zones have instead been affected much less than 

these four zones: however, the magnitudes of these variations should be also put in comparison with the 

whole daily flows. Therefore, Figure 22 shows the same map but with the values taken as percentage of the 

total number of trips for secondary activity in each zone. 
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Figure 21: Variations of Attraction for secondary activities in each zone in percentual value  

This makes us appreciate the extent of the effects of the relocation: more than 10 zones, almost all of the 

central ones, change of more than 5%. The zones around Gasperich and Howald, the ones close to the 

centre, also benefit of a high increase in terms of traffic of secondary activities. This is given to the fact that 

the POIs in these zones belong to the ellipses of many more users, even though maybe not all of the 20 000 

workers. 5 000 trips for secondary activities that were performed in the zones around Kirchberg are now 

distributed among the southern zones of the city. 
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5. Conclusions and Future Developments 
 

This thesis had the main goal of presenting a methodology that relied on three assumptions. First, the 

surge of BigData increased the set of opportunities for modellers, and research must follow the exploitation 

of the data as much as possible. Second, an emphasize on secondary activities is fundamental to account 

for travel behaviour. Finally, the theory behind Time Geography donates many chances to enhance the use 

of spatial relationships as an element driving travel behaviour. The results to the applied methodology 

showed that these assumptions definitely increase the possibilities of modellers to estimate travel demand.  

The opensource format in which the list of POIs and the topology of the Network have been downloaded 

revealed to be an extremely powerful tool, and the amount of opportunities that still have to be seized is not 

quantifiable. Basically any kind of spatial relationship can be extrapolated from these data, permitting 

infinite applications. 

The emphasis on secondary activities turned out to be very profitable, as much as the initial guess on 

individual human behaviour : Figures 20 and 21 visibly explicate how much the conventional gravity model 

has improved. Behaviours that conventional models were unable to capture are now significantly 

represented. Detaching the systematic demand from secondary activities, and assigning the location of the 

latter ones in terms of spatial relations, permitted to spread the total demand not only in one precise zone, 

but in all the surroundings of the home and work locations. 

 

5.1. Future Developments 

Even though the applications of this methodology arrived to notable results, in order to achieve significant 

scientific relevance, the model is wide open to future developments. Future research is suggested in 

different directions: 

• Getting rid of the dependency on any kind of travel surveys would be an incredibely interesting 

target. Fortunately, BigData might resolve these issues, since as stated in section 3.4., many 

researchers are trying to infer activity patterns from Floating Car Data. If this methodology was 

enhanced with a set of activity patterns deriving from a complete opensource database, then the 

model would become much more powerful and applicable to any part of the world. 

 

• An application at commercial level would need a calibration process: tuning the parameter theta 

assumes a very important role in the context of user behaviour. To accomplish this, a reliable 

dataset must be obviously available, and considering also the previous point, if individual traces 

were available they would be the input for both enhancements. 
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• Population synthesis has been carried out through very basic procedure. Even though individual 

traces do not reproduce real users, there might be macro-dynamics that this population would not 

be able to represent. The use of more detailed socio-economic attributes, or the explicit 

representation of known commuting demand would indeed improve the representativeness of the 

derived OD flows. 

In conclusion, the idea of using the extremely detailed disaggregated data from daily mobility of 

individuals and applying it to model macroscopic demand flows, hopes to bring many innovations in the 

field. Space time behaviour is rarely considered in aggregate demand models, but the work carried out in 

this thesis might inspire copious research in the integration between these two modelling approaches. 
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Appendix 

A. Python Codes 

A.1. Mapping POIs to Network 

 

exacts = xlrd.open_workbook('C:/Users/Administrator/Desktop/activities.xlsx') 
sheet = exacts.sheet_by_index(0) 
#data = [[sheet.cell_value(r, c) for c in range(sheet.ncols)] for r in 
range(sheet.nrows)] 
#act_lat = [sheet.cell_value(r, 1) for r in range(1,sheet.nrows)] 
#act_lng = [sheet.cell_value(r, 2) for r in range(1,sheet.nrows)] 
 
acts = [[sheet.cell_value(r, c) for c in range(2,4)] for r in 
range(1,sheet.nrows)] 
 
exnodes = xlrd.open_workbook('C:/Users/Administrator/Desktop/nodes.xlsx') 
sheet = exnodes.sheet_by_index(0) 
#data = [[sheet.cell_value(r, c) for c in range(sheet.ncols)] for r in 
range(sheet.nrows)] 
#nod_lat = [sheet.cell_value(r, 0) for r in range(1,sheet.nrows)] 
#nod_lng = [sheet.cell_value(r, 1) for r in range(1,sheet.nrows)] 
#nod_osmid = [sheet.cell_value(r, 3) for r in range(1,sheet.nrows)] 
 
nods = [[sheet.cell_value(r, c) for c in [1, 0, 3]] for r in 
range(1,sheet.nrows)] 
 
#activities = [[ra,ca] for ] 
#nodes = [] 
 
#for lata in act_lat: 
#    for lnga in act_lng: 
#        activities.append([lata,lnga]) 
# 
#for latn in nod_lat: 
#    for lngn in nod_lng: 
#        nodes.append([latn,lngn]) 
dists = [] 
#inds = [] 
 
rnodes = [] 
r1 = [] 
r2 = [] 
r3 = [] 
 
for act in acts: 
    ci = [] 
    import math 
    for node in nods: 
        dist = math.sqrt((act[0]-node[0])**2+(act[1]-node[1])**2) 
        ci.append(dist) 
#    dists.append(min(ci)) 
    import numpy as np 
    ind = np.argmin(ci) 
#    inds.append(ind) 
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    rnodes.append(nods[ind]) 
 
for r in rnodes: 
    r1.append(r[0]) 
    r2.append(r[1]) 
    r3.append(r[2]) 

 

A.2. Isochrones 

 

import osmnx as ox, networkx as nx, geopandas as gpd, matplotlib.pyplot as 
plt 
from shapely.geometry import Point, LineString, Polygon 
from descartes import PolygonPatch 
ox.config(log_console=True, use_cache=True) 
 
# configure the place, network type, trip times, and travel speed 
Network='MiddleAugmentedLuxCity2.graphml' 
Folder='C:/Users/filip/Desktop/Dati OSM/Test' 
 
# Laod the street network 
G = ox.load_graphml(Network, folder=Folder) 
G_map = ox.project_graph(G) 
 
 
network_type = 'drive' 
trip_times = range(20) #in minutes 
travel_speed = 25 #driving/walking speed in km/hour 
 
 
##ADDRESS find the centermost node and then project the graph to UTM 
#address='157 avenue Pasteur 2311 Luxembourg' 
#Where = ox.graph_from_address(address, network_type=network_type) 
##ox.plot_graph(Where) 
#gdf_nodes = ox.graph_to_gdfs(Where, edges=False) 
#x, y = gdf_nodes['geometry'].unary_union.centroid.xy 
#center_node = ox.get_nearest_node(G, (y[0], x[0])) 
#COORDINATES find the centermost node and then project the graph to UTM 
y,x = 49.6038746, 6.0975787 
 
Where = ox.graph_from_point((y, x), distance=750, network_type='all') 
#ox.plot_graph(Where) 
gdf_nodes = ox.graph_to_gdfs(Where, edges=False) 
center_node = ox.get_nearest_node(G, (y, x)) 
 
 
# add an edge attribute for time in minutes required to traverse each edge 
meters_per_minute = travel_speed * 1000 / 60 #km per hour to m per minute 
for u, v, k, data in G_map.edges(data=True, keys=True): 
    data['time'] = data['length'] / meters_per_minute 
     
# get one color for each isochrone 
iso_colors = ox.get_colors(n=len(trip_times), cmap='Reds', start=0.3, 
return_hex=True) 
 
# color the nodes according to isochrone then plot the street network 
node_colors = {} 
node_time = {} 
for trip_time, color in zip(sorted(trip_times, reverse=True), iso_colors): 
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    subgraph = nx.ego_graph(G_map, center_node, radius=trip_time, 
distance='time') 
    for node in subgraph.nodes(): 
        node_colors[node] = color 
        node_time[node] = trip_time 
nt = [node_time[node] if node in node_colors else '1000' for node in 
G_map.nodes()] 
nc = [node_colors[node] if node in node_colors else 'none' for node in 
G_map.nodes()] 
ns = [20 if node in node_colors else 0 for node in G_map.nodes()] 
 
 
 
fig, ax = ox.plot_graph(G_map, fig_height=8, node_color=nc, node_size=ns, 
node_alpha=0.8, node_zorder=2) 

B. Matlab Codes 

 

clear 

  
for scenario = 3 % 1 = no relocation ; 2 = 50% from kirchberg ; 3 = 25% from 

kirchberg 
    for teta_numb = 1:3 

         
        tic 

         
        time_interval = 60; %in minutes 
        n_intervals = 1440/time_interval; 
        inter = 60; 
        iterations = [1 49]; 
        tetalist = [0.3 0.01 0.005 0.001]; 

  

         
        teta = tetalist(teta_numb); 
        teta1 = 0.3; 

  
        %import data 
        %import survey 
        load data.mat 

  
        idx = Survey.cleanSurvey(:,6)<0; 
        Survey.cleanSurvey(idx,6)=0; 

  

B.1. Activity Clustering 

 

        %ACTIVITY CLASSIFICATION AND CLUSTERING 
        type = data.type; 
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        iEat = type == 'food' | type =='restaurant'| type =='bakery'| type 

=='bar'| type =='cafe'| type =='meal_delivery'| type =='meal_takeaway'; 
        iShop = type == 'clothing_store'| type == 'convenience_store'| type 

== 'department_store'| type == 'electronics_store'| type == 

'furniture_store'| type == 'grocery_or_supermarket'| type == 

'hardware_store'| type == 'home_goods_store'| type == 'jewelry_store'| type 

== 'liquor_store'| type == 'shoe_store'| type == 'shopping_mall'| type == 

'store'| type == 'supermarket'; 
        iLSC = type == 'amusement_park'| type == 'culture'| type == 'gym'| 

type == 'library'| type == 'movie_theater'| type == 'museum'| type == 

'night_club'| type == 'park'| type == 'sport'; 
        iOther = type == 'bank'| type == 'beauty_salon'| type == 

'car_dealer'| type == 'car_rental'| type == 'car_repair'| type == 'car_wash'| 

type == 'city_hall'| type == 'dentist'| type == 'doctor'| type == 'embassy'| 

type == 'finance'| type == 'gas_station'| type == 'hair_care'| type == 

'health'| type == 'laundry'| type == 'lawyer'| type == 

'local_government_office'| type == 'pet_store'| type == 'pharmacy'| type == 

'physiotherapist'| type == 'post_office'| type == 'train_station'| type == 

'transit_station'| type == 'travel_agency'; 
  

 

B.2. Determination of Probabilities 

 
        %PROBABILITIES - For each zone, and for each activity type(eat, shop, 

LSC, 
        %Other), a logit model has been used. Utility is the inverse of the  
        %distance in time from zone to activity as utility and teta is 0.3.  

  
        act_zon = data.act_zon; 
        zon_zon = data.zon_zon; 

  
        %CIRCLE - probabilities of each activity for patterns not including 

work.  

  
        Cir_Prob = {3,4}; 

  
        for x = 1:4 
            Cir_Prob{1,x} = zeros(652,22); 
            Cir_Prob{2,x} = zeros(652,22); 
            Cir_Prob{3,x} = zeros(652,22); 
            for y = 1:22 
                for z = 1:652 
                    %create array for each activity set 
                    Cir_Prob{1,1}(z,y) = act_zon(z,y)*iEat(z); 
                    Cir_Prob{1,2}(z,y) = act_zon(z,y)*iShop(z); 
                    Cir_Prob{1,3}(z,y) = act_zon(z,y)*iLSC(z); 
                    Cir_Prob{1,4}(z,y) = act_zon(z,y)*iOther(z); 

  
                    %create exp(v/teta) 
                    if Cir_Prob{1,x}(z,y) == 0 
                        Cir_Prob{2,x}(z,y) = 0; 
                    else 
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                        Cir_Prob{2,x}(z,y) = 

exp(1/teta1/(Cir_Prob{1,x}(z,y))); 
                    end 
                end 
            end 
        end 

  
        %assign probabilities with logit 
        for x = 1:4 
            for y = 1:22 
                for z = 1:652 
                    Cir_Prob{3,x}(z,y) = 

Cir_Prob{2,x}(z,y)/sum(Cir_Prob{2,x}(:,y)); 
                end 
            end 
        end 

  
        %ELLIPSIS - probabilities with patterns including work 

  
        ellipse = {3,22}; 
        %ellyssis = zeros(652,22); 

  
        %find logical array if activities that make part of ellypsis 
        for z = 1:22 %for every origin/home 
            for y = 1:22 %for every destination/work 
                for x = 1:652 %for every activity 
                    if zon_zon(z,y) > 5/4*(act_zon(x,z)+act_zon(x,y))-55/4 && 

zon_zon(z,y) > 0 %(5:15-34:39) 
                    %2*zon_zon(z,y) > act_zon(x,z)+act_zon(x,y)(isoscile) 
                        ellipse{1,z}(x,y) = 1; 
                    else 
                        ellipse{1,z}(x,y) = 0; 
                    end 
                end 
            end 
            %ellipsis{1,z} = ellyssis; 
        end 

  
        %find time for each activity for each H-W pattern 
        for z = 1:22 %for every origin/home 
            for y = 1:22 %for every destination/work 
                for x = 1:652 %for every activity 
                    ellipse{2,z}(x,y) = act_zon(x,z)+act_zon(x,y); 
                end 
            end 
            %ellipsis{2,z} = ellyssis; 
        end 

  
        %take only times inside ellipsis 
        for z = 1:22 %for every origin/home 
            for y = 1:22 %for every destination/work 
                for x = 1:652 %for every activity 
                    ellipse{3,z} = ellipse{2,z}.*ellipse{1,z}; 
                end 
            end 
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            %ellipsis{3,z} = ellyssis; 
        end 

  

  
        EllEat = {3,22}; 
        EllShop = {3,22}; 
        EllLSC = {3,22}; 
        EllOther = {3,22}; 

  
        %create array for each activity set 
        for x = 1:22 
            EllEat{1,x}=ellipse{3,x}.*iEat; 
            EllShop{1,x}=ellipse{3,x}.*iShop; 
            EllLSC{1,x}=ellipse{3,x}.*iLSC; 
            EllOther{1,x}=ellipse{3,x}.*iOther; 
        end 

  

  
        no_ell = zeros(22); 
        %create exp(v/teta) and filter columns with no activities 
        %variable no_ell is to show which od pair has no activities 
        %1 = no food, 10 = no shop, 100 = no LSC, 1000 = no Other, 1011 = 

comb 
        for x = 1:22 %home 
            for y = 1:22 %work 
                for z = 1:652 

  
                    if sum(EllEat{1,x}(:,y)) == 0 
                        no_ell(x,y) = 1; 
                        EllEat{1,x}(:,y) = Cir_Prob{1,1}(:,y); 
                    else 
                        if EllEat{1,x}(z,y)== 0 
                            EllEat{2,x}(z,y) = 0; 
                        else 
                            EllEat{2,x}(z,y) = 

exp(1/teta/(EllEat{1,x}(z,y))); 
                            EllEat{2,x}(EllEat{2,x}==Inf) = exp(700); 
                        end 
                    end 
                    if sum(EllShop{1,x}(:,y)) == 0 
                        no_ell(x,y) = no_ell(x,y) + 10; 
                        EllShop{1,x}(:,y) = Cir_Prob{1,2}(:,y); 
                    else 
                        if EllShop{1,x}(z,y)== 0 
                            EllShop{2,x}(z,y) = 0; 
                        else 
                            EllShop{2,x}(z,y) = 

exp(1/teta/(EllShop{1,x}(z,y))); 
                            EllShop{2,x}(EllShop{2,x}==Inf) = exp(700); 
                        end 
                    end 
                    if sum(EllLSC{1,x}(:,y)) == 0 
                        no_ell(x,y) = no_ell(x,y) + 100; 
                        EllLSC{1,x}(:,y) = Cir_Prob{1,3}(:,y); 
                    else 
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                        if EllLSC{1,x}(z,y)== 0 
                            EllLSC{2,x}(z,y) = 0; 
                        else 
                            EllLSC{2,x}(z,y) = 

exp(1/teta/(EllLSC{1,x}(z,y))); 
                            EllLSC{2,x}(EllLSC{2,x}==Inf) = exp(700); 
                        end 
                    end 
                    if sum(EllOther{1,x}(:,y)) == 0 
                        no_ell(x,y) = no_ell(x,y) + 1000; 
                        EllOther{1,x}(:,y) = Cir_Prob{1,4}(:,y); 
                    else 
                        if EllOther{1,x}(z,y)== 0 
                            EllOther{2,x}(z,y) = 0; 
                        else 
                            EllOther{2,x}(z,y) = 

exp(1/teta/(EllOther{1,x}(z,y))); 
                            EllOther{2,x}(EllOther{2,x}==Inf) = exp(700); 
                        end 
                    end 
                end 
            end 
        end 

  
        %assign probabilities with logit 
        for x = 1:22 
            for y = 1:22 
                for z = 1:652 
                    EllEat{3,x}(z,y) = 

EllEat{2,x}(z,y)/sum(EllEat{2,x}(:,y)); 
                    EllShop{3,x}(z,y) = 

EllShop{2,x}(z,y)/sum(EllShop{2,x}(:,y)); 
                    EllLSC{3,x}(z,y) = 

EllLSC{2,x}(z,y)/sum(EllLSC{2,x}(:,y)); 
                    EllOther{3,x}(z,y) = 

EllOther{2,x}(z,y)/sum(EllOther{2,x}(:,y)); 
                end 
            end 
        end 

  
        for y = 1:22 
            idx = isnan(EllEat{3,y}); 
            EllEat{3,y}(idx)=0; 
            idx = isnan(EllShop{3,y}); 
            EllShop{3,y}(idx)=0; 
            idx = isnan(EllLSC{3,y}); 
            EllLSC{3,y}(idx)=0; 
            idx = isnan(EllOther{3,y}); 
            EllOther{3,y}(idx)=0; 
        end 

  
        clear x y z ellyssis cats type act_zon zon_zon teta iEat iShop iLSC 

iOther ellipsis idx 
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B.3. Extracting daily Patterns from dataset 

 
        % BMW Activity patterns 

  
        n_users=unique(Survey.cleanSurvey(:,1)); 
        day_of_year = unique(Survey.cleanSurvey(:,5)); 

  
        Activity_Pattern=[]; 
        r=1; 
        for u = 1:numel(n_users) 
            for d = 1:numel(day_of_year) 
                index=find(Survey.cleanSurvey(:,1)==n_users(u) & 

Survey.cleanSurvey(:,5)==day_of_year(d)); 
                if isempty(index)==0 
                    % select only workdays (1:5) 
                    if Survey.cleanSurvey(index,8) <= 5 
                        data_tmp=Survey.cleanSurvey(index,3); 
                        Activity_Pattern(r,1:numel(data_tmp))=data_tmp; 
                    end 
                    if Survey.cleanSurvey(index,8) <= 5 
                        

data_tmp2=Survey.cleanSurvey(index,6)*3600+Survey.cleanSurvey(index,7)*60; % 

time dep 
                        Activity_Pattern_dep(r,1:numel(data_tmp2))=data_tmp2; 
                    end 
                    if Survey.cleanSurvey(index,8) <= 5 
                        

data_tmp3=Survey.cleanSurvey(index,9)*3600+Survey.cleanSurvey(index,10)*60; % 

time arr 
                        Activity_Pattern_arr(r,1:numel(data_tmp3))=data_tmp3; 
                    end 
                        r=r+1; 
                end 
            end 
        end 
        % cleaning people with just one trip with destination home 

  
        idx = Activity_Pattern(:,2)==0; 
        Activity_Pattern(idx,:) = []; 
        Activity_Pattern_arr(idx,:) = []; 
        Activity_Pattern_dep(idx,:) = []; 

  
        %Clustering 
        Activity_Clustered = Activity_Pattern; 

  
        idx = Activity_Clustered(:,:)==4;%school 
        Activity_Clustered(idx)=3; %work 
        idx = Activity_Clustered(:,:)==7;%long term shopping 
        Activity_Clustered(idx)=6; %short term shopping 
        idx = Activity_Clustered(:,:)==8; %personal business 
        Activity_Clustered(idx)=12; %other 
        idx = Activity_Clustered(:,:)==9; %visit to family and friends 
        Activity_Clustered(idx)=12; %other 
        idx = Activity_Clustered(:,:)==10; %walking riding etc 
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        Activity_Clustered(idx)=12; %other 

  

  
        %Creating Set of admissible patterns 

  
        BMW_Cir_Act=zeros(size(Activity_Clustered,1),15); 
        BMW_Cir_Dep=zeros(size(Activity_Clustered,1),15); 
        BMW_Cir_Arr=zeros(size(Activity_Clustered,1),15); 
        BMW_Ell_Act=zeros(size(Activity_Clustered,1),15); 
        BMW_Ell_Dep=zeros(size(Activity_Clustered,1),15); 
        BMW_Ell_Arr=zeros(size(Activity_Clustered,1),15); 

  

  
        for x = 1:length(Activity_Clustered) 
            for y = 1:15 
                if Activity_Clustered(x,y) == 3 
                    BMW_Ell_Act(x,:) = Activity_Clustered(x,:); 
                    BMW_Ell_Dep(x,:) = Activity_Pattern_dep(x,:); 
                    BMW_Ell_Arr(x,:) = Activity_Pattern_arr(x,:); 
                else 
                    BMW_Cir_Act(x,:) = Activity_Clustered(x,:); 
                    BMW_Cir_Dep(x,:) = Activity_Pattern_dep(x,:); 
                    BMW_Cir_Arr(x,:) = Activity_Pattern_arr(x,:); 
                end 
            end 
        end 

  
        idxE = BMW_Ell_Act(:,1)==0; 
        BMW_Ell_Act(idxE,:) = []; 
        BMW_Ell_Dep(idxE,:) = []; 
        BMW_Ell_Arr(idxE,:) = []; 

  
        idxC = (1-idxE); 
        idxC = logical(idxC); 
        BMW_Cir_Act(idxC,:) = []; 
        BMW_Cir_Dep(idxC,:) = []; 
        BMW_Cir_Arr(idxC,:) = []; 

  
        clear Activity_Pattern_dep Activity_Clustered Activity_Pattern 

Activity_Pattern_arr day_of_year idxC idxE index x y 
        clear data_tmp data_tmp2 data_tmp3 d u r idx index n_users 

day_of_year; 

  

B.4. Assign location to each trip of each user 

  
        % define time and OD before p cycle; 

  
        OD_temp{22,22} = zeros(iterations(2),n_intervals*inter); 

  
        GEN_temp{iterations(2),22} = []; 
        ATT_temp{iterations(2),22} = []; 
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        Employees = round(data.empl_prob(:,scenario)*data.pop_ell'); 
        % Employees(4,14) = Employees(4,14) + 40000; 
        % Employees(4,15) = Employees(4,15) + 40000; 
        % Employees(4,19) = Employees(4,19) + 80000; 
        %  
        for x = 1:22 
            for y = 1:22 
                for p = iterations(1):iterations(2) 
                    OD_temp{x,y}(p,:)= zeros(1,n_intervals*inter); 
                end 
            end 
        end 

  
        for p = iterations(1):iterations(2) 
            for x = 1:22 
                GEN_temp{p,x} = zeros(12,n_intervals*inter); 
                ATT_temp{p,x} = zeros(12,n_intervals*inter); 
            end 
            disp(p) 
            Cir_Patt = {2,22}; 

  
            for x = 1:22 
                Cir_Patt{1,x} = zeros(data.pop_cir(x),15); 
                for y = 1:data.pop_cir(x) 
                    z = randi([1 length(BMW_Cir_Act)]); 
                    Cir_Patt{1,x}(y,:) = BMW_Cir_Act(z,:); 
                    Cir_Patt{2,x}(y,:) = BMW_Cir_Dep(z,:); 
                end 
            end 

  

  
            Ell_Patt = {22,22}; 
            Ell_Patt_Dep = {22,22}; 

  
            for h = 1:22 
                for w = 1:22 
                    Ell_Patt{w,h} = zeros(Employees(w,h),15); 
                    Ell_Patt_Dep{w,h} = zeros(Employees(w,h),15); 
                    for y = 1:Employees(w,h) 
                        z = randi([1 length(BMW_Ell_Act)]); 
                        Ell_Patt{w,h}(y,:) = BMW_Ell_Act(z,:); 
                        Ell_Patt_Dep{w,h}(y,:) = BMW_Ell_Dep(z,:); 
                    end 
                end 
            end 

  

  
            %assign a specific activity location to each trip of every user's 

pattern 
            zon_lat = data.zon_lat_lng(:,1); 
            zon_lng = data.zon_lat_lng(:,2); 
            sch_lat = data.sch_lat_lng(:,1); 
            sch_lng = data.sch_lat_lng(:,2); 
            sch_zone = data.sch_lat_lng(:,3); 
            act_lat = data.activities(:,2); 
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            act_lng = data.activities(:,3); 
            act_zone = data.activities(:,6); 
            n_act = 1:size(data.activities,1); 
            n_sch = 1:size(data.schools,1); 

  
            Cir_Omnid = {1,22}; 
            Cir_Lat = {1,22}; 
            Cir_Lng = {1,22}; 
            Cir_Zon = {1,22}; 
            for z = 1:22 
                Cir_Omnid{1,z} = zeros(data.pop_cir(z),15); 
                Cir_Lat{1,z} = zeros(data.pop_cir(z),15); 
                Cir_Lng{1,z} = zeros(data.pop_cir(z),15); 
                for x = 1:15 
                    for y = 1:size(Cir_Patt{1,z},1) 
                        if Cir_Patt{1,z}(y,x) == 5 %food 
                            idx = 

n_act(find(rand<cumsum(Cir_Prob{3,1}(:,z)),1,'first')); 
                            Cir_Omnid{1,z}(y,x) = data.acts(idx); 
                            Cir_Lat{1,z}(y,x) = act_lat(idx); 
                            Cir_Lng{1,z}(y,x) = act_lng(idx); 
                            Cir_Zon{1,z}(y,x) = act_zone(idx); 
                        elseif Cir_Patt{1,z}(y,x) == 6 %shop 
                            idx = 

n_act(find(rand<cumsum(Cir_Prob{3,2}(:,z)),1,'first')); 
                            Cir_Omnid{1,z}(y,x) = data.acts(idx); 
                            Cir_Lat{1,z}(y,x) = act_lat(idx); 
                            Cir_Lng{1,z}(y,x) = act_lng(idx); 
                            Cir_Zon{1,z}(y,x) = act_zone(idx); 
                        elseif Cir_Patt{1,z}(y,x) == 11 %LSC 
                            idx = 

n_act(find(rand<cumsum(Cir_Prob{3,3}(:,z)),1,'first')); 
                            Cir_Omnid{1,z}(y,x) = data.acts(idx); 
                            Cir_Lat{1,z}(y,x) = act_lat(idx); 
                            Cir_Lng{1,z}(y,x) = act_lng(idx); 
                            Cir_Zon{1,z}(y,x) = act_zone(idx); 
                        elseif Cir_Patt{1,z}(y,x) == 12 %other 
                            idx = 

n_act(find(rand<cumsum(Cir_Prob{3,4}(:,z)),1,'first')); 
                            Cir_Omnid{1,z}(y,x) = data.acts(idx); 
                            Cir_Lat{1,z}(y,x) = act_lat(idx); 
                            Cir_Lng{1,z}(y,x) = act_lng(idx); 
                            Cir_Zon{1,z}(y,x) = act_zone(idx); 
                        elseif Cir_Patt{1,z}(y,x) == 2 %home 
                            Cir_Omnid{1,z}(y,x) = data.zones(z); 
                            Cir_Lat{1,z}(y,x) = zon_lat(z); 
                            Cir_Lng{1,z}(y,x) = zon_lng(z); 
                            Cir_Zon{1,z}(y,x) = z; 
                        elseif Cir_Patt{1,z}(y,x) == 1 %pickup 
                            idx = 

n_sch(find(rand<cumsum(data.Schoolprob),1,'first')); 
                            Cir_Omnid{1,z}(y,x) = data.schools(idx); 
                            Cir_Lat{1,z}(y,x) = sch_lat(idx); 
                            Cir_Lng{1,z}(y,x) = sch_lng(idx); 
                            Cir_Zon{1,z}(y,x) = sch_zone(idx); 
                        end 
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                    end 
                end 
            end 

  

  
            Ell_Omnid = {22,22}; 
            Ell_Lat = {22,22}; 
            Ell_Lng = {22,22}; 
            Ell_Zon = {22,22}; 
            for w = 1:22 
                for h = 1:22 
        %             if h == w 
        %                 Ell_Omnid{w,h} = []; 
        %             else 
                        Ell_Omnid{w,h} = zeros(Employees(w,h),15); 
                        Ell_Lat{w,h} = zeros(Employees(w,h),15); 
                        Ell_Lng{w,h} = zeros(Employees(w,h),15); 
                        Ell_Zon{w,h} = zeros(Employees(w,h),15); 
                        for x = 1:15 
                            for y = 1:Employees(w,h) 
                                if Ell_Patt{w,h}(y,x) == 5 %food 
                                    idx = 

n_act(find(rand<cumsum(EllEat{3,w}(:,h)),1,'first')); 
                                    Ell_Omnid{w,h}(y,x) = data.acts(idx); 
                                    Ell_Lat{w,h}(y,x) = act_lat(idx); 
                                    Ell_Lng{w,h}(y,x) = act_lng(idx); 
                                    Ell_Zon{w,h}(y,x) = act_zone(idx); 
                                    %if x > 1 
                                    %Ell_Time{w,h}(y,x) = 

data.act_zon(idx,Ell_Zon{w,h}(y,x-1)) 

  
                                elseif Ell_Patt{w,h}(y,x) == 6 %shop 
                                    idx = 

n_act(find(rand<cumsum(EllShop{3,w}(:,h)),1,'first')); 
                                    Ell_Omnid{w,h}(y,x) = data.acts(idx); 
                                    Ell_Lat{w,h}(y,x) = act_lat(idx); 
                                    Ell_Lng{w,h}(y,x) = act_lng(idx); 
                                    Ell_Zon{w,h}(y,x) = act_zone(idx); 
                                elseif Ell_Patt{w,h}(y,x) == 11 %LSC 
                                    idx = 

n_act(find(rand<cumsum(EllLSC{3,w}(:,h)),1,'first')); 
                                    Ell_Omnid{w,h}(y,x) = data.acts(idx); 
                                    Ell_Lat{w,h}(y,x) = act_lat(idx); 
                                    Ell_Lng{w,h}(y,x) = act_lng(idx); 
                                    Ell_Zon{w,h}(y,x) = act_zone(idx); 
                                elseif Ell_Patt{w,h}(y,x) == 12 %other 
                                    idx = 

n_act(find(rand<cumsum(EllOther{3,w}(:,h)),1,'first')); 
                                    Ell_Omnid{w,h}(y,x) = data.acts(idx); 
                                    Ell_Lat{w,h}(y,x) = act_lat(idx); 
                                    Ell_Lng{w,h}(y,x) = act_lng(idx); 
                                    Ell_Zon{w,h}(y,x) = act_zone(idx); 
                                elseif Ell_Patt{w,h}(y,x) == 2 %home 
                                    Ell_Omnid{w,h}(y,x) = data.zones(h); 
                                    Ell_Lat{w,h}(y,x) = zon_lat(h); 
                                    Ell_Lng{w,h}(y,x) = zon_lng(h); 
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                                    Ell_Zon{w,h}(y,x) = h; 
                                elseif Ell_Patt{w,h}(y,x) == 1 %pickup 
                                    if Ell_Patt_Dep{w,h}(y,x) < 54000 
                                        idx = 

n_sch(find(rand<cumsum(data.Schoolprob),1,'first')); 
                                        Ell_Omnid{w,h}(y,x) = 

data.schools(idx); 
                                        Ell_Lat{w,h}(y,x) = sch_lat(idx); 
                                        Ell_Lng{w,h}(y,x) = sch_lng(idx); 
                                        Ell_Zon{w,h}(y,x) = sch_zone(idx); 
                                    else 
                                        idx = 

n_act(find(rand<cumsum(EllLSC{3,w}(:,h)),1,'first')); 
                                        Ell_Omnid{w,h}(y,x) = data.acts(idx); 
                                        Ell_Lat{w,h}(y,x) = act_lat(idx); 
                                        Ell_Lng{w,h}(y,x) = act_lng(idx); 
                                        Ell_Zon{w,h}(y,x) = act_zone(idx); 
                                    end 
                                elseif Ell_Patt{w,h}(y,x) == 3 %work 
                                    Ell_Omnid{w,h}(y,x) = data.zones(w); 
                                    Ell_Lat{w,h}(y,x) = zon_lat(w); 
                                    Ell_Lng{w,h}(y,x) = zon_lng(w); 
                                    Ell_Zon{w,h}(y,x) = w; 
                                end 
                            end 
                        end 
        %             end 
                end 
            end 

  
            % X = [1 2 3 4] 
            % P = [0.1 0.3 0.4 0.2] 
            % f = zeros(100,1); 
            % for z = 1:100 
            %     f(z,1) = X(find(rand<cumsum(P),1,'first')); 
            % end 
            clear x y z h w zon_lat zon_lng act_lat act_lng sch_lat sch_lng 

n_act n_sch idx 

  
            %TRIPS - collect all patterns in a unique matrix containing all 

trips 
            %trips of pattern without work 
            tripcir = 0; 
            for h = 1:22 
                for x = 1:15 
                    for y = 1:data.pop_cir(h) 
                        if Cir_Omnid{1,h}(y,x)==0 
                        else, tripcir = tripcir + 1; 
                        end 
                    end 
                end                 
            end 

  

  
            tripell = 0; 
            for h = 1:22 
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                for w = 1:22 
                    if h == w 
                    else 
                        for x = 1:15 
                            for y = 1:Employees(w,h) 
                                if Ell_Omnid{w,h}(y,x)==0 
                                else, tripell = tripell + 1; 
                                end 
                            end 
                        end 
                    end 
                end                 
            end 

  
            Trips_cir = zeros(tripcir,5); 
            Trips_ell = zeros(tripell,5); 

  
            z = 1; 
            for h = 1:22 
                for y = 1:data.pop_cir(h) 
                    for x = 1:15 
                        if Cir_Omnid{1,h}(y,x)==0 
                        else, Trips_cir(z,1) = Cir_Patt{2,h}(y,x); %deptime 
                            Trips_cir(z,8) = Cir_Patt{1,h}(y,x); %activity 
                            Trips_cir(z,4)=Cir_Lat{1,h}(y,x); %lat of 

destination 
                            Trips_cir(z,5)=Cir_Lng{1,h}(y,x); %lng of 

destination 
                            Trips_cir(z,6)=Cir_Zon{1,h}(y,x); %zone of 

destination 
                            if x == 1 
                                Trips_cir(z,2) = data.zon_lat_lng(h,1); %lat 

of home 
                                Trips_cir(z,3) = data.zon_lat_lng(h,2); %lng 

of home 
                                Trips_cir(z,7) = h; %lng of home 
                            else 
                                Trips_cir(z,2) = Trips_cir(z-1,4); %lat of 

previous activity 
                                Trips_cir(z,3) = Trips_cir(z-1,5); %lng of 

previous activity 
                                Trips_cir(z,7) = Trips_cir(z-1,6); %zone of 

previous activity 
                            end 
                            z = z+1; 
                        end 
                    end 
                end                 
            end 

  
            z = 1; 
            for h = 1:22 
                for w = 1:22 
                    for y = 1:Employees(w,h) 
                        for x = 1:15 
        %                     if h==w 
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        %                     else 
                                if Ell_Omnid{w,h}(y,x)==0 
                                else, Trips_ell(z,1) = 

Ell_Patt_Dep{w,h}(y,x); %deptime 
                                    Trips_ell(z,8) = Ell_Patt{w,h}(y,x); 

%activity 
                                    Trips_ell(z,4)=Ell_Lat{w,h}(y,x); %lat of 

destination 
                                    Trips_ell(z,5)=Ell_Lng{w,h}(y,x); %lng of 

destination 
                                    Trips_ell(z,6)=Ell_Zon{w,h}(y,x); %zone 

of destination 
                                    if x == 1 
                                        Trips_ell(z,2) = 

data.zon_lat_lng(h,1); %lat of home 
                                        Trips_ell(z,3) = 

data.zon_lat_lng(h,2); %lng of home 
                                        Trips_ell(z,7) = h; %zone of home 
                                    else 
                                        Trips_ell(z,2) = Trips_ell(z-1,4); 

%lat of previous activity 
                                        Trips_ell(z,3) = Trips_ell(z-1,5); 

%lng of previous activity 
                                        Trips_ell(z,7) = Trips_ell(z-1,6); 

%zone of previous activity 
                                    end 
                                    z = z+1; 
                                end 
        %                     end 
                        end 
                    end 
                end                 
            end 

  

  
            TRIPS = [Trips_cir; Trips_ell]; 
            clear x y z w h 

  

B.5. Aggregation Process 

            for y = 1:size(TRIPS,1) 
                for x = 1:n_intervals*inter 
                    if TRIPS(y,1) < time_interval/inter*60*x && TRIPS(y,1)>= 

time_interval/inter*60*(x-1) 
        %                 time{p,x} = [time{p,x}; TRIPS(y,:)]; 
                        OD_temp{TRIPS(y,7),TRIPS(y,6)}(p,x) = 

OD_temp{TRIPS(y,7),TRIPS(y,6)}(p,x) + 1; 
                        GEN_temp{p,TRIPS(y,7)}(TRIPS(y,8),x) = 

GEN_temp{p,TRIPS(y,7)}(TRIPS(y,8),x) + 1; 
                    end 
                    if TRIPS(y,1) < time_interval/inter*60*x - 1200 && 

TRIPS(y,1)>= time_interval/inter*60*(x-1) - 1200 
                        ATT_temp{p,TRIPS(y,6)}(TRIPS(y,8),x) = 

ATT_temp{p,TRIPS(y,6)}(TRIPS(y,8),x) + 1; 
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                    end 
                end 
            end 

  
            for x = 1:22 
                GEN_temp{p,x}(4,:) = []; 
                GEN_temp{p,x}(6,:) = []; 
                GEN_temp{p,x}(6,:) = []; 
                GEN_temp{p,x}(6,:) = []; 
                GEN_temp{p,x}(6,:) = []; 
                ATT_temp{p,x}(4,:) = []; 
                ATT_temp{p,x}(6,:) = []; 
                ATT_temp{p,x}(6,:) = []; 
                ATT_temp{p,x}(6,:) = []; 
                ATT_temp{p,x}(6,:) = []; 
                for y = 1:n_intervals*inter 
                    GEN_temp{p,x}(8,y) = sum(GEN_temp{p,x}(:,y)); 
                    ATT_temp{p,x}(8,y) = sum(ATT_temp{p,x}(:,y)); 
                end 

                 
            end 

  

  
            for z = 1:22 
                for a = 1:8 
                    for x = 1:n_intervals 
                        GEN{p,z}(a,x) = sum(GEN_temp{p,z}(a,((x-

1)*inter+1):(x*inter))); 
                        ATT{p,z}(a,x) = sum(ATT_temp{p,z}(a,((x-

1)*inter+1):(x*inter))); 
                    end 
                end 
            end 

  
        end 

  
        for o = 1:22 
            for d = 1:22 
                for i = iterations(1):iterations(2) 
                    for x = 1:24 
                        OD{d,o}(i,x) = sum(OD_temp{d,o}(i,((x-

1)*inter+1):(x*inter))); 
                    end 
                end 
            end 
        end 

  
        for o = 1:22 
            for d = 1:22 
                for x = 1:24 
                    OD{d,o}(iterations(2)+1,x) = 

mean(OD{d,o}(1:iterations(2),x)); 
                end 
            end 
        end 
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        itr = iterations(2); 
        for x = 1:22 
            GEN{itr+1,x} = zeros(8,n_intervals); 
            ATT{itr+1,x} = zeros(8,n_intervals); 
            for i = 1:itr 
                GEN{itr+1,x}= GEN{itr+1,x} + GEN{i,x}; 
                ATT{itr+1,x}= ATT{itr+1,x} + ATT{i,x}; 
            end 
            GEN{itr+1,x}= round(GEN{itr+1,x}/itr); 
            ATT{itr+1,x}= round(ATT{itr+1,x}/itr); 
            for y = 1:24 
                GEN{itr+1,x}(8,y) = sum(GEN{itr+1,x}(1:7,y)); 
                ATT{itr+1,x}(8,y) = sum(ATT{itr+1,x}(1:7,y)); 
            end 
        end 

  

  
        clear i itr x n_intervals iterations inter 
        clear x y t sch_zone act_zone  
        clear BMW_Cir_Act BMW_Cir_Arr BMW_Cir_Dep BMW_Ell_Act BMW_Ell_Arr 

BMW_Ell_Dep  
        clear Cir_Lat Cir_Lng Cir_Omnid Cir_Patt Cir_Prob Cir_Zon EllEat 

EllLSC 
        clear Ell_Lat Ell_Lng Ell_Omnid Ell_Patt Ell_Patt_Dep Ell_Zon ellipse 

Employees  
        clear tripcir tripell Trips_cir Trips_ell sch_zone act_zone p EllShop 

EllOther 
        clear OD_temp GEN_temp ATT_temp teta1 tetalist o d a  

  
        save(['60sc' num2str(scenario) 'teta' num2str(teta_numb) '.mat']) 
        toc 
    end 
end 
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