
Faculty of Civil and Industrial Engineering
Department of Civil, Constructional and Environmental Engineering

RTCM2PVT:
an innovative real-time tool for
GNSS precise PVT estimation

Candidate: Alessio Conte Advisor: Augusto Mazzoni

Student ID: 1427719

Academic Year 2017-2018

ii

Contents

Contents v

1 Introduction 1

2 The GPS System 3

2.1 GPS Signals . 3

2.2 GPS ephemerides . 4

2.3 GPS Observations . 7

2.3.1 Pseudo-range observation 7

2.3.2 Phase-range observation 9

2.3.3 Summary of errors affecting observations 11

2.4 Real-Time Applications 12

2.4.1 Single Point Positioning 12

2.4.2 Real Time Kinematic positioning 14

3 RTCM3 Decoder 17

3.1 Data format . 17

3.1.1 Message format 19

3.2 Preliminary procedural approach for decoding 25

3.2.1 Representing data fields 25

iii

iv Contents

3.2.2 Processing the Buffer to extract Messages . . . 29

3.2.3 Decoding Messages 31

3.3 Real time decoding . 33

3.3.1 Decode main file step by step 34

3.4 The DECODER as an I/O function 41

3.4.1 From decoded values to real messages 41

3.5 Decoder Outputs . 48

3.5.1 Final DECODER function 50

3.5.2 Output examples 50

4 Real-time applications 55

4.1 Single-point positioning 56

4.1.1 The Receiver-Satellite (recsat) class 56

4.1.2 Satellite matching for orbits computation 62

4.1.3 Navigational message updating 62

4.1.4 Final solutions 63

4.2 Real-time variometric approach 64

4.2.1 The (simplified) variometric model 64

4.2.2 Tool implementation 67

4.2.3 Results . 74

4.3 Final algorithm for applications 75

5 Conclusions 77

A 81

A.1 Python routines . 81

A.1.1 appendToFields method 81

A.1.2 dump2 method 82

A.1.3 GEORANGE function 82

Contents v

A.1.4 makeNAVPACK function 83

A.1.5 update NAVPACK function 84

References 88

vi Contents

List of Figures

3.1 Conceptual sketch representing Buffer and Frames. . . 18

3.2 RTCM3’s Frame structure. Picture from RTCM3 Stan-

dards [7]. 18

3.3 Contents of the type 1019 Message, Part 1. 22

3.4 Contents of the type 1019 Message, Part 2. 23

3.5 Contents of the type 1019 Message, Part 3. 23

3.6 Contents of the type 1006 Message 24

3.7 Contents of the Message Header, Type 1004 25

3.8 Contents of the Satellite-Specific Portion of a Type 1004

Message, Each Satellite 26

3.9 Example of Definition Files. 27

3.10 Conceptual work-flow for decoding 33

3.11 How the three files are called by each other. 34

3.12 Example of Buffer processing: it shows how rtcm3 at-

tributes change at each cycle. You may see that in

this buffer there were only navigational messages (type

1019). 39

3.13 Message name, decoded value and data field number of

message 1019. 39

vii

viii List of Figures

3.14 Message name, decoded value and data field number of

message 1004. 40

3.15 Message name, decoded value and data field number of

message 1006. 40

3.16 Example of data fields list in the rtcm3 standard [7].

DF resolution of DF025 is 0.0001 meters. 41

3.17 Output example of the BufferOutput function 51

3.18 Navigational message content 52

3.19 Observations message content 53

3.20 ReferencePoint message content 53

4.1 From observation message to receiver-satellite (recsat

objects) . 59

4.2 Example of a ”full”recsat (after orbits computation) . . 61

4.3 Example of single positioning solution file. It was made

by the acquisition of 10 Buffer. X, Y and Z are expressed

in meters. sow is the second of week of the observation. 64

4.4 . 65

4.5 Simple sketch of two RECSAT with two consecutive

epochs. Obviously, each recsat in RECSAT1 must have

the corresponding recsat with the same satellite in REC-

SAT2. 69

4.6 Example of the plot which the tool provides in real-time.

The plot shows the results of the variometric approach.

Sow(GPS second of week) on the x-axis and the veloc-

ities along the directions East, North and Up on the

y-axis. 74

4.7 Blocks digram of the representing the tool input/output 76

List of Tables

2.1 Ephemeris parameters sent in the navigational message.

Thy are used to calculate satellites orbits. Source [2] . 6

3.1 A small subset of RTCM3 standard’s data fields 20

ix

x List of Tables

Listings

3.1 Read in data. 36

3.4 class Navigational . 43

3.5 class Observations . 45

3.6 class ReferencePoint 47

3.7 The CalculateBufferOutput function 49

3.8 The DECODER function 50

4.1 recsat class definition 57

4.2 The Point class . 58

4.3 The makeRECSAT function 60

4.4 The StartVariometric function 70

A.1 The update NAVPACK function 84

xi

xii Listings

Chapter 1

Introduction

The GPS positioning system is known for its capability to provide the

receiver’s coordinates in a given reference frame. Generally speaking,

the receiver performs raw observations of the signals satellites signal’s,

that are also containing the navigational messages, necessary to know

when and where is the satellite when it sends the signal. However,

because of the structure of the problem, there are several types of errors

that affect the final solution, like, for example, atmospheric noises or

clocks offsets.

There are many established approaches for positioning, that, in

general terms can be subdivided into two categories, that are absolute

positioning and relative positioning. Absolute positioning, uses one

single receiver, while relative positioning uses at least two receivers.

The latter gives, as expected, more precise solutions, because, combin-

ing the observations of different receivers, reduces most of the uncer-

tainties terms of the equations. However, absolute positioning, (with

a stand-alone receiver) gives satisfactory solution for some application

1

2 Introduction

like navigation.

Another interesting approach with a stand-alone receiver is that one

which uses the GPS as a velocimeter, hence, giving the 3D velocities of

the receiver. This method was implemented by the Geodesy and Geo-

matics division of the Sapienza University of Rome [6]. The approach

bases its’s principle on the raw observations of the receiver, on two

consecutive epochs. In this way is it possible to estimates the receiver

displacements epoch by epoch, and, since the receiver works with 1 Hz

frequency, those displacements are essentially velocities. This method

is the so-called ”variometric” approach.

Until now there wasn’t a tool able to apply the variometric approach

in real-time. It was only possible to take the raw observations and, in

post-processing, apply the equations. The objective of this thesis is to

develop a tool able to apply the variometric approach in real-time.

It was done basically into two different steps: decoding the signal

coming from the receiver with the RTCM standard (Radio Techni-

cal Commission for Maritime Services); implement routines and algo-

rithms capable to use the decoded quantities to implement the var-

iometric approach in real-time. The receiver that has been used for

testing is the permanent station M0SE (Rome, Italy).

For the decoding part I must give credits to JCMBSoft (https:

//github.com/jcmb) for sharing its version of the decoder on GitHub,

which represented the starting point of my work. For the developing

part, I give credits to the Geodesy and Geomatics division of Sapienza

University of Rome, for sharing with me the Python library containing

the set of class and functions necessary to the success of this work.

https://github.com/jcmb
https://github.com/jcmb

Chapter 2

The GPS System

The Global Positioning System bases its working principle on the obser-

vations of specific electromagnetic signals coming from a constellation

of artificial satellites. Through the observations of those signals from a

receiver station (standing or moving), is possible to get the position of

the station in the cartesian geocentric reference system. The GPS Sys-

tem works appropriately with the contribution of three components:

1) a satellites constellations which transmit signals, 2) a control cen-

ter on the earth able to manage the whole system, 3) devices able to

interpret and elaborate signals and information.

2.1 GPS Signals

It is a complex signal made of the superimposition of different beacons:

carrier, codes, and messages. On each satellite, four oscillators provide

an electromagnetic signal with a frequency f0= 10.23 MH. So from f0

are retrieved the frequency of the two carriers waves: L1, frequency

3

4 The GPS System

154f0, wavelength ≈ 19 cm; L2, frequency 120f0, wavelength ≈ 24 cm.

The use of two different carrier waves is justified by the fact that the

user wants to evaluate and manage the error due to the Ionospheric

noise, which depends on the frequency. The two carriers L1 and L2

are modulated with three codes: C/A (Course acquisition), frequency
1
10
f0; is repeated every millisecond, and it is different from one satel-

lite to another because allows the satellite identification; P (precise),

frequency fp = f0; D (data), frequency fd= 50 Hz. C/A and P codes

are known as Pseudo Random Noise since are sequences of pseudo-

random +1 and -1. D is the navigational message, a well-structured

signal, containing ephemerides, which are information required to solve

the positioning problem.

2.2 GPS ephemerides

The ephemerides are the set of parameters and algorithms that allow

calculating the satellite position at any time in a reference system

assigned. There are two types of ephemerides:

� broadcast ephemerides (trough the navigational message D)

� precise ephemerides.

The broadcast ephemerides are calculated from the Control Center and

are based on the previous orbits of that satellite. Data of the last week

are processed, and a first trajectory is estimated with an error of about

100 m. Then, corrections are transmitted every 12/24 hours. In this

way, the broadcast ephemerides have an error of about 1 m. The

2.2 GPS ephemerides 5

broadcast ephemerides are used both for real-time positioning and for

post-processing.

Precise ephemerides are based on the tracking of the satellites from

a network of 240 stations of the IGS (International GPS Service). They

are called Precise ephemerides because are observed and not predicted,

and so they have an accuracy of about 20 cm. Generally, they are

available one week after the surveys; therefore, they are not usable for

real-time positioning.

For the sake of completeness in Tab. 2.1 are described the set of

parameters in the broadcast ephemerides used to calculate orbits. More

details on every single parameter and precise algorithm of operations

to compute orbits are in any reference book, like [2].

6 The GPS System

Transmitted Ephemeris

Notation Description

M0 average anomaly at the reference epoch;

∆n average difference of motion with respect to the ref-
erence motion

e eccentricity of the orbit
√
A square root of the semi-major axis

Ω0 Longitude of the ascending node at the beginning of
the GPS week

i0 Inclinazione dell’orbita all’epoca di riferimento

ω Argument of Perigee

Ω̇ Time derivative of the right ascension

IDOT Time derivative of inclination

Cuc, Cus Cosine and sine of the latitude correction

Crc, Crs Cosine and sine of radius correction

Cic, Cis Cosine and sine of inclination correction

toe Ephemeris reference epoch in sow

IODE Ephemeris updating epoch

Tab. 2.1: Ephemeris parameters sent in the navigational message. Thy are
used to calculate satellites orbits. Source [2]

2.3 GPS Observations 7

2.3 GPS Observations

The signal sent by the satellites is picked up by the receiver, which

reproduces the signal inside it; The two signals are identical but shifted

in time.

Receivers can perform two different measures: pseudo-range ob-

servations (on the C/A and P) and phase-range observations on the

carrier waves L1 and L2. Both measurements allow to determine the

same quantity (receiver - satellite distance) but with different preci-

sions.

2.3.1 Pseudo-range observation

The software inside the receiver measures the time delay between the

signal reproduced and the signal received. The problem is that receiver

and satellites have different clocks which are not synchronised. In

fact, suppose that the two clocks are perfectly synchronised with the

reference time t (GPS time). In this case the time shift would be

∆tSR = tR − tS =
ρSR
c

being ρ the geometric distance receiver-satellite and c the signal speed

in empty space. The problem is that the actual receiver and satellite

clocks, respectively, TR and T S, have a time offset wrt the GPS time

t:

dtR = TR − tS dtS = T S − tS

The time offset of the satellite dtS is known because is estimated with

a polynomial fitting, whose coefficients are inside the navigational mes-

8 The GPS System

sage (broadcast ephemerides), while the receiver time offset dtR is un-

known. Accordingly the time shift between the receiver clock and the

satellite clock is

∆T SR = (tR − tS) + (dtR − dtS) = τ + (dtR − dtS) (2.1)

where τ indicates the time of flight of the signal. Consequently the

Pseudo-Range distance P S
R (Pseudo because have the synchronisation

error) is obtained multiplying (2.1) by the speed light c:

P S
R = cτ + c(dtR − dtS) (2.2)

The term cτ must be corrected because, the signal propagates in the

atmosphere and not in empty space, therefore, we must take into ac-

count the Ionospheric and Tropospheric corrections, respectively ISR(t)

and T SR(t), considered known trough synthetic models. Therefore, the

final pseudo-range equations is

P S
R(t) = ρSR(t) + c(dtR(t)− dtS(t)) + ISR(t) + T SR(t) (2.3)

. being ρSR(t) the geometric distance receiver-satellite

ρSR(t) =
√

(XS −XR)2 + (Y S − YR)2 + (ZS − ZR)2

In (2.3) the unknown are:

� XR , YR, ZR receiver position

� dtR(t), receiver clock offset.

In conclusion, each observed satellite provides one equation like (2.2),

2.3 GPS Observations 9

so, it is possible to get the receiver position through the resolution of a

system with four unknown. The receiver’s software solves the system

in real-time giving its position in each epoch1. If the receiver observes

more than four satellites is possible to estimate its position with greater

precision through the least square estimation (see section 2.4.1).

2.3.2 Phase-range observation

The phase observation is made on the carrier waves L1 and L2 and

what is measured is the phase difference between the signal internally

reproduced by the receiver and the received signal. The observation

equation at the time t is

∆φSR = φR(t)− φS(t− τ)

where φR(t) is the phase of the signal reproduced inside the receiver at

time t; φS(t− τ) is the phase of the satellite signal at time t− τ ; τ is

the time of flight of the signal. The measurement is made only in one

cycle, ans consequently, ∆φSR is comprised between 0 and 1. Being the

nominal frequency of the signal f0, and considering the relation (2.4)

between phase and frequency (assumed to be constant in time)

f0 =
dφ

dt
(2.4)

1Time interval between two successive measures

10 The GPS System

with a Taylor expansion we have that

φS(t− τ) = φS(t)− tf0 − τf0 (2.5)

φS(t)− f0τ −NS
R(t) (2.6)

In the latter equation NS
R(t) is the integer number of full cycle the

signal makes along the whole time of flight. Therefore [1]

∆φSR = φR(t)− φS(t) + f0τ +NS
R(t)

As usual, the two clocks of the receiver and the satellite have a time

offset, respectively dtR and dtS, causing a phase offset with respect

the phase of an ideal clock synchronized with the reference time (GPS

time) φ(t), for which:

φS(t) = φ(t) + f0dt
S φR(t) = φ(t) + f0dtR

Therefore the phase observation equation becomes:

∆φSR = f0τ(t) + f0(dtR(t)− dtS(t)) +NS
R(t) (2.7)

The observation equation (2.7) is multiplied by the signal wavelength,

obtaining [3]

LSR(t) = cτ(t) + c(dtR(t)− dtS(t)) + λNS
R(t) (2.8)

As we did with the pseudo-range, we must consider the Tropospheric

and Ionospheric corrections, and, therefore, the finale phase-observation

2.3 GPS Observations 11

equation is:

LSR(t) = ρSR(t) + c(dtR(t)− dtS(t)) + λNS
R(t)− ISR(t) + T SR(t) (2.9)

The unknown in (2.9) are:

� XR , YR, ZR receiver position

� dtR(t), receiver clock offset

� NS
R(t), integer ambiguity

However, in this case, observing more satellite in one single epoch

wouldn’t help because, each observation provides the new unknown

NS
R. In conclusion, is not possible to estimate the receiver position in

one single epoch with phase observations.

2.3.3 Summary of errors affecting observations

� measurement errors:≈ [0.01÷ 0.001]λ (signal wavelength)

� broadcast ephemeris error: εXS ≈ 1m

� satellite clock offset error: εts ≈ 1m

� Ionospheric error (with models): εI ≈ 0− 10m

� Tropospheric error (with models): εT ≈ 0− 1m

I do not go deep in atmospheric models and other errors analysis

because it goes out of what is concerning this work, but any reference

book may help [4].

12 The GPS System

2.4 Real-Time Applications

2.4.1 Single Point Positioning

Single Point Positioning is a positioning method where the receiver

coordinates are estimated in one single epoch, starting from the ob-

servations (of codes or phases) and the navigational message [4]. The

latter provides us with the parameters to model (with errors), the satel-

lite clock and the atmospheric noises terms. Let’s consider the code

observation equation (2.3). To apply the least square estimation, we

need to linearise the equation around an approximate position of the

receiver, say X̃R, ỸR, X̃R, supposed to be known a priori. Since the

receiver coordinates are just in ρ (time dependence is removed because

we are working in one single epoch, and, for the sake of write cleaning,

also S and R), and being

x̃ =

X̃R

ỸR

Z̃R

 x =

XR

YR

ZR

 δx = x− x̃

then, the linearisation of ρ is

ρ ≈ ρ̃+∇T
ρ (x̃)δx (2.10)

where ∇ρ(x̃) is the gradient of ρ with respect to x, evaluated in the ap-

proximate coordinates. Considering (2.10), the linearised observation

equation becomes:

Po = ∇T
ρ (x̃)δx + cdtR + ρ̃+−cdtS + I + T (2.11)

2.4 Real-Time Applications 13

and letting

bSR = ρ̃+−cdtS + I + T

becomes,

Po = ∇T
ρ (x̃)δx + cdtR + bSR (2.12)

Computing the gradient ∇ρ(x̃), is possible to see that it is nothing but

the unit vector from the approximate receiver and the satellite.

∇T
ρ (x̃) = ẽSR

Therefore, for one satellite we have the (scalar) linearised observation

equation:

Po = bSR + ẽSRδx + cdtR (2.13)

For m satellites it becomes the linear system (4.7) [4]

Po =
[
ER i

] [δx
cdtR

]
+ b (2.14)

which can be solved with the least squares method, if m > 4. where:

P0 =


P 1
o

P 2
o
...

Pm
o


[
ER i

]
=


. . . e1

R . . . 1

. . . e2
R . . . 1
...

...

. . . emR . . . 1

 b =


b1R
b2R
...

bmR


.

14 The GPS System

2.4.2 Real Time Kinematic positioning

RTK (Real-Time Kinematic) is an established positioning technique

that involves a base receiver, whose coordinates are known, and, a rover

receiver whose coordinates are unknown. The base receiver communi-

cates with the rover in real-time (for example with a network protocol),

with an established data format such us RTCM. The data processing

at the rover includes ambiguity resolution of a new kind of observa-

tion, which is the double difference observation, discussed below, and

the estimation of the rover position. One significant drawback is that

the maximum distance between base and rover must not exceed 10

-20 km, in order to be able to solve rapidly and reliably the carrier

phase ambiguity. This limitation is caused by the distance-dependent

biases such as orbit-error, ionospheric and tropospheric signal refrac-

tion. With RTK positioning can be reached centimeter-level accuracy

[8].

Let’s consider then two receivers (A and B) ant their phase-range

observations (2.8) referred to the same satellite, S. We can build then

a new observation called single difference[5]

LSAB(t) =LSA(t)− LSB(t) (2.15)

=ρSAB(t) + λNS
AB(t)− ISAB + T SAB(t) + c(dtA(t)− dtB(t))

(2.16)

where was used for the generic quantity x, xAB = xA− xB. The single

difference is a new observation where there aren’t the satellite clock

term, that would give its contribution to error analysis. Moreover,

in this way, the error due to troposphere, ionosphere, and orbits are

2.4 Real-Time Applications 15

significantly reduced, because the signals travels trough mostly the

same part of atmosphere.

Consider now two receivers (A and B) and, two satellites (I and

J). Then we can build the double differences observation which is the

difference of two single differences [5]

LIJAB(t) =LIAB(t)− LJAB(t) (2.17)

=ρIJAB(t) + λN IJ
AB(t)− IIJAB(t) + T IJAB(t) (2.18)

where, for the generic quantity x, xIJAB = xIAB − xJAB. In this new

observation, obtained with four phase observations, there are only the

geometric unknowns and the double difference ambiguity. The use of

double differences allows a relative positioning, meaning that we are

able to estimate only the components of the three-dimensional vector

between A and B [5].

16 The GPS System

Chapter 3

RTCM3 Decoder

In this chapter, there is a description of the procedures to decode data

stream in the RTCM format. Firstly, is described the data structure

of the RTCM3 (version 3), then how the decoder works, and then how

the tool developed provides useful outputs to implement the so-called

variometric approach. For the decoding part of this work I give credits

to JCMBSoft (https: // github. com/ jcmb), for sharing its version

of the decoder on GitHub, which represented the starting point of my

work.

3.1 Data format

The tool developed is going to acquire, through a TCP socket, a byte-

array of data sent by the receiver, which for the application is the

M0SE permanent station (Rome, Italy). Each byte array is read in

with a length of 1024 bytes.

17

https://github.com/jcmb

18 RTCM3 Decoder

After the socket configuration, the byte-array is stored into a vari-

able with the command Buffer = clientSocket.recv(1024). The

variable Buffer, is subdivided in different slots called Frames, each

containing several Messages, which are the crucial information for ap-

plications. Each Frame is subdivided itself in different slots, as shown

in Fig. 3.2.

Fig. 3.1: Conceptual sketch representing Buffer and Frames.

Fig. 3.2: RTCM3’s Frame structure. Picture from RTCM3 Standards [7].

The Preamble is a fixed 8-bit sequence. The next 6-bits are Re-

served and should be fixed to 0 (in future versions these bits may

contain the version number of the standard). The third slot expresses

3.1 Data format 19

the Message Length in bytes. Then, the most important, the Mes-

sage that contains the piece of information we are going to decode

and to use. At the end of the Frame structure, there are 24 bits to

ensure protection against random errors with the CRC -24Q algorithm

by Qualcomm [9].

3.1.1 Message format

Messages are that part of the information that comes within the fourth

slot of each Frame (green slot in Fig. 3.2) coming as a sequence of bits

that we need to decode to extract usable information. There are many

types of messages that the user may want to decode. Therefore they

are numbered in types, from 1 to 1230.

The types used to implement the variometric approach in this work

are

� type 1019 which is the Navigational message containing ephemerides

for the orbits computation

� type 1006 containing information on the receiver and the approx-

imate receiver position

� type 1004 which is the Observations message with pseudo-range

and phase-range raw observations

However, the decoder works, eventually, for any message.

3.1.1.1 Message’s data fields

Each message contains specific set of data fields, sometimes repeated

as information on several satellites is provided (like for message 1004).

20 RTCM3 Decoder

DF# DF Name

DF002 Message Number

DF004 GPS Epoch Time (TOW)

DF009 GPS Satellite ID

DF011 GPS L1 Pseudorange

DF025 Antenna Ref.Point ECEF-X

DF026 Antenna Ref.Point ECEF-Y

DF027 Antenna Ref.Point ECEF-Z

DF081 GPS Time of emission

DF090 GPS Eccentricity

Tab. 3.1: A small subset of RTCM3 standard’s data fields

The data fields, in each message, are broadcast in the order listed in the

tables presented in 3.1.1.2, 3.1.1.3, 3.1.1.4. Data fields are essentially

telling us how to subdivide the message bit-array. As a matter of exam-

ple, in Table: 3.1 are shown some data field of the RTCM3 Standard.

DF Numbers are just numerical identifiers. Each message has only

specific data fields. For example, looking at the table above, DF004,

DF009, and DF011 are in messages of type 1004; DF025, DF026, and

DF027 are in messages of type 1006; DF081 and DF090 are in mes-

sages of type 1019. Data fields in RTCM3 standard range form DF001

to DF515. As a matter of example in the next table are shown just

some of the data fields constituting message 1004:

3.1 Data format 21

Message 1004

Data field DF Number Data Type No. of Bits

Message Number DF002 uint12 12

GPS Epoch Time (TOW) DF004 uint30 30

GPS Satellite ID DF009 uint6 6

...
...

...
...

The Variable data type indicates the numerical representation that the

bit array of that data field is representing. The most used are: bit(n),

to represent true or false information; intn, n bit 2’s complement to

represent signed integers; uintn, n bit unsigned integer, to represent

positive integers.

For example, the first 12 bits of each type of message are express-

ing the Message Number (DF002). If the first 12 bits of an arriving

message are ’001111101100’, since DF002 is representing an unsigned

integer (uint12), trough a normal binary to decimal conversion, is

possible to conclude that the message is of type 1004 (001111101100

= 1004).

22 RTCM3 Decoder

3.1.1.2 Message 1019 data fields

Fig. 3.3: Contents of the type 1019 Message, Part 1.

3.1 Data format 23

Fig. 3.4: Contents of the type 1019 Message, Part 2.

Fig. 3.5: Contents of the type 1019 Message, Part 3.

24 RTCM3 Decoder

3.1.1.3 Message 1006 data fields

Fig. 3.6: Contents of the type 1006 Message

3.2 Preliminary procedural approach for decoding 25

3.1.1.4 Message 1004’s data fields

Fig. 3.7: Contents of the Message Header, Type 1004

3.2 Preliminary procedural approach for

decoding

Is it possible to summarize the decoding procedure in three steps:

� Representing data fields

� Processing the Buffer to extract Messages

� Decoding Messages

3.2.1 Representing data fields

Imagine the message as sequence of ’1001100101...’ that we need to

decode. Before decoding, we must say how this bit-array is subdivided.

26 RTCM3 Decoder

Fig. 3.8: Contents of the Satellite-Specific Portion of a Type 1004 Message,
Each Satellite

For example, in a message of type 1004 the first 12 bits are referring

to the Message Number data field (DF002), and the next 12 bits to

the Reference Station ID (DF003), and so on. In this way, decoding

can be made easily making an index that moves along the byte array,

where the length of each move is the number of bits of that specific

data field.

To import that information the tool must read some text files con-

taining all the data fields specifications. There must be one text file

for each message we wish to decode. For example, if we wish to decode

3.2 Preliminary procedural approach for decoding 27

messages of type 1004, 1006 and 1019, the tool must read in three

files. Those files, from now on are called Definitions Files. The func-

Fig. 3.9: Example of Definition Files.

tion which processes those files is the read_from_file function, which

take as input one file and gives all the data fields informations inside

a Python list named fields. Therefore, for each file we will have a

variable fields. For example, if read_from_file takes in the Defini-

tion file for message 1006, it gives as output the list represented in the

following table:

fields1006

Index type name df num bitlength value

0 UINT Message Number 2 12 None

1 UINT Reference Station ID 3 12 None
...

...
...

...
...

...

13 UINT Antenna Height 28 16 None

Each row represent one element of the list which is a Python dictionary

having as keys the variable in the first row: type, name, df number,

bitlength, value.

28 RTCM3 Decoder

Example of first and second element of fields, for message of type 1006

1 >>f i e l d s 1 0 0 6 [0]

2

3 { ’ type ’ : ’UINT ’ ,

4 ’name ’ : ’Message Number ’ ,

5 ’ df number ’ : 2 ,

6 ’ b i t l e n g th ’ : 12 ,

7 ’ va lue ’ : None}
8

9 >> f i e l d s 1 0 0 6 [1]

10

11 { ’ type ’ : ’UINT ’ ,

12 ’name ’ : ’ Re ference Stat i on ID ’ ,

13 ’ df number ’ : 3 ,

14 ’ b i t l e n g th ’ : 12 ,

15 ’ va lue ’ : None}

The last column is the variable for the decoded quantity, and, for

each data field, is set to None. Indeed, None will be replaced with the

actual value after decoding.

The Definition files to read in, must have a precise syntax, that

depends on how the function process the file. Here is shown the Def-

inition file for the message of type 1006, but is easy to extend the

concept to the other types.

3.2 Preliminary procedural approach for decoding 29

Definition File for message of type 1006

1 NAME: Stat i onary Antenna Reference Point , With Height In format ion

2 ID : 1006

3 UINT : 1 2 : 2 : Message Number

4 UINT : 1 2 : 3 : Reference Stat i on ID

5 UINT : 6 : 2 1 : ITRF Year (Reserved)

6 UINT : 1 : 2 2 :GPS Ind i c a t o r

7 UINT : 1 : 2 3 :GLONASS Ind i c a t o r

8 UINT : 1 : 2 4 : Ga l i l e o Ind i c a t o r (Reserved)

9 UINT: 1 : 1 4 1 : Reference Stat i on Ind i c a t o r

10 INT : 3 8 : 2 5 :ECEF−X
11 UINT: 1 : 1 4 2 : S i ng l e Rece iver O s c i l l a t o r I nd i c a t o r

12 UINT : 1 : 1 : Reserved

13 INT : 3 8 : 2 6 :ECEF−Y
14 UINT: 2 : 3 6 4 : Quarter Cycle I nd i c a t o r

15 INT : 3 8 : 2 7 :ECEF−Z
16 UINT: 1 6 : 2 8 : Antenna Height

17 END:

3.2.2 Processing the Buffer to extract Messages

Once the Buffer is received from the TCP socket, before to start

decoding, the tool must extract messages by every single Frame of the

Buffer (Fig. 3.2). Moreover, only if CRC test passes, messages can

be decoded. Let’s say for now that this procedure is performed by the

function process_data, which takes in the Buffer and return a variable

named result that represent how the process evolved. Therefore, the

algorithm describing what process_data does is: As shown by the

algorithm, at any step, a variable result is returned, and Buffer is

updated. In this way the algorithm is inserted inside a while loop that

process data until result becomes 0 (which means that more data are

needed), that happens in two cases: a) Buffer length isn’t enough,

30 RTCM3 Decoder

Take the whole Buffer as input;
if Buffer length ≥ 48 bit1 then

go to the next block
else

return result = 0
end
if the first 8 bit are the Preamble’s bit then

go to next block
else

go on looking for the first Preamble;
and update the Buffer;
if Preamble is found then

go to next block
end
if No Preamble is found then

return result = 3
end

end
Get the message length;
if message length ≥ Buffer length then

return result = 0
else

Go to next block
end
Make the CRC test;
if the CRC test passes then

get the message bits and decode the message;
return result = 4

else
update the buffer;
return result = 3

end
Algorithm 1: Procedure implemented by function process data.
At each step the buffer is updated and a variable result is returned.

3.2 Preliminary procedural approach for decoding 31

Value of result Meaning

0 Buffer to process isn’t enough

3 Message Un-decoded

4 Message Decoded

and b) all the Buffer has been processed, and is finished. Once that

the whole Buffer has been decoded, another Buffer comes in and the

procedure starts again.

Example of how process data is called in a while loop

1 # Buf f e r i s acqu i red

2 r e s u l t = proce s s da ta (Buf f e r) # f i r s t p r o c e s s i ng

3 whi le r e s u l t != 0 :

4 i f r e s u l t == 3 :

5 # message not decoded

6 e l i f r e s u l t == 4 :

7 # message decoded

8 e l s e :

9 # th i s r e s u l t doesn ’ t e x i s t s

10

11 # Process data again in the loop

12 r e s u l t=proce s s da ta (Buf f e r)

3.2.3 Decoding Messages

Now we have all the ingredients to decode messages. In fact the func-

tion process_data provides Message’s byte-arrays, and read_from_file

provides informations about data fields. Therefore, the decode func-

tion takes the byte-array of the message and replace all the None in

fields with the actual decoded value.

The conversion method must consider the type of the data field.

So for example, if the data field type is uint, than the conversion is

32 RTCM3 Decoder

standard binary to decimal, otherwise, if the type is int, that a 2’s

complement conversion is needed. Here is shown a rough sketch of the

decode function.

Rough sketch of the decoding function

1 de f decode (message data) :

2 f o r f i e l d in f i e l d s : #each f i e l d i s a d i c t i o n s r y

3 i f f i e l d [’ type ’]== ’UINT ’ :

4 f i e l d [’ va lue ’]= # make c o r r e c t conver s i on

5 c u r r e n t b i t += f i e l d [” b i t l e n g th ”]

6 e l i f f i e l d [’ type ’]== ’INT ’ :

7 f i e l d [’ va lue ’]= # make c o r r e c t conver s i on

8 c u r r e n t b i t += f i e l d [” b i t l e n g th ”]

Next table shows an example of how the variable fields looks like,

after decoding.

fields1006

Index type name df num bitlength value

0 UINT Message Number 2 12 1006

1 UINT Reference Station ID 21 6 0
...

...
...

...
...

...

12 UINT ECEF-Z 27 38 42368540159

13 UINT Antenna Height 28 16 0

3.3 Real time decoding 33

Fig. 3.10: Conceptual work-flow for decoding a single Message. The fields
variable is prepared on the base of the Definition file. On the other hand,
the function process data extract messages from each frame of the buffer
and decodes them. The decoding function replaces None with the actual
decoded quantity, in fields. Updated buffer enters again in process data
until there are no more enough bytes to process. Note that, in this way, at
each cycle, decode overwrites the last value.

3.3 Real time decoding

Until now, the decoding work-flow was explained with a procedural

approach, thus describing what each function does. This approach is

the better way if to understand a quite sophisticated tool. The initial

Decoder from https://github.com/jcmb was composed of three files,

one main file, and two class files, and was quite challenging to under-

stand all the dependencies, from one file to another. Therefore, the

best way was to unpack methods and attributes from their classes and

try to understand, what was going on, function by function and step

https://github.com/jcmb

34 RTCM3 Decoder

by step.

3.3.1 Decode main file step by step

The main file of the initial Decoder (the starting point of this thesis

work), is the Decode.py. The other two are RTCM3.py, containing a

class representing each incoming Buffer, and RTCM3 Definitions.py,

to manage the data fields representation. This thesis don’t focus on

Fig. 3.11: How the three files are called by each other.

what each file does, line by line, but, to understand how the funda-

mental structure of the decoder works, here is analysed step by step

the main file execution.

The complete work-flow can be summarized with the following

steps:

� Read in Buffer data

� Create a new object named rtcm3 that contains the three main

attributes:

3.3 Real time decoding 35

– buffer, which is the byte-array to be processed at each

cycle

– commands, which is a Python dictionary with keys 1006,1004

and 1019, and values object of class RTCM3 Definition.

Those object have the variable field as attribute. So, for

example, if we are interested in the data fields of messages

of type 1006

>>rtcm3.commands[1006].fields

Furthermore, if we want the value of the third data field

>>rtcm3.commands[1006].fields[2][’value’]

– packet_ID, integer number representing the message being

decoded (e.g.: 1019)

� Process Buffer in the loop, until there are no more bytes to

process

� Get another Buffer

In following pages the main file (Decode.py) is subdivided in different

pieces (listing 3.1, 3.2, 3.3), to explain, step by step, how the process

evolves. The main file is represented with a coloured background, while

the console with the symbol >>

36 RTCM3 Decoder

1. Read in data

Listing 3.1: Read in data.

1 import socke t # python module f o r socket managment

2 import RTCM3 # c l a s s RTCM f i l e imported

3

4 c l i e n t S o c k e t=socket . socke t (socke t .AF INET , socket .SOCK STREAM)

5 ip=socket . gethostbyname (” 151 . 100 . 8 . 1 17 ”)

6 port=2130

7 address=(ip , port)

8 c l i e n t S o c k e t . connect (address) #handshake

9

10 whi le i ==1:

11 Buf f e r=c l i e n t S o c k e t . recv (1024)

>> len(Buffer)

1024

2. Creating the rtcm3 object

Listing 3.2: Creating the rtcm3 object

12 rtcm3=RTCM3.RTCM3()

13 new data = bytearray (Buf f e r)

14 rtcm3 . add data (data=new data)

>> rtcm3

<RTCM3.RTCM3 object at 0x00000282386DB5F8>

>> len(rtcm3.buffer)

1024

>>rtcm3.packet_ID

None

>>rtcm3.commands[1019][0][’value’]

3.3 Real time decoding 37

None

>>rtcm3.commands[1019][1][’value’]

None

>>rtcm3.commands[1019][2][’value’]

None

.

.

etc

Let’s go on with the main file and see how the attributes of rtcm3

change after the buffer processing.

3. Buffer processing (which include decoding as mentioned in

3.2.2)

Listing 3.3: Process Buffer in loop

15 r e s u l t = rtcm3 . p roc e s s da ta ()

16 whi le r e s u l t != 0 :

17 i f r e s u l t == 3 :

18 # don ’ t do nothing

19 e l i f r e s u l t== 4 :

20 # pr in t decoded va lue s

21 # record va lue s f o r f u r t h e r p ro c e s s i ng

22 e l s e :

23 r a i s e NameError (’ r e s u l t ’ , r e s u l t , ’ not i d e n t i f i e d ’)

24

25 # Process data again in the loop

26 r e s u l t=proce s s da ta (Buf f e r)

After line 15 the rtcm3 attributes are:

>> len(rtcm3.buffer)

957

38 RTCM3 Decoder

>> rtcm3.packet_ID

1019

>>rtcm3.commands[1019].fields[0][’value’]

1019 #(Message Number)

>> rtcm3.commands[1019].fields[1][’value’]

2 # (Satellite ID)

>> rtcm3.commands[1019].fields[2][’value’]

1011 # (GPS week)

.

.

etc

Moreover, since result = 4, the code execution enters in the

while loop (line 16 of code 3.3), where at each cycle the updated

buffer is processed again and again, until result = 0.

The procedure above goes on until result is 0, which means that all

rtcm3.buffer is processed. Then, a new Buffer comes in. For more

clearness, in Fig. 3.12 is shown an example of how the procedure

evolves, at each cycle.

3.3.1.1 Decoded values

At code 3.3 on the preceding page, in line 20, we can eventually print

the decoded data. Following figures Fig. 3.13, Fig. 3.14, Fig. 3.15,

show some examples of decoded values of messages 1019,1004 and 1006

respecitvely. For obvious reasons of space, only some of them are

shown.

3.3 Real time decoding 39

Fig. 3.12: Example of Buffer processing: it shows how rtcm3 attributes
change at each cycle. You may see that in this buffer there were only
navigational messages (type 1019).

Fig. 3.13: Message name, decoded value and data field number of message
1019.

40 RTCM3 Decoder

Fig. 3.14: Message name, decoded value and data field number of message
1004.

Fig. 3.15: Message name, decoded value and data field number of message
1006.

3.4 The DECODER as an I/O function 41

3.4 The DECODER as an I/O function

3.4.1 From decoded values to real messages

As shown from Fig. 3.13, Fig. 3.14 and Fig. 3.15, decoded values are

not really representing the corresponding field. For example, decode

value of ECEF-X data filed (message 1006) is 46424327599, should rep-

resent the X approximate coordinates of the receiver in WGS84, but

it clearly does not. So what are the real values of each data field? The

answer is the data field resolution, which is specified inside the Stan-

dards manual [7], in the chapter Data Fields. Therefore, for each data

Fig. 3.16: Example of data fields list in the rtcm3 standard [7]. DF
resolution of DF025 is 0.0001 meters.

field, the decoded quantity must be multiplied by its corresponding

data field resolution. For example, the actual value of DF025 is

46424327599 ∗ 0.0001m = 4642432.7599m

The operation described above is made into new class files, representing

navigational messages, observation messages and, reference messages.

42 RTCM3 Decoder

The class files mentioned have all the same scheme:

� The constructor method takes a list of all the data fields decoded

inside the Buffer

� Get the index of the first data field (index_start)

� Get the index of the last data field, (index_end)

� Get a variable Message with data fields from index_ start to

index_end

� Assign new attributes:

for field in Message:

if field[’df_number’] == X: #(df number, e.g.:2)

self.name_dfX = field[’value’] * DFresolution

In 3.4.1.1 , 3.4.1.2 and 3.4.1.3 are shown the three classes defini-

tions. Then, in section 3.5, is illustrated how those classes are utilized.

For now, it is enough to know objects of those classes, are the Decoder

outputs.

3.4 The DECODER as an I/O function 43

3.4.1.1 Navigational message class definition

Listing 3.4: class Navigational

1 c l a s s Nav igat iona l :

2 de f i n i t (s e l f , f i e l d s) :

3 i n d e x s t a r t=f i e l d s . index ({ ’ type ’ : ’UINT ’ ,

4 ’name ’ : ’Message Number ’ ,

5 ’ df number ’ : 2 ,

6 ’ b i t l e n g th ’ : 1 2 ,

7 ’ va lue ’ : 1019})
8 s e l f . name=f i e l d s [i n d e x s t a r t] [’ va lue ’]

9 s e l f . index end= ind ex s t a r t + 31

10 s e l f .MESSAGE=f i e l d s [i n d e x s t a r t : s e l f . index end]

11 f o r f i e l d in s e l f .MESSAGE:

12 i f f i e l d [’ df number ’]==9: #s a t e l l i t e ID

13 s e l f . Id = f i e l d [’ va lue ’]

14 i f s e l f . Id<=9:

15 s e l f . satcode=(”G”+”0”+s t r (s e l f . Id))

16 e l s e :

17 s e l f . satcode=(”G”+s t r (s e l f . Id))

18 e l i f f i e l d [’ df number ’]==76: #s a t e l l i t e week

19 s e l f . GPSweek = f i e l d [’ va lue ’] # * 1 week

20 e l i f f i e l d [’ df number ’]==77: #GPS SV Accuracy [meters]

21 s e l f . SVa = f i e l d [’ va lue ’] # N/A

22 e l i f f i e l d [’ df number ’]==78: #GPS CODE ON L2

23 s e l f . codes= f i e l d [’ va lue ’] * 1

24 e l i f f i e l d [’ df number ’]==79: #GPS IDOT

25 s e l f . i do t = f i e l d [’ va lue ’] * (2**(−43))* np . p i

26 e l i f f i e l d [’ df number ’]==71: #GPS IODE

27 s e l f . IODE = f i e l d [’ va lue ’] *1

28 e l i f f i e l d [’ df number ’]==81: #GPS t oc

29 s e l f . Toc = f i e l d [’ va lue ’] *(2**4)

30 e l i f f i e l d [’ df number ’]==82: # GPS a f 2

31 s e l f . a2= f i e l d [’ va lue ’] * (2 **(−55))

32 e l i f f i e l d [’ df number ’]==83: # GPS a f 1

33 s e l f . a1= f i e l d [’ va lue ’] * (2 **(−43))

34 e l i f f i e l d [’ df number ’]==84: # GPS a f 0

35 s e l f . a0= f i e l d [’ va lue ’] * (2**(−31))

36 e l i f f i e l d [’ df number ’]==85: # GPS IODC

37 s e l f . IODC= f i e l d [’ va lue ’] * 1

38 e l i f f i e l d [’ df number ’]==86: # GPS Crs

44 RTCM3 Decoder

39 s e l f . Crs= f i e l d [’ va lue ’] * (2**(−5))

40 e l i f f i e l d [’ df number ’]==87: # GPS DELTA n

41 s e l f . Deltan= f i e l d [’ va lue ’] * (2**(−43)) * np . p i

42 e l i f f i e l d [’ df number ’]==88: # GPS M 0

43 s e l f .M0= f i e l d [’ va lue ’] * (2 ** (−31))*np . p i

44 e l i f f i e l d [’ df number ’]==89: # GPS C uc

45 s e l f . Cuc= f i e l d [’ va lue ’] * (2**(−29))

46 e l i f f i e l d [’ df number ’]==90: # GPS Ecc en t r i c i t y (e)

47 s e l f . e= f i e l d [’ va lue ’] * (2**(−33))

48 e l i f f i e l d [’ df number ’]==91: # GPS C us ’

49 s e l f . Cus= f i e l d [’ va lue ’] * (2**(−29))

50 e l i f f i e l d [’ df number ’]==92: # GPS Aˆ1/2 ’

51 s e l f . sqrtA= f i e l d [’ va lue ’] * (2**(−19))

52 e l i f f i e l d [’ df number ’]==93: # GPS toe

53 s e l f .TOE= f i e l d [’ va lue ’] * (2** (4))

54 e l i f f i e l d [’ df number ’]==94: # GPS C ic

55 s e l f . Cic= f i e l d [’ va lue ’] * (2 **(−29))

56 e l i f f i e l d [’ df number ’]==95: # GPS OMEGA 0

57 s e l f .OMEGA = f i e l d [’ va lue ’] *(2 ** (−31))*np . p i

58 e l i f f i e l d [’ df number ’]==96: # GPS C is

59 s e l f . Cis= f i e l d [’ va lue ’] * (2**(−29))

60 e l i f f i e l d [’ df number ’]==97: # GPS i 0

61 s e l f . i 0= f i e l d [’ va lue ’] * (2 ** (−31)) * np . p i

62 e l i f f i e l d [’ df number ’]==98: # GPS Crc

63 s e l f . Crc= f i e l d [’ va lue ’]* (2 **(−5))

64 e l i f f i e l d [’ df number ’]==99:# GPS w (Argument o f Per igee)

65 s e l f . omega0= f i e l d [’ va lue ’] * (2 ** (−31)) * np . p i

66 e l i f f i e l d [’ df number ’]==100:# GPS OMEGADOT

67 s e l f .OMEGADOT= f i e l d [’ va lue ’]* (2 ** (−43)) * np . p i

68 e l i f f i e l d [’ df number ’]==101: # GPS t GD

69 s e l f .TGD= f i e l d [’ va lue ’] * (2**(−31))

70 e l i f f i e l d [’ df number ’]==102: # GPS SV HEALT

71 s e l f . SVh= f i e l d [’ va lue ’] *1

72 e l i f f i e l d [’ df number ’]==103: # GPS L2 P data f l a g

73 s e l f . L2Pdata= f i e l d [’ va lue ’]* 1

74 e l i f f i e l d [’ df number ’]==137: # GPS

75 s e l f . HFI = f i e l d [’ va lue ’] * 1

3.4 The DECODER as an I/O function 45

3.4.1.2 Observations message class definition

Listing 3.5: class Observations

1 c l a s s Observat ions :

2 de f i n i t (s e l f , f i e l d s) :

3 s e l f . header=7 # n data f i e l d s in message header

4 s e l f . e a c h s a t e l l i t e =12 # n data f i e l d s f o r eac s a t e l l i t e

5 s e l f . Ambiguity =[]

6 s e l f . pseudorangeRaw=[]

7 s e l f . L1phaserangeL1pseudorangeRaw = []

8 s e l f . satID= []

9 s e l f . satcode =[]

10

11 i n d e x s t a r t=f i e l d s . index ({ ’ type ’ : ’UINT ’ ,

12 ’name ’ : ’Message Number ’ ,

13 ’ df number ’ : 2 ,

14 ’ b i t l e n g th ’ : 12 ,

15 ’ va lue ’ : 1004})
16 i ndex nsa t = i nd ex s t a r t + 4

17 index sow=ind ex s t a r t + 2

18 s e l f . name=f i e l d s [i n d e x s t a r t] [’ va lue ’]

19 s e l f . nsat=f i e l d s [i ndex nsa t] [’ va lue ’]

20 s e l f . sow=f i e l d s [index sow] [’ va lue ’] / 1000

21 l ength=s e l f . nsat * s e l f . e a c h s a t e l l i t e + s e l f . header

22 s e l f . index end=ind ex s t a r t + length

23 s e l f .MESSAGE= f i e l d s [i n d e x s t a r t : s e l f . index end]

24 f o r f i e l d in s e l f .MESSAGE:

25 i f f i e l d [’ df number ’]==14:

26 s e l f . Ambiguity . append (f i e l d [’ va lue ’])

27 e l i f f i e l d [’ df number ’]==11:

28 s e l f . pseudorangeRaw . append (f i e l d [’ va lue ’])

29 e l i f f i e l d [’ df number ’]==9:

30 s e l f . satID . append (f i e l d [’ va lue ’])

31 e l i f f i e l d [’ df number ’] == 12 :

32 s e l f . L1phaserangeL1pseudorangeRaw . append (

33 f i e l d [’ va lue ’])

34 f o r satID in s e l f . satID :

35 i f satID<=9:

36 s e l f . satcode . append (”G”+”0”+s t r (satID))

37 e l s e :

38 s e l f . satcode . append (”G”+s t r (satID))

46 RTCM3 Decoder

39

40 de f GL1Pseudorange (s e l f) :

41 pseudorangeRaw = np . array (s e l f . pseudorangeRaw)

42 Ambiguity = np . array (s e l f . Ambiguity)

43 GPSL1Pseudorange = ((pseudorangeRaw * 0 . 02)

44 % 299792 .458) + (Ambiguity *299792 .458)

45 r e turn (GPSL1Pseudorange)

46

47 de f GL1Phaserange (s e l f) :

48 L1phaserangeL1pseudorangeRaw = (

49 np . array (s e l f . L1phaserangeL1pseudorangeRaw))

50 GL1Phaserange = (s e l f . GL1Pseudorange ()

51 + L1phaserangeL1pseudorangeRaw * 0 .0005)

52 r e turn (GL1Phaserange)

The class Observations, has something more than what is in class Navi-

gational and class ReferencePoint : it has the methods GL1Pseudorange

and GL1Phaserange that calculate respectively the pseudo-range ob-

servation on the L1 carrier wave and, the phase-range observation on

the L1 carrier wave, both introduced in section 2.3). The operations

performed inside the two methods are well specified in the RTCM3

Standard [7].

3.4 The DECODER as an I/O function 47

3.4.1.3 Reference point message class definition

Listing 3.6: class ReferencePoint

1 c l a s s ReferencePoint :

2 de f i n i t (s e l f , f i e l d s) :

3 i n d e x s t a r t=f i e l d s . index ({ ’ type ’ : ’UINT ’ ,

4 ’name ’ : ’Message Number ’ ,

5 ’ df number ’ : 2 ,

6 ’ b i t l e n g th ’ : 12 ,

7 ’ va lue ’ : 1006})
8 s e l f . name=f i e l d s [i n d e x s t a r t] [’ va lue ’]

9 s e l f . index end= ind ex s t a r t + 14

10 s e l f .MESSAGE=f i e l d s [i n d e x s t a r t : s e l f . index end]

11 f o r f i e l d in s e l f .MESSAGE:

12 i f f i e l d [’ df number ’]== 2 :

13 s e l f . MessageNumber = f i e l d [’ va lue ’]

14 e l i f f i e l d [’ df number ’]== 3 :

15 s e l f . Re fe renceStat ionID = f i e l d [’ va lue ’]

16 e l i f f i e l d [’ df number ’]== 22 :

17 s e l f . GPS Indicator = f i e l d [’ va lue ’]

18 e l i f f i e l d [’ df number ’]== 141 :

19 s e l f . Re f e r en c eS ta t i on Ind i c a t o r = f i e l d [’ va lue ’]

20 e l i f f i e l d [’ df number ’]== 25 :

21 s e l f .ECEF X = f i e l d [’ va lue ’] * 0 .0001

22 e l i f f i e l d [’ df number ’]== 26 :

23 s e l f .ECEF Y = f i e l d [’ va lue ’] * 0 .0001

24 e l i f f i e l d [’ df number ’]== 27 :

25 s e l f .ECEF Z = f i e l d [’ va lue ’] * 0 .0001

26 e l i f f i e l d [’ df number ’]== 28 :

27 s e l f . AntennaHeight = f i e l d [’ va lue ’] * 0 .0001

48 RTCM3 Decoder

3.5 Decoder Outputs

For each Buffer acquired, the Decoder should give as output:

� A list of navigational messages, if any

� A list of observation messages, if any

� A list of reference point messages, if any

The function which is in charge of this is the CalculateBufferOutput,

shown in code 3.7

Output = CalculateBufferOutput(Input)

It takes as input a Python list containing all the data fields decoded in

the Buffer. This information is inside the attribute All_Data_Fields

of the rtcm3 object 1. Each element of the list is, as usual, a Python

dictionary with keys: ’type’, ’name’, ’df number’, ’bitlength’ and ’value’.

It gives as output a Python dictionary, with keys: 1019, 1004 and 1006,

and, as values, list of objects of class, respectively Navigational, Ob-

servations, ReferencePoint, as shown in Fig. 3.17. The entire decoding

procedure can be wrapped in a single function taking as input, the en-

tire byte-array coming through the TCP socket, and giving, as output,

the result of CalculateBufferOutput.

1This attribute wasn’t in the decoder when I took it from GitHub.

3.5 Decoder Outputs 49

Listing 3.7: The CalculateBufferOutput function

1 de f Calcu lateBuf ferOutput (A l l d a t a f i e l d s) :

2 ”””Gives f i n a l output from an en t i r e bu f f e r ”””

3 s ta r tnav={ ’ type ’ : ’UINT ’ , ’name ’ : ’Message Number ’ ,

4 ’ df number ’ : 2 , ’ b i t l e n g th ’ : 12 , ’ va lue ’ : 1019}
5 s t a r t ob s={ ’ type ’ : ’UINT ’ , ’name ’ : ’Message Number ’ ,

6 ’ df number ’ : 2 , ’ b i t l e ng th ’ : 12 , ’ va lue ’ : 1004}
7 s t a r t r e f={ ’ type ’ : ’UINT ’ , ’name ’ : ’Message Number ’ ,

8 ’ df number ’ : 2 , ’ b i t l e ng th ’ : 12 , ’ va lue ’ : 1006}
9 n1019 = A l l d a t a f i e l d s . count (s ta r tnav)

10 n1004 = A l l d a t a f i e l d s . count (s t a r t ob s)

11 n1006 = A l l d a t a f i e l d s . count (s t a r t r e f)

12 n a v i g a t i o n a l l i s t =[0]* n1019

13 o b s e r v a t i o n s l i s t =[0]* n1004

14 r e f e r e n c e l i s t =[0]* n1006

15 copy=A l l d a t a f i e l d s . copy ()

16 f o r i in range (0 , n1019) :

17 n a v i g a t i o n a l l i s t [i]=messages . Nav igat iona l (copy)

18 copy=copy [n a v i g a t i o n a l l i s t [i] . index end :]

19

20 copy=A l l d a t a f i e l d s . copy ()

21 f o r i in range (0 , n1004) :

22 o b s e r v a t i o n s l i s t [i]=messages . Observat ions (copy)

23 copy=copy [o b s e r v a t i o n s l i s t [i] . index end :]

24

25 copy=A l l d a t a f i e l d s . copy ()

26 f o r i in range (0 , n1006) :

27 r e f e r e n c e l i s t [i]=messages . ReferencePoint (copy)

28 copy=copy [r e f e r e n c e l i s t [i] . index end :]

29 r e s u l t={}
30 i f n1019 != 0 :

31 r e s u l t [1 0 1 9] = n a v i g a t i o n a l l i s t

32 i f n1004 != 0 :

33 r e s u l t [1 0 0 4] = o b s e r v a t i o n s l i s t

34 i f n1006 != 0 :

35 r e s u l t [1 0 0 6] = r e f e r e n c e l i s t

36 r e turn (r e s u l t)

50 RTCM3 Decoder

3.5.1 Final DECODER function

Listing 3.8: The DECODER function

de f DECODER(Buf f e r) :

rtcm3=RTCM3.RTCM3()

new data = bytearray (Buf f e r)

rtcm3 . add data (data=new data)

r e s u l t = rtcm3 . p roc e s s da ta ()

whi l e r e s u l t != 0 : # RESULT = 0 means Need More

i f r e s u l t == 3 :

p r i n t (’ Undecoded Data ’)

e l i f r e s u l t== 4 :

rtcm3 . dump2()

e l s e :

r a i s e NameError (’ r e s u l t ’ , r e s u l t , ’ not i d e n t i f i e d ’)

r e s u l t=rtcm3 . p roc e s s da ta ()

BufferOutput = CalculateBuf ferOutput (rtcm3 . Data Fie lds Record)

re turn BufferOutput

It’s worth noting that:

� At line 10, the attribute Data_Fields_Record must be updated.

That is done by the method dump2 in RTCM3.py class file, A.1.2

� The function CalculateBufferOutput is called out of the cycle,

when all the Buffer has been processed.

� CalculateBufferOutput takes as input the rtcm3 attribute con-

taining all the decoded data fields (rtcm3.Data_Fields_Record)

3.5.2 Output examples

The following figures are representing the contents of the BufferOutput

variable. The images are screen-shots of the Spyder Variable Explorer.

3.5 Decoder Outputs 51

(a) BufferOutput after first Buffer Processing.

(b) BufferOutput after second Buffer Processing.

Fig. 3.17: Example of two outputs of the function BufferOutput. It is
possible to see that they are dictionaries. Keys are on the left and, values,
are lists (of objects), on the right with a yellow background. In this specific
example, there were: 15 navigational messages in the first buffer (a); 4
observations messages and one reference point message in the second buffer
(b).

52 RTCM3 Decoder

Fig. 3.18: Navigational message content. Note that contains the
ephemerides for orbits calculation. The satellite from which this particular
message come is the G26, as you may see from the satcode attribute.

3.5 Decoder Outputs 53

Fig. 3.19: Observations message content. Note that some information, like
satcode or Ambiguity for example, are represented by lists because they are
one for each satellite observed. The satellite observed are in the satcode
attribute.

Fig. 3.20: ReferencePoint
message content. In this
application we will only
use the three attributes
ECEFX, ECEFY, ECEFZ
to get the approximate re-
ceiver position

54 RTCM3 Decoder

Chapter 4

Real-time applications

The Decoder now gives in real-time, all the information we need to:

1. Estimate receiver position with single point positioning

2. Apply the so-called ”variometric” approach to estimate 3D dis-

placements between two consecutive epochs

The next chapters illustrates the entire work flow starting from obser-

vations, passing trough single point positioning and arriving finally to

the variometric approach.

It’s important to highlight that the RTCM standard does not trans-

mit the coefficients for applying the Klobuchar ionospheric model in

real-time. Therefore, in this tool implementation, the ionospheric cor-

rection terms are considered null. However, while that affects the co-

ordinates estimation single-point positioning (4.1), it is not affecting

much solutions of the variometric approach, because of the time dif-

ference observation equations, that reduces the ionospheric term, as is

described in 4.2.

55

56 Real-time applications

4.1 Single-point positioning

The receiver position is estimated with the single point positioning

approach, introduced in 2.4.1 on page 12. Remember that, to apply

the least square methods, which, for our purpose, can be seen as a

function (yet it is a Python function in the tool of this thesis work) we

need first, for each satellite, the following information:

� Satellite coordinates XS, YS, ZS

� The term bSR = ρ̃+−cdtS + I + T

� The unit vector ẽS
R, from the approximate receiver to the satel-

lite.

Receiver position estimation is managed by the tool with the interac-

tion of two new data types. They are the navpack class and the recsat

class.

The class navpack is essentially the same as the Navigational class.

That means that an object of class navpack, contains all the attributes

contained in the navigational message, hence all the ephemerides, sum-

marized in Tab. 2.1 on page 6, with which is possible to get the satellite

coordinates, by means of a well-known algorithm, which can be found

in any GPS reference book [2].

4.1.1 The Receiver-Satellite (recsat) class

The class recsat represents all the information we need to apply the

least square method. In fact it contains essentially: the satellite posi-

tion XS, YS, ZS (in WGS84); the approximate receiver position X̃R,

4.1 Single-point positioning 57

ỸR, Z̃R (in WGS84); the geometric distance ρ̃; the unit vector ẽS
R; the

satellite clock term correction dts; the atmosphere correction terms

ISR and T SR ; the pseudo-range and phase-range observations. In other

words we can say that recsat contains all the known terms of

the observation equation, referred to one single epoch.

Listing 4.1: recsat class definition

1 c l a s s RECSAT:

2 de f i n i t (s e l f) :

3 s e l f . s a t=POINT() # s a t l l i t e p o s i t i o n

4 s e l f . r e c=POINT() # r e c e i v e r p o s i t i o n

5 s e l f . satcode=”X00” # s a t e l l i t e code

6 s e l f . sow=0.0 # second o f week

7 s e l f . t o f =0.075 # time o f f l i g h t

8 s e l f . range=0.0 # geometr ic d i s t ance

9 s e l f . c l o ck =0.0 # s a t e l l i t e c l o ck c o r r e c t i o n

10 s e l f . CosX=0.0 # e x ve r so r

11 s e l f . CosY=0.0 # e y

12 s e l f . CosZ=0.0 # e z

13 s e l f . CosE=0.0 # ve r so r in nord e s t up

14 s e l f . CosN=0.0 #

15 s e l f . CosUp=0.0 #

16 s e l f . E levat ion =0.0 # s a t e l l i t e e l e v a t i o n

17 s e l f . Azimuth=0.0 # s a t e l l i t e azimuth

18 s e l f . Trp=0.0 # troposphere c o r r e c t i o n

19 s e l f . Flag=0 # (check f l a g)

20 s e l f . Iono=0.0 # ionosphere c o r r e c t i o n

21 s e l f . obs=0.0 # pseudo−range L1

22 s e l f . obs f1 =0.0 # phase−range L1

23 s e l f . obs f2 =0.0

24 s e l f . obs f3 =0.0

25 s e l f . var1=0.0

You may observe that the receiver and satellite position are represented

by object of class Point, which, for the sake of completeness, is shown

here below.

58 Real-time applications

Listing 4.2: The Point class

1 c l a s s POINT:

2 de f i n i t (s e l f) :

3 s e l f .X=0.0

4 s e l f .Y=0.0

5 s e l f . Z=0.0

6 s e l f . Fideg=0.0

7 s e l f . Lamdeg=0.0

8 s e l f . h=0.0

9 s e l f . Firad=0.0

10 s e l f . Lamrad=0.0

As seen from the recsat class definition (code 4.1) a new recsat object

is initialized with all attributes set to zero (except for the time of flight

tof). Therefore it’s worth to say that recsat attributes are ”filled” in

two different step:

1. From the Observations message, after decoding. In this phase,

the attributes that are filled in are: pseudo-range, phase-range,

sow, and satellite code which are identified by obs, obsf1, sow

and satcode, respectively. This operation is performed by the

function makeRECSAT, shown in code 4.3. Note that, since in

one incoming Buffer, there might be more Observations messages

(type 1004), the function takes as input a list of messages. There-

fore, the notation used in the code and that is used from now on

here, is:

� recsat, indicates one single receiver satellite object

� RECSAT, indicates a list of recsat, in which each recsat

refer to a different satellite; all the recsat in the list refers

to the same epoch (sow)

4.1 Single-point positioning 59

Fig. 4.1: How a list of rec-
sat is created from an Ob-
servations message. If an
observation message contains
observations to 8 satellites,
then the function makeREC-
SAT, produces a list of 8 rec-
sat, (indicated in the code
with RECSAT, with capital
letters). Each observation in
one message is referred to the
same second of week sow.

� RRECSAT, indicates a list of RECSAT; it come in handy when

there is more than one observation message in the buffer

(len(BufferOutput[1004])>1)

2. After the orbits computation, all the other attributes are assigned

In Fig. 4.1 is shown a simple sketch representing how a list of recsat

is created from one observations message. In Fig. 4.2 is shown an

example of ”full” recsat, with the description of the main attributes.

60 Real-time applications

Listing 4.3: The makeRECSAT function

1 de f makeRECSAT(Ob s e r v a t i o n s l i s t) :

2 ”””

3 This func t i on takes a Observat ions ob j e c t s and re tu rn s a l i s t o f

4 r e c s a t ob j e c t s (RECSAT) f o r each obse rvat i on messsage in input ”””

5 RRECSAT = [0] * l en (Ob s e r v a t i o n s l i s t)

6 f o r message in Ob s e r v a t i o n s l i s t :

7 r e c s a t =[0]*message . nsat

8 f o r i in range (0 , message . nsat) :

9 # crea t e new r e c s a t

10 r e c s a t [i]=RECSAT()

11 # as s i gn satcode

12 r e c s a t [i] . sa tcode=message . satcode [i]

13 # as s i ng sow

14 r e c s a t [i] . sow=message . sow

15 # as s i gn psudorange

16 r e c s a t [i] . obs = message . GL1Pseudorange () [i]

17 # as s i gn phaserange

18 r e c s a t [i] . obs f1= message . GL1Phaserange () [i]

19 idx = Ob s e r v a t i o n s l i s t . index (messagetype1004)

20 RRECSAT[idx]= r e c s a t

21 r e turn (RRECSAT)

4.1 Single-point positioning 61

Fig. 4.2: Example of
a ”full”recsat (after or-
bits computation). The
unit vector e is in CosX,
CosY CosZ; The atmo-
sphere terms ISR and TSR
are in Iono and Trp,
respectively; the satel-
lite clock term dtS is in
clock; the pseudo-range
and phase-range are in
obs and obsf1, respec-
tively; the distance term
ρ̃ is in range. Fur-
thermore you may no-
tice that, this partic-
ular recsat is referring
to satellite G02 at the
epoch 322946.0 sow (sat-
code and sow attributes,
respectively).

62 Real-time applications

4.1.2 Satellite matching for orbits computation

It may happen (actually is very frequent), that there is more satellite

sending the Navigational message, than observed satellites. Suppose,

for example that, at the decoder output, there are 16 Navigational

messages (15 navpack), and an Observations message with 10 satellites.

Then, the function makeRECSAT, will produce a list of 10 recsat. It

may seem trivial but, it is worth to point out that all the navpack that

does not have any sat code in any recsat, should be excluded. In other

terms, we need to compute orbits, just for the observed satellites.

Situation with more navigational messages than observed satellites

>> f o r r e c s a t in RECSAT: p r i n t (r e c s a t . satcode , end = ’ \ t ’)

G02 G06 G10 G12 G13 G15 G17 G19 G24

G25 G32

>> f o r nav in NAVPACK: p r i n t (nav . satcode , end=’ \ t ’)

G05 G10 G06 G25 G19 G02 G15 G24 G08

G07 G32 G28 G12 G17 G20 G13

4.1.3 Navigational message updating

In GPS System, the navigational messages are updated every two

hours; therefore the tool, which is thought to work continuously, should

deal with that. The attribute TOE (Time Of Emission), of each nav-

pack, tells us when the navigational message is sent. The function that

manages navpack updating is the update NAVPACK function. It es-

sentially, when a new Buffer arrives, checks the sat codes of the new

navigational message and:

� if there are new satellites adds them to the navigational message

list

4.1 Single-point positioning 63

� if there are the same satellites, substitute them in the naviga-

tional message list

For the sake of completeness, the function is showed in A.1.5. Is inter-

esting to see how this was managed using Python sets instead of lists.

In fact sets, compared to lists, are much more efficient for iterating

operation such as for cycle.

4.1.4 Final solutions

The operations consisting in computing orbits and checking the satel-

lite matching, is done inside the function SinglePositioning, which

takes a list of recsat, RECSAT (one recsat for each satellite observed,

and all referred to the same epoch), a list of navpack, NAVPACK (al-

ready updated), and the approximate receiver position which are in-

side the ReferencePoint message at the attributes ECEF-X, ECEF-Y

and ECEF-Z.

Example of SinglePositioning calling

so l , fullRECSAT , conf=S i n g l ePo s i t i o n i n g (RECSAT,NAVPACK,X,Y,Z)

As you may notice, the function gives as output the solution (sol), a

list with ”full” recsat objects, a set of configuration parameters that

are essentially telling us what kind of corrections models (troposphere

and/or ionosphere) have been used. Here, in Fig. 4.3, an example of

the solution file that the tool can provide (in real-time).

64 Real-time applications

Fig. 4.3: Example of single positioning solution file. It was made by the
acquisition of 10 Buffer. X, Y and Z are expressed in meters. sow is the
second of week of the observation.

4.2 Real-time variometric approach

The so-called ”variometric” approach is an established technique for

the estimation of co-seismic displacements with a stand-alone GPS

receiver[6]. The approach is based on the time single difference of

carrier phase observations collected at a high rate (≥ 1 Hz) using a

stand-alone receiver, and on standard GPS broadcast ephemerides.

Since, in our application, the permanent station M0SE works at 1 Hz

frequency, the estimated displacements are essentially velocities [6].

4.2.1 The (simplified) variometric model

As I mentioned in 2.3.2, the phase observation of a receiver R to one

satellite S at epoch t is:

LSR(t) = ρSR(t) + c(δtR(t)− δtS(t)) + λNS
R(t)− ISR(t) + T SR(t) (4.1)

4.2 Real-time variometric approach 65

where, as usual, ρ is the geometric range receiver-satellite; λ is the

carrier phase wavelength; c is the speed of light; δtR and δtS are the

receiver and the satellite clock errors, respectively; T SR and ISR are the

tropospheric and ionospheric delays along the path; NS
R is the initial

phase ambiguity. If we differentiate (4.1) in the time between two

consecutive epochs (t, t+1), and supposing that no cycle slips occur,

we get the time single difference observation

∆LSR(t, t+ 1) =∆ρSR(t, t+ 1) + c(∆δtR(t, t+ 1)−∆δtS(t, t+ 1))

+∆T SR(t, t+ 1) + ∆ISR(t+ 1, t)

(4.2)

It’s worth to see now that, since the path of the signal at time t and

the path of the signal at time t + 1, are very similar, then the terms

∆T SR(t, t+1) and ∆ISR(t+1, t), are very little. That’s way the fact that

the RTCM does not transmit Klobuchar coefficient is not affecting the

solutions of this ”simplified” variometric model.

Fig. 4.4

If we hypothesize that the receiver is fixed in an Earth Centred

Earth Fixed (ECEF) reference frame, the term ∆ρSR(t, t+ 1), depends

66 Real-time applications

upon the change of the geometric range due to the satellite orbital

motion and the Earth’s rotation [∆ρSR(t, t+ 1)]OR, so that, [6]

∆ρSR(t, t+ 1) = [∆ρSR(t, t+ 1)]OR (4.3)

On the other hand, if we hypothesize that the receiver underwent a

3d displacement ∆ξR(t, t + 1), during the interval t, t + 1, the term

∆ρSR(t, t+1) also includes the effect of ∆ξR projected along the line-of-

sight, which is approximately the same for the two consecutive epochs

if the observation rate is ≥ 1 Hz. Therefore, if we indicate with e the

unit vector from the receiver to the satellite at epoch t, we can write

[6]:

∆ρSR(t, t+ 1) =[∆ρSR(t, t+ 1)]OR + [∆ρSR(t, t+ 1)]D

=[∆ρSR(t, t+ 1)]OR + eT∆ξR(t, t+ 1)
(4.4)

Since the tool works with a 1 Hz frequency, the displacement ∆ξR(t, t+

1), is essentially a velocity vector.

The term ∆ISR(t, t+ 1) represents the variation of the tropospheric

delay, during the interval (t, t+ 1), and is known by modelling it with

the Klobuchar model.

Therefore, substituting equation (4.4) in (4.2), and omitting the

time dependencies, we obtain:

∆LSR =
(
eT∆ξR + c∆δtR

)
+
(
[∆ρSR]OR − c∆δtS + ∆T SR + ∆ISR

)
(4.5)

where
(
eT∆ξR + c∆δtR

)
contains the four unknown parameters (the

three components of displacement and the receiver clock error), and(
[∆ρSR]OR − c∆δtS + ∆T SR + ∆ISR

)
is the known term than can be

4.2 Real-time variometric approach 67

computed on the basis of the correction models and the navigational

message. Writing the equation (4.5) for each satellite in sight (at least

4), we obtain a system that can be solved with the least square esti-

mation. Thus, we obtain, for two consecutive epochs an estimation of

the 3D velocities.

4.2.2 Tool implementation

4.2.2.1 Preliminary considerations

To exploit the variometric approach we need a routine able to keep, for

each satellite S, two consecutive ”full” receiver-satellite objects (rec-

sat). Consecutive means with the consecutive second of week (sow)

attribute. As we saw in 4.1.4. Remember that full recsat is an output

of the SinglePositioning function.

Example of two consecutive recsat, referring to the same satellite

1 >> r e c s a t 1 . sow

2 558405.0

3 >> r e c s a t 2 . sow

4 558406.0

5 >> r e c s a t 1 . satcode

6 ”G02”

7 >> r e c s a t 2 . satcode

8 ”G02”

Once we have two consecutive recsat, is possible to get all the known

terms of the equation 4.5. For example, the observation ∆LSR(t+1, t) is

recsat2.obsf1 - recsat1.obsf1; The satellite clock term ∆δtS(t+

1, t) is recsat2.clock - recsat1.clock. It’s worth to spend few

words on the range term ∆ρSR(t+ 1, t): in fact, while the range at time

t, (first epoch), is just recsat1.range, at time t+1, is the distance be-

68 Real-time applications

tween the receiver position at time t and the satellite position at time

t+1. So, for example, considering the function GEORANGE (A.1.3),

which calculates the distance between two points, than, ∆ρSR(t + 1, t)

would be GEORANGE(recsat1.rec, recsat2.sat) - recsat1.range.

4.2.2.2 The StartVariometric function

The example above is made with one single recsat, hence, for one single

satellite. Obviously, to implement the least square method we need

more than 4 observations, hence the tool manage list of recsat, named

RECSAT (with capital letters), where each element refers to one specific

satellite. The function that provides two consecutive RECSAT and starts

the variometric approach is the StartVariometric function.

The StartVariometric function takes as input: RRECSAT which con-

tain the RECSAT of the present buffer; RECSAT_4_VARIO, which contains

the RECSAT from previous buffer; and conf which, as usual, identifies

if are utilized correction models for the atmosphere errors. It gives as

output an (updated) RECSAT_4_VARIO, which contains the last RECSAT

of the present buffer, and which will be an input of the function in the

next cycle.

4.2 Real-time variometric approach 69

Fig. 4.5: Simple sketch of two RECSAT with two consecutive epochs.
Obviously, each recsat in RECSAT1 must have the corresponding recsat
with the same satellite in RECSAT2.

70 Real-time applications

Listing 4.4: The StartVariometric function

1 de f Star tVar iomet r i c (RRECSAT,RECSAT 4 VARIO, conf) :

2 ””” Star tVar iomet r i c prepares two conse cu t i v e r e c s a t and

3 launch the va r i omet r i c approach (VARIOMETRIC func t i on) ”””

4

5 n o f 1004 = len (RRECSAT)

6 i f n o f 1004==1:

7 RRECSAT 4 VARIO. append (RRECSAT[0])

8 pr in t (”Only one r e c s a t in t h i s frame”)

9 e l i f n o f 1004 > 1 :

10 f o r k in range (0 , n o f 1004) :

11 RRECSAT 4 VARIO. append (RRECSAT[k])

12 f o r RECSAT in RRECSAT 4 VARIO:

13 pr in t (’ sow : ’ , RECSAT[0] . sow)

14

15 i f l en (RRECSAT 4 VARIO)>1:

16 RECSAT12 = []

17 f o r k in range (0 , l en (RRECSAT 4 VARIO)) :

18 i f k>1:

19 RECSAT12. pop (0)

20 RECSAT12. append (RRECSAT 4 VARIO[k])

21 i f l en (RECSAT12)==2:

22 t e s t s . test sow in RECSAT bis (RECSAT12 [0])

23 t e s t s . test sow in RECSAT bis (RECSAT12 [1])

24 sow1 = RECSAT12 [0] [0] . sow

25 sow2 = RECSAT12 [1] [0] . sow

26 i f sow2 − sow1 == 1 . 0 :

27 RECSAT1 = RECSAT12 [0]

28 RECSAT2 = RECSAT12 [1]

29 va r s o l = VARIOMETRIC(RECSAT1,RECSAT2, conf)

30 e l s e :

31 pr in t ’No conse cu t i v e epochs ’)

32 f o r k in range (0 , l en (RRECSAT 4 VARIO)−1):

33 RRECSAT 4 VARIO. pop (0)

34 r e turn RECSAT 4 VARIO

4.2 Real-time variometric approach 71

4.2.2.3 Variometric equations

Line 29 of the StartVariometric function (code 4.4) calls VARIOMETRIC.

This function takes the two consecutive RECSAT, and gives the solution

of the variometric approach. As shown in 4.5 variometric equation for

one single satellite is

∆LSR =
(
eT∆ξR + c∆δtR

)
+
(
[∆ρSR]OR − c∆δtS + ∆T SR + ∆ISR

)
(4.6)

Therefore, for m satellites, the system

∆L =
[
ER i

] [∆ξR

c∆δtR

]
+ b (4.7)

where:

∆L =


∆L1

∆L2

...

∆Lm


[
ER i

]
=


. . . e1

R . . . 1

. . . e2
R . . . 1
...

...

. . . emR . . . 1

 b =


b1R
b2R
...

bmR


To represent the system in Python the RECSAT1 and RECSAT2 are

gathered together into a new data structure called varin. So for ex-

ample, if the two RECSAT observe 6 satellites, than

varin[0] = RECSAT1[0]

varin[1] = RECSAT1[1]

varin[2] = RECSAT1[2]

.

.

72 Real-time applications

.

varin[6] = RECSAT2[0]

varin[7] = RECSAT2[1]

varin[8] = RECSAT2[2]

.

.

.

varin[11]=RECSAT2[5]

VARIOMETRIC function builds the arrays of the system as following:

� Design matrix A

A=np.zeros((len(varin),4),dtype=float)

for i in range(len(varin)):

A[i,0]=varin[i].CosX1

A[i,1]=varin[i].CosY1

A[i,2]=varin[i].CosZ1

A[i,3]=1.0

� Observation vector Y

Y=np.zeros((len(varin),1),dtype=float)

for i in range(len(varin)):

Y[i]=varin[i].obs2-varin[i].obs1

� Known terms vector B

B=np.zeros((len(varin),1),dtype=float)

4.2 Real-time variometric approach 73

for i in range(len(varin)):

B[i]=((varin[i].range2-varin[i].clock2*vpc.CLIGHT)-

(varin[i].range1-varin[i].clock1*vpc.CLIGHT))

if conf.T >0:

B[i]=B[i]+varin[i].Trp2-varin[i].Trp1

The three arrays above represent the functional model of the Least

Square. The stochastic model is represented by the diagonal matrix

Q, with the square of the Up component of the unit vector e in each

term of the diagonal.

� Stochastic model Q

Q=np.zeros((len(varin),len(varin)),dtype=float)

for i in range(len(varin)):

Q[i][i]=1

if conf.W==1:

Q[i][i]=varin[i].CosUp2**2

The systems can now be solved with the least square method imple-

mented as a Python function.

74 Real-time applications

4.2.3 Results

The tool provides in real-time csv files (comma separated variable)

with the velocities along the directions East, North and Up, and the

corresponding plot which updates itself in real time. An example is

shown in Fig. 4.6. A preliminary quality check of the solution has

Fig. 4.6: Example of the plot which the tool provides in real-time. The plot
shows the results of the variometric approach. Sow(GPS second of week)
on the x-axis and the velocities along the directions East, North and Up on
the y-axis.

been carried out with respect post processed solutions obtained by

the VADASE software [6]. The quality check shows that RTCM2PVT

gives fully compliant solutions for the variometric approach, with some

small differences due to the simplified model without Klobuchar cor-

rections used in RTCM2PVT. The assessment of the sensitivity of

RTCM2PVT’s real time velocities estimation is at the level of 2 mm/s

for the horizontal components, and 5 mm/s for the vertical component.

4.3 Final algorithm for applications 75

4.3 Final algorithm for real-time

applications

For the sake of clarity, is shown here the complete procedure performed

by the RTCM2PVT tool.

Result: Single positioning and variometric approach
initialization;
RECSAT 4 VARIO = [];
while receiving data do

Decode data with the DECODER ;
if there are navigational message then

make NVPACK;
update NAVPACK

end
if there are observation messages then

make RECSAT

end
if There are reference point messages then

get approximate X Y Z;
make single positioning SinglePositioning();
RECSAT ← orbits;
start variometric approach with StartVariometric();
RECSAT 4 VARIO ← last RECSAT for next cycle

end

end

76 Real-time applications

Fig. 4.7: The receiver sends navigational messages and observations with
the RTCM3 format via a TCP/IP transport protocol. The tool gives as
estimates the receiver position X, Y, Z in single positioning, fill the Receiver-
Satellites (recsat), and estimates the receiver 3D velocities two consecutive
epochs. Everything works in real-time.

Chapter 5

Conclusions

The objective of this thesis work was to implement a tool able to per-

form real-time operations with a stand-alone receiver and the broadcast

GPS ephemerides available in real-time.

The main task was decoding data with the version 3 of the RTCM

(Radio Technical Commission for Maritime Services). For testing I

used data sent by the permanent station M0SE (Rome, Italy), but

eventually it can be used with any receiver able to send data with this

type of format.

Once data was decoded, was possible to conduct operations such as

single point positioning and the so-called ”variometric” approach, used

to estimate 3D velocities. Both the methods were already implemented

as Python routines, but, there was the primary need of decoded data,

and secondly, to put those routines into a robust program. There-

fore, this thesis work consisted mainly in, decoding RTCM data, and

secondly, making everything working inside the tool RTCM2PVT in

real-time. I must give credits to the Geodesy and Geomatic division

77

78 Conclusions

of the Sapienza University of Rome for giving me the entire library

with all the function used in this work. In particular, the functions I

used are: SinglePositioning, COMPUTE_ORBITS to compute the satel-

lite orbits; LS which apply the least square estimation method; the

VARIOMETRIC function, which applies the veriometric approach; the

RECSAT and NAVPACK classes.

The starting point, as usual in these kinds of operations, was look-

ing online for something already done, and likely, I found an RTCM3

decoder on GitHub at https://github.com/jcmb (unlikely there isn’t

the name of the author), whom I express my best thanks. Unfortu-

nately, as always, at the first trials, a bunch of errors came up! First of

all, it was in version two of Python and so, was re-written in Python

3. Secondly, to fix the errors, there was the need to understand all

the dependencies among all the files (one main file and two modules

with classes and functions). Well, after that everything was translated

in Python 3, and the flow execution was transparent, there was still

something to fix. For example, it did not manage the messages with re-

peating data fields (satellite specific portion) and didn’t do the correct

conversion for data fields with the int type.

Once the decoder was correctly working, it was the time to make

working the implemented routines developed by the Geodesy and Ge-

omatics divison. At the end we achieved the target we intended to

reach: make the so-called ”variometric” approach in real-time. The

final RTCM2PVT gives the 3D velocities Fig. 4.6, and, the receiver

coordinates Fig. 4.3 in real-time. It gives them in external file, so that

is possible to do futher analysis in post-processing. The assessment of

the sensitivity of RTCM2PVT’s real time velocities estimation is at

the level of 2 mm/s for the horizontal components, and 5 mm/s for the

https://github.com/jcmb

79

vertical component.

However, this is just the first version of the tool, many improve-

ments could be made. First of all the complete variometric approach

can be implemented in the tool, considering also dual frequency ob-

servations. Then it would be nice to build a GUI (Graphical User

Interface) to interact easier with it. In order to widen the use of the

tool it would be interesting to apply it on observations coming from An-

droid based smartphones. This paves the way to innovative real-time

big data transportation applications, such as vehicles precise teleme-

try, safety systems, optimization of fleet management, contriubuting

to V2V and V2I applications.

80 Conclusions

Appendix A

A.1 Python routines

A.1.1 appendToFields method

Method of the class RTCM3. It is necessary to decode messages 1004

which have repeating data fields, for each observed satellite.

1 de f appendToFields (s e l f , packet data) :

2 ”””Append To F i e l d s f o r Repet i t i on in Messages ”””

3 #55 : p o s i t i o n o f the f i r s t b i t o f df ”number o f s a t e l l i t e ”

4 # 7 : number o f data f i e l d s in the message header

5 # 4 : po s i t i o n o f the data f i e l d ”number o f s a t t e l l i t e ”

6 # bitValue i s a func t i on that convers b i t s to decimal

7 # nsat l en : l enght in b i t o f the df ”number o f s a t e l l i t e ”

8 nsa t l en = s e l f . commands [s e l f . packet ID] . f i e l d s [4] [’ b i t l e ng th ’]

9 NSat=bitValue (makeBitArray (packet data) , 55 , n sa t l en)

10 toAppend=s e l f . commands [s e l f . packet ID] . f i e l d s [7 :]

11 f o r i in range (0 , NSat−1):

12 f o r k in toAppend :

13 s e l f . commands [s e l f . packet ID] . f i e l d s . append (k . copy ())

81

82

A.1.2 dump2 method

Method of the RTCM3 class. Is used to record decoded data fields

inside each Buffer.

1 de f dump2(s e l f) :

2 ””” record decoded data f i e l d s ”””

3 i f s e l f . packet ID in s e l f . commands :

4 f o r f i e l d in s e l f . commands [s e l f . packet ID] . f i e l d s :

5 s e l f . Data Fie lds Record . append (f i e l d . copy ())

6 # eventua l ly , i f you wish , p r i n t decoded value

A.1.3 GEORANGE function

It is an ancillary function used to calculate geometric distance between

two objects of class Point (see code 4.2)

1 de f GEORANGE(POINT1, POINT2) :

2 ””” Geometric d i s t anc e between two po in t s ”””

3 georange=sq r t ((POINT1 .X−POINT2 .X)**2

4 +(POINT1 .Y−POINT2 .Y)**2

5 +(POINT1 . Z−POINT2 .Z)**2)

6

7 r e turn georange

A.1 Python routines 83

A.1.4 makeNAVPACK function

This function copies all the attributes in navigational message inside

the new data structure navpack, which will be an input of the SinglePo-

sitioning function. makeNAVPACK is a function of the ProcessData_fun

module.

1 de f makeNAVPACK(n a v i g a t i o n a l l i s t) :

2 ””” makes NAVPACK from Navigat iona l message ”””

3

4 NAVPACK=[0]* l en (n a v i g a t i o n a l l i s t)

5 f o r i in range (0 , l en (n a v i g a t i o n a l l i s t)) :

6 NAVPACK[i]=vpc .NAVPACK()

7 NAVPACK[i] . Id = n a v i g a t i o n a l l i s t [i] . Id

8 NAVPACK[i] . Crs = n a v i g a t i o n a l l i s t [i] . Crs

9 NAVPACK[i] . Crc = n a v i g a t i o n a l l i s t [i] . Crc

10 NAVPACK[i] . Cuc = n a v i g a t i o n a l l i s t [i] . Cuc

11 NAVPACK[i] . Cus = n a v i g a t i o n a l l i s t [i] . Cus

12 NAVPACK[i] . Cic = n a v i g a t i o n a l l i s t [i] . Cic

13 NAVPACK[i] . Cis = n a v i g a t i o n a l l i s t [i] . Cis

14 NAVPACK[i] . Deltan = n a v i g a t i o n a l l i s t [i] . Deltan

15 NAVPACK[i] .M0 = n a v i g a t i o n a l l i s t [i] .M0

16 NAVPACK[i] . IODE = n a v i g a t i o n a l l i s t [i] . IODE

17 NAVPACK[i] . e = n a v i g a t i o n a l l i s t [i] . e

18 NAVPACK[i] . sqrtA = n a v i g a t i o n a l l i s t [i] . sqrtA

19 NAVPACK[i] .TOE = n a v i g a t i o n a l l i s t [i] .TOE

20 NAVPACK[i] .OMEGA = n a v i g a t i o n a l l i s t [i] .OMEGA

21 NAVPACK[i] . SVa = n a v i g a t i o n a l l i s t [i] . SVa

22 NAVPACK[i] . SVh = n a v i g a t i o n a l l i s t [i] . SVh

23 NAVPACK[i] .TGD = n a v i g a t i o n a l l i s t [i] .TGD

24 NAVPACK[i] . IODC = n a v i g a t i o n a l l i s t [i] . IODC

25 NAVPACK[i] .TTom = n a v i g a t i o n a l l i s t [i] .TTom

26 NAVPACK[i] . HFI = n a v i g a t i o n a l l i s t [i] . HFI

27 NAVPACK[i] . i 0 = n a v i g a t i o n a l l i s t [i] . i 0

28 NAVPACK[i] . omega0 = n a v i g a t i o n a l l i s t [i] . omega0

29 NAVPACK[i] .OMEGADOT = n a v i g a t i o n a l l i s t [i] .OMEGADOT

30 NAVPACK[i] . i do t = n a v i g a t i o n a l l i s t [i] . i do t

31 NAVPACK[i] . codes = n a v i g a t i o n a l l i s t [i] . codes

32 NAVPACK[i] . GPSweek = n a v i g a t i o n a l l i s t [i] . GPSweek

33 NAVPACK[i] . L2Pdata = n a v i g a t i o n a l l i s t [i] . L2Pdata

34 NAVPACK[i] . Toc = n a v i g a t i o n a l l i s t [i] . Toc

84

35 NAVPACK[i] . a0 = n a v i g a t i o n a l l i s t [i] . a0

36 NAVPACK[i] . a1 = n a v i g a t i o n a l l i s t [i] . a1

37 NAVPACK[i] . a2 = n a v i g a t i o n a l l i s t [i] . a2

38 NAVPACK[i] . sa tcode = n a v i g a t i o n a l l i s t [i] . sa tcode

39 r e turn NAVPACK

A.1.5 update NAVPACK function

This function is used to update the navigational messages. It is in the

ProcessData_fun module.

Listing A.1: The update NAVPACK function

1 de f update NAVPACK(OLDNAVPACK, NEWNAVPACK) :

2 ””” Updates Nav igat iona l messages

3 OLDNAVPACK i s the l i s t o f navpack out o f the DECODER at time k

4 NEWNAVPACK i s the l i s t o f navpack out o f the DECODER at time k+1”””

5 # from l i s t to s e t

6 NEW NAVPACK set = s e t (NEWNAVPACK)

7 OLD NAVPACK set = s e t (OLDNAVPACK)

8 # prepare s e t s f o r sa t code s

9 satCodesNEW NAVPACK = se t ()

10 satCodesOLD NAVPACK = se t ()

11 # satcodes a r r i v ed in new NAVPACK

12 f o r navpack in NEW NAVPACK set :

13 satCodesNEW NAVPACK. add (navpack . satcode)

14 # satcodes a r r i v ed in o ld NAVPACK

15 f o r navpack in OLD NAVPACK set :

16 satCodesOLD NAVPACK. add (navpack . satcode)

17 # f ind new s a t e l l i t e s with s e t s d i f f e r e n c e

18 new arr ived = satCodesNEW NAVPACK − satCodesOLD NAVPACK

19 # f ind same s a t e l l i t e s with s e t s i n t e r s e c i o n

20 same arr ived = satCodesNEW NAVPACK & satCodesOLD NAVPACK

21 # i f the re are new s a t e l l i t e s add them to OLDNAVPACK se t .

22 i f new arr ived :

23 f o r satcode in new arr ived :

24 f o r navpack in NEW NAVPACK set :

25 i f satcode == navpack . satcode :

26 OLD NAVPACK set . add (navpack)

27 # i f the re are the same s a t e l l i t e s s ub s t i t u t e them :

A.1 Python routines 85

28 # make a s e t o f navpack to remove

29 i f same arr ived :

30 navpackToRemove = se t ()

31 navpackToAdd = se t ()

32 f o r satcode in same arr ived :

33 f o r navpack in OLD NAVPACK set :

34 i f satcode == navpack . satcode :

35 navpackToRemove . add (navpack)

36 # make a s e t o f navpack to add

37 f o r navpack in NEW NAVPACK set :

38 i f satcode == navpack . satcode :

39 navpackToAdd . add (navpack)

40 # sub s t i t u t e navpack with same satcodes

41 # only i f the TOE i s d i f f e r e n t

42 f o r new navpack in navpackToAdd :

43 f o r old navpack in navpackToRemove :

44 i f new navpack . satcode == old navpack . satcode :

45 i f new navpack .TOE != old navpack .TOE:

46 pr in t (”NEW TOE”)

47 # update navpack with s e t s ope ra t i on s :

48 # − d i f f e r e n c e ; | union

49 OLD NAVPACK set = (OLD NAVPACK set

50 − navpackToRemove) | navpackToAdd

51 # make a copy o f updated navpacks

52 UPDATED NAVPACK set = OLD NAVPACK set . copy ()

53 # satcodes in updated navpacks

54 SatCodes UPDATED = se t ()

55 f o r navpack in UPDATED NAVPACK set :

56 SatCodes UPDATED . add (navpack . satcode)

57 # go back to l i s t

58 UPDATEDNAVPACK = l i s t (UPDATED NAVPACK set)

59 r e turn (UPDATEDNAVPACK, same arr ived , new arr ived)

86

Bibliography

[1] Equazioni di osservazione. Slides of the University course Geomat-

ics and Geographic Information Systems held by Professor Mattia

Giovanni Crespi, University of Rome La Sapienza. 10

[2] Ludovico Biagi. I fondamentali del GPS, chapter 3, Il sistema

GPS. Geomatic Workbooks, 2009. ix, 5, 6, 56

[3] Ludovico Biagi. I fondamentali del GPS, chapter 4, Le osser-

vazioni, la propagazione e i disturbi atmosferici. Geomatic Work-

books, 2009. 10

[4] Ludovico Biagi. I fondamentali del GPS, chapter 5, Posiziona-

mento Assoluto. Geomatic Workbooks, 2009. 11, 12, 13

[5] Ludovico Biagi. I fondamentali del GPS, chapter 6, Posiziona-

mento Relativo. Geomatic Workbooks, 2009. 14, 15

[6] A. Mazzoni G.Colosimo, M. Crespi. Real-time gps seismol-

ogy with a stand -alone receiver: A preliminary feasibility demon-

stration. Journal of Geophysical Research Atmospheres, November

2011. 2, 64, 66, 74

87

88 Bibliography

[7] Radio Technical Commission for Maritime Services, 1611 N. Kent

St., Suite 605 Arlington, Virginia 22209-2143, U.S.A. RTCM

STANDARD 10403.3 - DIFFERENTIAL GNSS SERVICES, Oc-

tober 2016. vii, viii, 18, 41, 46

[8] Lambert Wanninger. Introduction to network rtk. International

Association of Geodesy, June 2008. 14

[9] Ross N. Williams. A painless guide to crc error detection algo-

rithms. 19

	Contents
	1 Introduction
	2 The GPS System
	2.1 GPS Signals
	2.2 GPS ephemerides
	2.3 GPS Observations
	2.3.1 Pseudo-range observation
	2.3.2 Phase-range observation
	2.3.3 Summary of errors affecting observations

	2.4 Real-Time Applications
	2.4.1 Single Point Positioning
	2.4.2 Real Time Kinematic positioning

	3 RTCM3 Decoder
	3.1 Data format
	3.1.1 Message format

	3.2 Preliminary procedural approach for decoding
	3.2.1 Representing data fields
	3.2.2 Processing the Buffer to extract Messages
	3.2.3 Decoding Messages

	3.3 Real time decoding
	3.3.1 Decode main file step by step

	3.4 The DECODER as an I/O function
	3.4.1 From decoded values to real messages

	3.5 Decoder Outputs
	3.5.1 Final DECODER function
	3.5.2 Output examples

	4 Real-time applications
	4.1 Single-point positioning
	4.1.1 The Receiver-Satellite (recsat) class
	4.1.2 Satellite matching for orbits computation
	4.1.3 Navigational message updating
	4.1.4 Final solutions

	4.2 Real-time variometric approach
	4.2.1 The (simplified) variometric model
	4.2.2 Tool implementation
	4.2.3 Results

	4.3 Final algorithm for applications

	5 Conclusions
	A
	A.1 Python routines
	A.1.1 appendToFields method
	A.1.2 dump2 method
	A.1.3 GEORANGE function
	A.1.4 makeNAVPACK function
	A.1.5 update_NAVPACK function

	References

