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Robust Trading for Ambiguity-averse Insiders

ABSTRACT

In an asset market with explicit trading rules we characterize the trading activity of

an ambiguity-averse insider who faces Knightian uncertain over other market participants’

beliefs and implements a robust trading strategy. Such insider employs a max-min choice

mechanism, so that in any round of trading she selects as her market order that which

maximizes her expected profits against those market beliefs which penalize her most. Her

trading strategy is equivalent to that of a risk-averse insider who does not face any Knigh-

tian uncertain and possesses risk-sensitive recursive preferences. As she finds it optimal

to trade more aggressively and reveal her private information at a faster pace than her

risk-neutral (expected-profit maximizer) counterpart, we find that ambiguity-aversion is

beneficial to the efficiency of the market.

JEL Classification Numbers: D82, G14.

Keywords: Insider Trading, Market Efficiency, Robust Trading, Ambiguity-aversion, Risk-
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Introduction

Trading activity in securities markets depends on investors’ assessment of securities’ funda-

mentals and of other agents’ behavior. In particular, when trading securities an investor needs

to take into account the beliefs on securities’ fundamentals of other market participants, as

these affect their investment decisions, the securities prices and individual profit opportuni-

ties. Then, since many investors find it difficult to discern the prevailing opinion in the market

place over securities’ fundamentals, it is interesting to investigate the interplay which exists

between a trader’s uncertainty about other investors’ beliefs, her trading decisions and the

characteristics of securities markets.

We propose an analysis of this interplay in an asset market regulated by explicit trading

rules. We formulate a model in which a strategic trader is endowed with some private infor-

mation on the fundamentals of a risky asset, but is uncertain about the beliefs of the market

maker which sets the corresponding transaction price. Since in this formulation she cannot

calculate the exact probability distribution of her profit opportunities this insider faces Knight-

ian uncertainty. Aversion to such uncertainty, namely ambiguity-aversion, results in the insider

adopting a robust trading strategy identified via a max-min choice mechanism, according to

which she selects as her market orders those which maximize her expected profits against the

worst market beliefs, ie. against those beliefs which penalize her profits most.

This robust trading strategy is found to be equivalent to that of a risk-averse insider who

does not face any Knightian uncertainty over the market maker’s beliefs but possesses recursive

risk-sensitive preferences. This results in an equilibrium when the insider is risk-averse which

is observationally equivalent to that which prevails when she is ambiguity-averse.

As in equilibrium it is found that such an insider trades more aggressively, revealing a

larger proportion of her informational advantage and increasing the efficiency of the market,

we conclude that ambiguity-aversion improves market quality. Such conclusion is particularly

striking, as in the existing literature on ambiguity-aversion in asset markets it is typically found

that ambiguity-averse agents display portfolio-inertia and trade slowly on their information.

Consequently ambiguity aversion results in less efficient markets (see, among others, Dow and

Ribeiro da Costa Werlang (1992); Caskey (2009); Condie and Ganguli (2011, 2014); Ozsoylev

and Werner (2011); Easley, O’Hara, and Yang (2014); Mele and Sangiorgi (2015)).

Our novel conclusions originate from the particular form of Knightian uncertainty we intro-
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duce, which pertains to agents’ beliefs rather than assets’ fundamentals, and from the specific

protocol of trading we consider, which differently from the existing literature prescribes that

the insider acts strategically and solves a dynamic optimization exercise.

This paper is organized as follows. In the next Section we introduce Chau and Vayanos’

model of an asset market in which an insider possesses some private information on the funda-

mentals of a risky asset. In this Section: i) we describe the protocol of trading which regulates

how this risky asset is traded, the dynamics of its fundamentals and the characteristics of the

market participants which trade it; ii) we introduce the insider’s Knightian uncertainty about

the beliefs of the market maker who sets the transaction price for the risky-asset; and iii) we

define the robust choice mechanism she adopts to select her trading strategy. In Section 2 we

derive the insider’s robust trading strategy and characterize the stationary linear equilibria of

the market for the risky asset.

In Section 3 we introduce the risk-sensitive recursive preferences for a risk-averse insider

who does not face any Knightian uncertainty and show how her optimal trading strategy is

equivalent to the robust one of the ambiguity-averse insider studied in Sections 1 and 2. In

Section 4 we investigate the impact of ambiguity-aversion on the trading strategy of the insider

and on market quality when trading approaches a continuous auction and when it takes place

at equally-spaced-in-time call auctions. In both cases, ambiguity-aversion forces the insider to

trade more aggressively than her risk-neutral counterpart, revealing a larger proportion of her

informational advantage, so that the market for the risky asset becomes more efficient. In this

Section we also discuss the theoretical underpinnings of our main results and the empirical

implications of our analysis. A final Section summarizes our findings.

1 Sequential Auctions, Insider Trading and Ambiguity-Aversion

In our analysis we introduce Knightian uncertainty into Chau and Vayanos’ model of a market

for a risky asset governed by an explicit protocol of trading (Chau and Vayanos, 2008). In

their model a risk-neutral monopolistic insider trades a risky asset with a competitive market

maker over an infinite sequence of call auctions. In any round of trading the insider observes

a private signal on the rate at which the risky asset’s dividends grow overtime and submits a

market order for the risky asset which maximizes the expected value of her discounted future

profits, while the competitive market maker breaks even by fixing the transaction price for the

risky asset equal to the expected discounted value of all future dividends it pays out.
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We depart from Chau and Vayanos’ formulation in that we assume that the insider is un-

certain on the pricing rule applied by the market maker. However, before we can explain how

this translates into Knightian uncertainty, let us briefly describe the key elements of Chau and

Vayanos’ model.

1.1 The Analytical Framework

In Chau and Vayanos’ set up a risk-neutral market maker trades a risky asset over an infinite

sequence of call auctions with a population of clients. These clients comprise a group of

unsophisticated agents who trade for liquidity reasons and an informed agent who possesses

some private information on the risky asset’s fundamentals and trades to gain speculative

profits.

The risky asset pays at time t = n · ∆, where ∆ is a time interval and n is an integer

representing a trading period, a dividend equal to dn∆. The dividend yield, dn, is subject to

stochastic shocks and reverts to a time-varying mean, gn, according to the following Markovian

specification

dn = dn−1 + ν∆(gn−1 − dn−1) + εdn , (1.1)

with ν > 0 and ν∆ ∈ (0, 1). The shocks {εdn} are i.i.d.. They are normally distributed with mean

zero and variance σ2
d∆. The time-varying mean, gn, represents the underlying profitability of

the risky asset. This is also subject to stochastic shocks, while reverting to a long-run mean

value ḡ, according to another Markovian specification

gn = gn−1 + κ∆(ḡ − gn−1) + εgn , (1.2)

with κ > 0 and κ∆ ∈ (0, 1). The shocks {εgn} are i.i.d. and independent of the shocks {εdn}.
They are normally distributed with mean zero and variance σ2

g∆.

In period n the market maker runs call auction n. In this auction, firstly, his clients select

their market orders (xn for the insider and εln for the liquidity traders) which are batched

together and passed to the market maker; secondly, the dividend yield, dn, is publicly observed

and the insider privately observes the risky asset’s underlying profitability, gn; thirdly, the market

maker selects the transaction price for the risky asset, pn, at which all orders are executed.

In n the market order of the liquidity traders, εln, is normally distributed, with mean 0 and
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variance σ2
l ∆, while the insider’s market order, xn, is chosen strategically, taking into account

its impact on the transaction price, in order to maximize the expected value of her discounted

profits. These discounted profits are Πn =
∑∞

j=n e
−r(j−n)∆ πj where πj is her trading profit

in auction j and r is the continuously compounding interest rate paid by a safe bond. The

insider’s trading profit in period j is equal to xj(vj − pj) where vj is her assessment of the

present value of the risky asset’s dividends, conditional on the information she possesses at the

end of auction j, while pj is the corresponding transaction price set by the market maker.

1.2 Knightian Uncertainty and Ambiguity-aversion

We believe that the insider can be subject to Knightian uncertainty as we envisage situations in

which she is unsure about the price formation process followed by the market maker. Consider,

in fact, that according to Chau and Vayanos Bertrand competition with other dealers forces

the market maker to set the transaction price on the basis of a semi-strong form efficiency

condition, so that pn is the expected present value of all future dividends the risky asset pays

out conditional on the information he possesses in period n. This implies that

pn = A0dn + A1ĝn + A2ḡ , (1.3)

where ĝn is the market maker’s conditional expectation of the underlying profitability in n,

while A0 = ∆
1−e−(r+µ)∆ , A1 = A0

(1−e−µ∆)e−r∆

1−e−(r+κ)∆ and A2 = A0
(1−e−µ∆)(1−e−κ∆)e−2r∆

(1−e−r∆)(1−e−(r+κ)∆)
, with µ such

that e−µ∆ = 1− ν∆.

Equation (1.3) illustrates how the transaction price set by the market maker crucially de-

pends on his beliefs about the underlying profitability gn. Then, the insider can be uncertain

about the price formation process followed by the maker maker because she is unsure about

the mechanisms which regulate how he forms his beliefs about this underlying profitability.

In order to see how this is possible notice that if the market maker is rational and if he

conjectures that in any auction n the insider’s market order is linear in the excess profitability

of the risky asset (xn = β(gn − ĝn) with β > 0), his expectation of the underlying profitably is

formulated in n on the basis of the information he extracts from the dividend yield dn and the

overall market order xn + εln according to the following expression

ĝn = ḡ + (1− κ∆)(ĝn−1 − ḡ) + λd(dn − (1− ν∆)dn−1 − ν∆ĝn−1) + λx (xn + εln) ,(1.4)
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with λd and λx two positive coefficients.

Given equation (1.3), on observing the transaction price at the end of period n the insider

is able to determine the value ĝn. However, since she does not observe the market order of the

liquidity traders, εln, she cannot establish with certainty whether a particular large value of ĝn
is the consequence of a large value of εln or of some deviation from equation (1.4).

While Chau and Vayanos assume that the insider is certain about the mechanisms which

regulate how the market maker forms his beliefs, we believe that she may suspect that they ac-

tually deviate from those described above. The insider may in fact fear that the market maker’s

expectations of the underlying profitability are set incorrectly, possibly because the market or-

ders of the liquidity traders contain predictable components he ignores. Alternatively she may

suspect that these expectations are deliberately twisted by the market maker to manage his

inventory of the risky asset or that they are simply biased for some unspecified reason.

In general, we consider a scenario in which the insider is uncertain about the maker maker’s

beliefs. In this scenario she assumes that the market maker correctly estimates the underlying

profitability of the risky asset, as indicated in equation (1.4). Hence, equation (1.4) represents

the approximating specification the insider presumes for the dynamics of the market maker’s

expectation of the underlying profitability. Although, she suspects that her conjecture is incor-

rect and that he forms his expectation according to the following alternative specification

ĝn = ḡ + (1− κ∆)(ĝn−1 − ḡ) + λd(dn − (1− ν∆)dn−1 − ν∆ĝn−1) + λx (xn + εln) + σĝηn ,

with ηn an undetermined value and σĝ the standard deviation of the expected profitability.

This alternative specification, in which for some undefined reason the market maker sets his

expectation incorrectly, is termed the distorted specification.

Three important features of this scenario ought to be emphasized. Firstly, as already men-

tioned, the insider’s uncertainty on the validity of the approximating specification persists

overtime because she does not directly observe the market orders of the liquidity traders, {εln}.
Thus, the insider cannot easily establish whether a large value of ĝn is the consequence of a

large market order by the liquidity traders (a large εln) or of a large error in the market maker’s

expectation of the underlying profitability (a large ηn).1

1It might be argued that the insider could learn overtime the mechanisms which regulate how the market maker
forms his beliefs and it may be argued that learning could mitigate and in the long-run eliminate the insider’s
uncertainty over the pricing process. However, if this uncertainty is limited it is plausible to assume that the insider
finds it impossible to learn the correct pricing process.
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Secondly, as ηn is undetermined, under the distorted specification her uncertainty on how

the market maker forms his beliefs amounts to Knightian uncertainty. In fact, since she cannot

calculate the exact probability distribution of the profits any trading decision will generate, the

insider cannot measure exactly the risk she is facing.

Thirdly, the approximating specification the insider presumes for the market maker’s ex-

pectation of the underlying profitability coincides with the correct one. Therefore, under this

specification the insider does not commit systematic errors in predicting the market maker’s

expectations and the transaction prices he charges. However, because she fears that her con-

jecture on the market maker’s beliefs could be incorrect she considers as possible alternative

specifications.

We investigate this scenario because we believe that in many real situations some investors

may have privileged information on securities’ fundamentals, but limited knowledge of the

activity and beliefs of other investors and market participants. Indeed, in equity markets com-

pany stakeholders, such as main shareholders or senior managers, may have privileged access

to companies’ information and a better understanding of their fundamentals. However, these

insiders are likely to possess only limited knowledge of the activity of other traders and of

the mechanisms which dictate how these market participants form their beliefs about stocks’

fundamentals. Therefore, it is likely that they are uncertain about the process dealers follow in

setting transaction prices in equity markets. Consequently, within Chau and Vayanos’ model,

it is reasonable to assume that the insider is unsure about the pricing rule the market maker

applies, as in the scenario described above.

This scenario is novel with respect to the existing literature on ambiguity-aversion in se-

curities markets, in that it is typically assumed in this literature that investors are uncertain

about assets’ fundamentals, while we argue that they are more likely to be uncertain about

the price formation process since they find it hard to divine what other market participants

believe. Indeed, this may be considered a more realistic vision of ambiguity-aversion in securi-

ties markets, as investors are typically more uncertain about other market participants’ beliefs

than about securities’ fundamentals.

The sort of Knightian uncertainty described above is more conveniently investigated if we

reformulate such uncertainty in terms of the excess profitability, gn − ĝn, as this represents the

difference in opinions between the market maker and the insider and it is the state variable

in the dynamic optimization the latter solves. Indeed, using equations (1.1) and (1.2), the
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approximating specification can be rewritten in terms of the excess profitability as

gn − ĝn =
(
1− (κ+ λdν)∆

)
(gn−1 − ĝn−1) − λxxn + εn , (1.5)

where εn = εgn − λxεln − λdεdn, while the distorted specification can be written as

gn − ĝn =
(
1− (κ+ λdν)∆

)
(gn−1 − ĝn−1) − λxxn + εn + σεwn , (1.6)

with σε the standard deviation of εn and wn such that σĝηn = −σεwn.

In order to define the insider’s degree of ambiguity-aversion we introduce a measure of

probabilistic discrepancy between the approximating and distorted specifications known as

discounted conditional entropy (see Hansen and Sargent, 2001, 2008). In particular, in period

n denote with zn the state variable gn − ĝn and with fa(zn | zn−1) and fd(zn | zn−1) the

probability density function of zn, conditional on zn−1, respectively under the approximating

and distorted specifications. Denote with m(fa(zn | zn−1)) the log of the ratio between these

density functions, log(fa(zn | zn−1)/fd(zn | zn−1)). The conditional relative entropy in n is then

defined as the conditional expectation of the log-likelihood ratio for the approximating and

the distorted specifications, calculated under the distorted one,

I(fa, fd)(zn−1) ≡
∫
m(fa(zn | zn−1)) fd(zn | zn−1)dzn.

In the Appendix we show that this conditional relative entropy is equal to 1
2w

2
n. An inter-

temporal measure of probabilistic distance between the two specifications is then given by

the expected discounted value of all conditional relative entropies, or discounted conditional

entropy,

Rwn ≡ 2En

[ ∞∑
h=0

e−rh∆ I(fa, fd)(zn+h−1)

]
= En

[ ∞∑
h=0

e−rh∆w2
n+h

]
,

where the expectation is taken in n under the distorted specification. This aggregate measure

represents the probabilistic distance between the approximating specification conjectured by

the insider and the distorted one she suspects is regulating the dynamics of gn − ĝn. We

assume that the insider considers as potential alternatives all the distorted specifications for

which Rwn ≤ φ, where φ (with φ > 0) defines the maximum probabilistic distance between the

approximating and distorted specifications she deems feasible.2

2If the approximating and distorted specifications are defined in terms of the expected profitability ĝn the
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In this way we envision a situation in which the insider assumes that gn − ĝn is generated

according to equation (1.5) and suspects that it is actually governed by equation (1.6). This

distorted specification is assumed to be not too far from the approximating one, where in

measuring their distance the insider refers to the discounted conditional entropy Rwn .

We assume that in n the insider selects a robust trading strategy which works for all distorted

specifications for which Rwn ≤ φ. This selection criterion is particularly demanding, in that it

requires that in any auction n she chooses the market order which maximizes her expected

discounted profits in the worst distorted specification (among all admissible ones).

Since the insider observes the history of the risky asset’s underlying profitability, alongside

that of its dividends, her assessment of its fundamental value in n respects a formulation similar

to equation (1.3), with the expected underlying profitability, ĝn, replaced by the actual one, gn
(so that vn = A0dn + A1gn + A2ḡ). Then, given her normalized profits in j, π∗j = xj(gj − ĝj),
she selects a robust trading strategy solving the following constraint program3

max
{xn+h}∞h=0

min
{wn+h}∞h=0

En

[ ∞∑
h=0

e−rh∆ π∗n+h

]
(1.7)

s.t. gn − ĝn respects equation (1.6) and Rwn ≤ φ .

According to this program in n the insider firstly isolates among all alternative specifications

the worst one, i.e. the one which minimizes the present value of her expected profits, and

secondly she selects the market order which maximizes such profits within this worst-case

specification. She applies this particularly restrictive selection criterion because it allows her

to deal with her inability to calculate the probability of the outcomes of her trading activity.

Solving program (1.7) may be difficult. However, Hansen and Sargent (2001) prove a very

useful result, in that they show that the constraint program (1.7) is equivalent to the following

conditional relative entropy in n is 1
2
η2
n, while, since ηn = σε

σĝ
wn, the corresponding discounted conditional entropy

isRηn =
σ2
ε

σ2
ĝ
Rwn . Then, the set of alternative distorted specifications the insider consider as possible can equivalently

be defined in terms of ĝn as those such that Rηn ≤
σ2
ε

σ2
ĝ
φ.

3The normalized profits, π∗j , are employed here rather than the actual ones, πj , to simplify the comparison with
Chau and Vayanos’ results. However, the two formulations, with normalized and actual profits, are economically
equivalent in that vj − pj = A1(gj − ĝj) and πj = A1π

∗
j .

8



multiplier program

max
{xn+h}∞h=0

min
{wn+h}∞h=0

En

[ ∞∑
h=0

e−rh∆
(
π∗n+h + ϑw2

n+h

)]
, (1.8)

s.t. gn − ĝn respects equation (1.6) and ϑ is some positive constant.

Not only this equivalence is useful because program (1.8) is much easier to deal with, but it

is also particularly important in that it entails that the insider’s preferences we consider corre-

spond to a specific form of ambiguity-aversion. In fact, Maccheroni, Marinacci, and Rustichini

(2006) define a general class of preferences which subsumes the multiple priors preferences of

Gilboa and Schmeidler (1989), commonly employed in the ambiguity-aversion literature, and

the multiplier preferences of Hansen and Sargent, according to which an agent facing Knightain

uncertainty seeks to follow a robust strategy by solving program (1.8).4

Under the class of preferences considered by Maccheroni and his coauthors, the smaller ϑ

the greater the agent’s degree of ambiguity-aversion.5 This implies that we can measure the

insider’s degree of ambiguity-aversion through the inverse of ϑ, θ ≡ ϑ−1.6 Importantly, for θ ↓ 0

(ϑ ↑ ∞) the minimum wrt to {wn+h}∞h=0 in program (1.8) is reached for wn+h = 0 ∀h. In this

case the trading strategy of the insider coincides with that of the informed trader considered

by Chau and Vayanos and hence a straightforward comparison between their formulation and

ours ensues.

The parameter θ (or equivalently the parameter φ), measuring the insider’s degree of

ambiguity-aversion, is constant overtime in the formulation we investigate. One could argue

that the degree of ambiguity-aversion evolves overtime, as agents are usually more ambiguity-

averse during periods of economic downturns. Investigating an extension with a time-varying

degree of ambiguity-aversion would be interesting and potentially very fruitful. However, it

would entail non-stationary equilibria, which would be very difficult to characterize, and it

would require some formalization of time-varying ambiguity-aversion which so far has not

been proposed in the literature.

We now study stationary linear equilibria in which in any auction the insider solves the

4Alternative, closely related, axiomatizations of ambiguity-aversion have been put forward by Schmeidler
(1989), Epstein (1999) and Ghirardato and Marinacci (2002). For a general presentation of the literature on
ambiguity-aversion see Machina and Siniscalchi (2013).

5See Proposition 8 in Maccheroni, Marinacci, and Rustichini (2006).
6The constants ϑ and φ are also inversely related, in that φ = φ(ϑ) with φ(ϑ) decreasing in ϑ as proved in

Lemma 8.5.1 in Hansen and Sargent (2008). This implies that θ and φ can equivalently be treated as measures of
the insider’s degree of ambiguity-aversion.
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constraint program in (1.7), or equivalently the multiplier program (1.8), while the market

maker sets the transaction price according to the efficiency condition (1.3).

2 Stationary Linear Equilibria

We start the characterization of stationary linear equilibria by studying the insider’s robust

trading strategy. As she selects her market order according to the constraint program (1.7), or

equivalently according to the multiplier program (1.8), we define the value function

Vn ≡ max
{xn+j}∞j=0

min
{wn+j}∞j=0

En

 ∞∑
j=0

e−rj∆
(
π∗n+j + θ−1w2

n+j

) .
Because the insider’s per-period profits are linear in the excess profitability, we can conjecture

that in a stationary equilibrium the value function is Vn = B(gn−1 − ĝn−1)2 + C, for B and

C two positive constants. Then, the multiplier program (1.8) admits a (modified) Bellman

equation which allows to determine the value function and the robust market order selected

by the insider in n. This Bellman equation is as follows

B(gn−1 − ĝn−1) + C = max
xn

min
wn

En[π∗n + θ−1w2
n + e−r∆B(gn − ĝn)2 + e−r∆ C ] ,

where the state variable, gn − ĝn, respects equation (1.6) and the expectation is taken with

respect to the distribution of εn. Crucially, this Bellman equation yields the same modified

Riccati equation and the same robust market order of the non-stochastic version in which

εn ≡ 0. In the non-stochastic version of the Bellman equation C disappears and the robust

market order in n is identified solving the double recursion

B(gn−1 − ĝn−1)2 = max
xn

min
wn

[π∗n + θ−1w2
n + e−r∆ B(gn − ĝn)2 ] , with (2.1)

gn − ĝn =
(
1− (κ+ λdν)∆

)
(gn−1 − ĝn−1) − λxxn + σεwn .

We can then prove the following Lemma, which describes the exact specification of the insider’s

market order in any auction n according to her robust strategy.
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Lemma 1 In auction n, according to the insider’s robust trading strategy, her market order is

xn = β(gn−1 − ĝn−1) , with (2.2)

β =

(
1− (κ+ νλd)∆

)
(1− 2e−r∆λxB)

2λx(1− e−r∆λxB) + 1
2θσ

2
ε

and (2.3)

B =
er∆

2λx

1 +
1

4λx
θσ2

ε −

[(
1 +

1

4λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2
 . (2.4)

Proof. See the Appendix.

Unsurprising corollary of Lemma 1 is the following result which confirms that our formula-

tion subsumes that of Chau and Vayanos.

Corollary 1 For θ ↓ 0 the insider’s trading strategy converges to that of the risk-neutral (profit-

maximizer) informed trader considered by Chau and Vayanos.

Then, using the projection Theorem for Normal random variables, we find that if the insider

chooses her market order according to equation (2.2), with β some positive constant, the

market maker applies equation (1.4) in period n to formulate his expectation of the underlying

profitably, with the coefficients λd and λx as follows

λd =
(1− κ∆)Σgνσ

2
l ∆

Σg(β2σ2
d + ν2σ2

l ∆
2) + σ2

dσ
2
l ∆

, (2.5)

λx =
(1− κ∆)βΣgσ

2
d

Σg(β2σ2
d + ν2σ2

l ∆
2) + σ2

dσ
2
l ∆

(2.6)

and Σg, the conditional variance of gn given the market maker’s information at the end of

period n, equal to

Σg =
(1− κ∆)2σ2

d σ
2
l ∆

Σg(β2σ2
d + ν2σ2

l ∆
2) + σ2

d σ
2
l ∆

Σg + σ2
g∆ . (2.7)

Combining all results presented in this Section we see that in a stationary linear equilibrium

the transaction price for the risky asset set by the market maker in n is a linear function of the

dividend yield, dn, the market maker’s conditional expectation of the underlying profitability,

ĝn, and its long-run mean value, ḡ (equation (1.3)). As in n the market maker receives in-
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formative signals on the underlying profitability from the dividend yield, dn, and his clients’

market orders, xn + εln, his conditional expectation of gn is a linear function of such vari-

ables (equation (1.4)). At the same time, the insider exploits her informational advantage

by submitting a market order which is a linear function of the perceived mis-pricing of the

risky asset, measured by the difference between the actual profitability and the corresponding

market maker’s conditional expectation, gn−1 − ĝn−1 (equation (2.2)).

The following Proposition sums up this characterization of a stationary linear equilibrium.

Proposition 1 In a stationary linear equilibrium, in auction n the market maker sets the trans-

action price for the risky asset according to equation (1.3), where his conditional expectation of

the underlying profitability, gn, is a linear function of the dividend yield and of his clients’ overall

market order, as given in equation (1.4) with the coefficients λd and λx described in equations

(2.5) and (2.6), and the corresponding conditional variance is given in equation (2.7). The in-

sider’s market order is a linear function of the market maker’s mis-pricing of the risky asset as

given in equation (2.2), with the coefficients β and B described in equations (2.3) and (2.4).

Such equilibrium exists if there exist values for the coefficients B, β, λd, λx and Σg which

simultaneously respect equations (2.4), (2.3), (2.5), (2.6) and (2.7).

While explicit formulae for the coefficients B , β, λd, λx and Σg are not available, a simple

numerical procedure allows to solve the system of equations (2.4), (2.3), (2.5), (2.6) and

(2.7). This is a numerical procedure which yields the trading intensity implicit in any initial

guess β0, β = N (β0). In particular, starting from an initial guess β0, the conditional variance

Σg is derived from equation (2.7); then, the coefficients λd and λx are obtained from equations

(2.5) and (2.6); eventually, equation (2.4) yields the constant B, while equation (2.3) allows

to obtain a final value for the trading intensity β.

A root of the numerical procedure N (·) yields a solution to the system of equations (2.4),

(2.3), (2.5), (2.6) and (2.7). Finding such root is simplified by the fact that, as shown in Sec-

tion 4.1, an explicit and unique solution for the system of equations (2.4), (2.3), (2.5), (2.6)

and (2.7) always exists in the continuous-time limit. Then, one can start the procedure search-

ing for the root of N (·) from the value of β consistent with the stationary linear equilibrium

which prevails in the continuous-time limit.

Before we turn to the analysis of the properties of the equilibrium described in Proposition

1 we prove an important result which suggests that an equivalence holds between the formula-
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tion with an ambiguity-averse insider considered so far and an alternative one with an insider

endowed with risk-sensitive recursive preferences.

3 An Insider with Risk-sensitive Recursive Preferences

In this Section we consider an insider who does not face any Knightian uncertainty over the

price formation process. This means that as in Chau and Vayanos she is sure that in n the mar-

ket maker applies equation (1.4) in formulating his expectation of the underlying profitability

gn. However, differently from what it is assumed by Chau and Vayanos, she is risk-averse, so

that in n she chooses her market order, xn, solving the following recursive optimization

Cn = min
xn

{
2

ρ
ln
(
En

[
exp

(ρ
2

(cn + e−r∆Cn+1)
)])}

, (3.1)

where ρ is a positive coefficient, cn is a per-period cost function equal to the opposite of the

the insider’s per-auction profits, cn = −πn, and Cn is the optimization criterion in n.7

The optimization criterion in (3.1) accommodates risk-aversion through the curvature of

the exponential function.8 As the convexity of ln(E[exp(ρ2X )]) increases with ρ, this coeffi-

cients determines the insider’s degree of risk-aversion. In addition, for ρ ↓ 0 the recursive

optimization in (3.1) converges to Cn = minxn En[cn + e−r∆Cn+1]. This corresponds to the

Bellman equation which solves the insider’s optimization exercise within Chau and Vayanos’

formulation. Thus, for ρ > 0 an insider endowed with the recursive preferences described by

the optimization criterion in (3.1) is more risk-averse than the risk-neutral one considered by

Chau and Vayanos.

It is worth noticing that as vn − pn = A1(gn − ĝn) the modified optimization criterion

Wn = Cn/A1 can equivalently be employed. In fact, it is immediate to see that the recursive

optimization (3.1) corresponds to

Wn = min
xn

{
2

A1ρ
ln

(
En

[
exp

(
A1ρ

2
(c∗n + e−r∆Wn+1)

)])}
, (3.2)

7The optimization criterion (3.1) put forward by Vitale (2015) is similar to that proposed by Hansen and Sargent
(1994, 1995). The two criteria differ because in Hansen and Sargent’s the per-period cost, cn, is deterministic and
hence outside the expectation operator, while in (3.1) is stochastic.

8The functional form ln(E[exp( ρ
2
X )]) is monotonically increasing and convex in X . In the optimization criterion

in (3.1) X ≡ cn + e−r∆Cn+1, which is convex in xn and gn−1− ĝn−1. Then, we see that the optimization criterion
in (3.1) is convex in xn and gn−1 − ĝn−1. This means that the optimization criterion is well-defined, in that it is
convex in the control variable xn and state variable gn−1 − ĝn−1.
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where c∗n = −π∗n. Then, to simplify algebra we introduce the rescaled risk-aversion coefficient

ρ∗ = ρA1 and employ the modified optimization criterion (3.2).

As in Section 2 we concentrate on linear stationary equilibria. In this respect we can now

establish the main result of this Section which describes the optimal trading strategy of a

risk-averse insider endowed with the recursive risk-sensitive preferences represented by the

optimization criterion (3.2).

Lemma 2 Assume that the market maker sets the transaction price according to equation (1.3)

and formulates his expectation of the risky asset’s underlying profitability according to equation

(1.4). Then, the trading strategy of the insider is such that in any period n:

1) her optimal market order is found solving the double recursion

−B(gn−1 − ĝn−1)2 = min
xn

max
εn

[
c∗n −

1

ρ∗
ε2n
σ2
ε

− e−r∆B(gn − ĝn)2

]
; (3.3)

2) the optimization criterion is a quadratic form in gn−1 − ĝn−1,

Wn = −B(gn−1 − ĝn−1)2 − C , (3.4)

with B and C positive constants.

Proof. See the Appendix.

Importantly, the double recursion in (3.3) is equivalent to

B(gn−1 − ĝn−1)2 = max
xn

min
εn

[
π∗n +

1

ρ∗
ε2n
σ2
ε

+ e−r∆B(gn − ĝn)2

]
,

which coincides with that in (2.1) for εn = σεwn and ρ∗ = θ. Therefore, as a Corollary

of Lemma 2 we conclude that the optimal trading strategy of a risk-averse insider endowed

with the recursive risk-sensitive preferences represented by the optimization criterion (3.2)

corresponds to the robust one of the ambiguity-averse insider considered in Section 1.2. This

proves Proposition 2 which posits that an equivalence holds between the formulation with an

ambiguity-averse insider and that in which such an insider is risk-averse.
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Proposition 2 The stationary linear equilibrium with a risk-averse insider is observationally

equivalent to that with an ambiguity-averse insider, in that it is characterized by the same trading

and pricing strategies on the part of the insider and the market maker.

While observationally equivalent the two equilibria are not identical, in that ambiguity-aversion

and risk-aversion represent very different attitudes towards uncertainty. In fact, the risk-averse

insider is concerned with the volatility of her trading profits, in that she cannot anticipate the

liquidity traders’ market order, but is not uncertain about their expected value. On the con-

trary, the ambiguity-averse insider is uncertain about what this expected value is, in that she is

unsure about the market maker’s pricing rule. However, Proposition 2 suggests that the impact

of ambiguity- and risk-aversion on the strategies of the insider and of the market maker, and

hence on the characteristics of the market for the risky asset, is the same. This implies that in

the next Section θ can equivalently represent a measure of either ambiguity- or risk-aversion.

4 Ambiguity/Risk-aversion and Market Quality

We are now interested in investigating the impact of ambiguity/risk-aversion on the trading

activity of the insider and on the characteristics, such as its efficiency and liquidity, of the

market for the risky asset. We start by considering a limit case in which trading approaches a

continuous auction, as we have analytical results.

4.1 Continuous-time Trading

For ∆, the time interval between two consecutive auctions, converging to 0 the continuous-

time limit of the stationary linear equilibrium described in Section 2 is reached. When ∆ ↓ 0

trading approaches a continuous auction, as traders can trade the risky asset at any time. Then,

the following Proposition holds.

Proposition 3 In the continuous-time limit the stationary linear equilibrium illustrated in Propo-

sition 1 exists, it is unique and it is characterized by the following asymptotic behavior of the
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coefficients which identify it:

lim
∆↓0

β√
∆

=

(
2κ + r + θσgσl

)1/2 σl
σg
, (4.1)

lim
∆↓0

Σg√
∆

=
1(

2κ + r + θσgσl

)1/2
σ2
g , (4.2)

lim
∆↓0

λd√
∆

=
ν(

2κ + r + θσgσl

)1/2

σ2
g

σ2
d

, (4.3)

lim
∆↓0

λx =
σg
σl
, (4.4)

lim
∆↓0

B =
1

2

σl
σg
. (4.5)

Proof. See the Appendix.

By continuity Proposition 3 suggests that for ∆ small enough the system of equations (2.4),

(2.3), (2.5), (2.6) and (2.7) does have a solution. In addition, inspection of the asymp-

totic behavior of the coefficients identyfing the stationary linear equilibrium of Proposition

1 proves the following Corollary, which illustrates some important implications for the impact

of ambiguity/risk-aversion on the insider’s trading activity and on market quality.

Corollary 2 In the continuous-time limit, an ambiguity/risk-averse insider will trade more ag-

gressively than her risk-neutral (expected-profit maximizer) counterpart, increasing the speed with

which private information is impounded into the asset’s price and benefiting market efficiency.

Indeed, we immediately see that for ∆ ↓ 0 the limit of β/
√

∆ is larger, while that of Σg/
√

∆

is smaller, for θ > 0 than for the value of θ consistent with Chau and Vayanos’ formulation

(θ = 0). Furthermore, the limit of λd/
√

∆ is smaller for θ > 0. This indicates that in the

continuous-time limit an ambiguity/risk-averse insider finds it optimal to trade more aggres-

sively than the risk-neutral counterpart studied by Chau and Vayanos, choosing a larger trading

intensity for the market orders she submits (lim∆↓0 β/
√

∆ is larger) and revealing to the market

maker a larger proportion of her private information. Consequently, with an ambiguity/risk-

averse insider the market is more efficient (lim∆↓0 Σg/
√

∆ is smaller) and the market maker
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learns more about the underlying profitability from order flow than from the dividend yield

(lim∆↓0 λd/
√

∆ is smaller).

Another interesting Corollary of Proposition 3 is the following.

Corollary 3 In the continuous-time limit, market liquidity, as measured by the market depth

1/(A1λx), is unaffected by the insider’s degree of ambiguity/risk-aversion.

Prima facie this result may appear to contradict the asymptotic behavior of the insider’s trading

intensity. In fact, in the limit β/
√

∆ takes a larger value when the insider is more ambiguity/risk-

averse. Then, one wonders how the market can be equally liquid for different values of θ. In-

deed, as the insider trades more aggressively and places larger market orders when θ is larger,

ceteris paribus adverse selection should induce the market maker to reduce market liquidity.

However, Σg is also smaller and hence the market maker’s uncertainty on the fundamental

value of the risky asset is attenuated. Corollary 3 indicates that in the continuous-time limit

these two contrasting effects on the liquidity coefficient λx (that positive of a larger β and that

negative of a smaller Σg) exactly compensate each other, so that market liquidity is unaffected

by the insider’s degree of ambiguity/risk-aversion.

A third Corollary of Proposition 3 is the following.

Corollary 4 In the continuous-time limit, the effects of ambiguity/risk-aversion and time-discounting

on the insider’s trading activity and on efficiency and liquidity are similar but distinct.

This is because θ and r enter additively in the expressions for the limit behavior of β and

Σg, while neither appears in that for the limit behavior of λx. As time-discounting and

ambiguity/risk-aversion enter separately into the objective function in the constraint program

(1.7) and into the optimization criterion (3.2) they have distinct effects on the insider’s trading

activity and on market quality. Such effects are however similar in that, as also shown in the

next Section when discussing the properties of the discrete-time formulation, they both favor

early resolution of uncertainty.

Proposition 3 allows to derive an interesting comparative static result pertaining to the

impact of liquidity trading on market efficiency. Thus, Chau and Vayanos show that when

the insider is an expected-profit maximizer the volume of liquidity trading, measured by σ2
l ,

does not affect market efficiency. On the contrary, from Proposition 3 we see that for θ > 0

lim∆↓0 Σg/
√

∆ is smaller when σ2
l is larger, so that the following Corollary holds.
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Corollary 5 In the continuous-time limit, with an ambiguity/risk-averse insider, market efficiency

is increasing with the volume of liquidity trading.

This holds because the variability of the profits of the risk-averse insider and the Knightian un-

certainty about such profits of her ambiguity-averse counterpart increase with σ2
l .

9 Then, with

a larger volume of liquidity trading the insider will choose to reveal a larger proportion of her

private information to offset the negative impact of a larger σ2
l on the variability/uncertainty

of her payoffs.

4.2 Discrete-Time Trading

It is important to establish whether the conclusions drawn for the continuous-time limit are

also valid when trading takes place at equally-spaced-in-time call auctions. As mentioned, the

system of equations (2.4), (2.3), (2.5), (2.6) and (2.7) for ∆ > 0 does not have an explicit

solution and a numerical procedure is called for. In what follows the numerical procedure

illustrated in Section 2 is used for a benchmark parametric configuration proposed by Chau

and Vayanos. In particular, in their calibration they employ data for Coca-cola stock. For this

stock estimated values for the volatility of dividends, σd, and of the underlying profitability, σg,

are respectively 1.06 and 0.62. The estimated values for the mean-reverting coefficients for the

processes governing the dividend yield, ν, and the underlying profitability, k, are respectively

1.47 and 0. The continuously compounding interest rate, r, is 2 percent.

In their calibration the standard deviation of liquidity trading, σl, is normalized to 1, as this

parameter does not influence the efficiency of the market. Proposition 3 indicates that such

result does not survive the introduction of ambiguity/risk-aversion, as now the volume of liq-

uidity trading affects the speed with which the insider reveals her private information. For easy

of comparison we will maintain their benchmark choice for σl but we will also discuss what

happens when we modify it. Finally, we experiment with different values for the coefficient θ

and for the time interval between subsequent auctions, ∆. For θ we consider values between

0 and 1, while for ∆ we choose values ranging from 1/252, for daily trading, to 1/120960, for

minute-by-minute trading.

9In order to see how the volume of liquidity trading affects the Knightian uncertainty of the ambiguity-averse
insider, consider that limσl↓0 σε = 0, so that when σ2

l drops to zero the dynamics of the excess profitability, gn− ĝn,
and that of the normalized profits, π∗n, become deterministic both in the approximating specification (1.5) and in
the distorted one (1.6). When this happens Knightian uncertainty dissipates and hence ambiguity-aversion has
no impact on the insider’s trading strategy. In fact, for σε ↓ 0 the argmin in the double-recursion (2.1) becomes
wmin
n = 0 and the insider’s trading strategy collapses to that of her risk-neutral (profit-maximizer) counterpart.

18



[ Figure 1 about here. ]

In Figure 1 we represent the dependence of the equilibrium coefficients β, Σg, λx and λd on

the frequency of trading, 1/∆, for the benchmark choice of the parameters. Thus, the ratios

Σg/
√

∆ (top, left panel), β/
√

∆ (top, right panel) and λd/
√

∆ (bottom, right panel) and the

coefficient λx (bottom, left panel) are plotted against a trading frequency varying from the

daily to the minute-by-minute one and compared to their continuous-time limits.

Comparing the actual behavior of these coefficients to their asymptotic counterparts we

see that convergence to the continuous-time limit is achieved fairly rapidly. This is particular

evident for the liquidity coefficient λx, which already at the daily frequency is less than 10 per-

cent away from its asymptotic value. Interestingly, this plot also suggests that market liquidity

decreases with the trading frequency.

[ Figure 2 about here. ]

From Proposition 3 we concluded that in the continuous-time limit an ambiguity/risk-averse

insider will trade more aggressively, revealing a larger proportion of her private information

and increasing the efficiency of the market, than her risk-neutral (expected-profit maximizer)

counterpart. In Figure 2 we plot the dependence of the equilibrium coefficients Σg (top, left

panel), β (bottom, left panel), λx (top, right panel) and λd (bottom, right panel) on θ, for

the benchmark parametric constellation and for four different values of ∆, corresponding to

the weekly, daily, hourly and minute-by-minute frequency of trading. The dependence of the

four coefficients on θ is clear-cut and consistent with the implications of Proposition 3 for the

continuous-time limit.

In particular, for all four values of ∆, the more ambiguity/risk-averse the insider is, the

larger her trading intensity, β. As with a larger θ more information on the underlying prof-

itability of the risky asset is conveyed by the insider’s market orders, the market maker gives

more weight to order flow (λx is larger) and less to the dividend yield (λd is smaller) in formu-

lating his expectation of gn. Since with a larger θ more information is elicited from order flow,

the market maker is less uncertain about the underlying profitability of the risky asset, so that

the conditional variance of gn, Σg, is smaller. Consequently, the asset market is more efficient

and less liquid.

As the frequency of trading, 1/∆, rises the volume of liquidity trading observed in a single

auction, σ2
l ∆, drops and so does the insider’s trading intensity, β. Nevertheless, the asymptotic
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behavior of β indicates that β/
√

∆ converges to a constant for ∆ ↓ 0. This implies that, as

the number of auctions in one year is 1/∆, the overall volume of trading by the insider in a

given spell of time augments when the trading frequency rises. Consequently, as 1/∆ increases

order flow becomes more informative and the market becomes more efficient (Σg is smaller)

and less liquid (λx is larger).

Quantitatively, the impact of ambiguity/risk-aversion is substantial, in particular when con-

sidering a large trading frequency. Thus, for hourly trading we see that the conditional variance

Σg more than halves for θ varying from 0 to 1. The percentage drop is even more pronounced

for minute-by-minute trading.

[ Figure 3 about here. ]

From Proposition 3 we have concluded that in the continuous-time limit an ambiguity/risk-

averse insider trades more aggressively when the volume of liquidity trading is larger, revealing

an even larger proportion of her private information to the marker maker. In Figure 3 we plot

the dependence of the coefficients Σg (top, left panel), β (bottom, left panel), λx (bottom,

middle panel) and λd (bottom, right panel) on θ for two values of σ2
l and for two values of ∆.

Consistently with Corollary 5 we see that for θ > 0 the market maker’s conditional variance

of the underlying profitability of the risky asset, Σg, is smaller when the volume of liquidity

trading is larger. Indeed, with a larger volume of liquidity trading the insider chooses a larger

trading intensity β for all values of θ, since her market orders are more easily disguised among

those of the liquidity traders. However, for θ > 0 with a larger volume of liquidity trading the

insider chooses such a large trading intensity as to reveal a larger proportion of her private

information. This confirms our claim that the irrelevance of the liquidity conditions on the

efficiency of the asset market established by Chau and Vayanos hinges on the assumption that

the insider maximizes the expected value of her discounted profits. Our result is general as it

applies to both the continuous-time limit and the formulation with a finite trading frequency.

In Figure 3 we also plot the half-life of the market maker’s prediction error of the risky

asset’s fundamental value, t0.5 (top, middle panel), as well as the half-life of such prediction

error relative to the benchmark scenario with no insider trading, t0.5/t0.5,0 (top, right panel). In

n the market maker’s prediction error is equal to the difference between the fundamental value

and the transaction price he sets, vn − pn. The half-life t0.5 indicates the time it must elapse

(while t0.5/∆ is the number of auctions which must be run) before such value is expected to
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halve, i.e. t0.5 is such thatEn[vn+t0.5/∆−pn+t0.5/∆] = 1
2(vn−pn), while t0.5,0 is the corresponding

value in the absence of insider trading. This half-life measures the speed of convergence of the

transaction price to the fundamental value and can be considered an alternative measure of

market efficiency which indicates the actual speed with which private information is diffused

in the market.

This half-life is fairly high (close to one year) when no insider operates in the asset market

and it is much smaller when an insider enters it. In addition, consistently with results in Figure

2, we see that with a larger frequency of trading this half-life is smaller. Indeed, as the insider’s

trading intensity, β, is of order ∆1/2 the information content of order flow (more precisely,

the signal-to-noise ratio in order flow) augments with the trading frequency. Also in line with

results unveiled by Figure 2, we see that the half-life dramatically falls when θ augments. Thus,

for the hourly frequency and the large volume of liquidity trading the half-life is 0.0469 (i.e.

about 12 days) when θ = 0 and it is 0.0163 (i.e. about 4 days) when θ = 1. In brief, Figure 3

proposes even more compelling evidence of how important the attitude of the insider towards

uncertainty is in determining the efficiency of the market.

4.3 Ambiguity/Risk-aversion and Earlier Resolution of Uncertainty

Corollary 2 and the numerical analysis in Section 4.2 show that the larger θ is, the more

aggressive the insider’s trading strategy and the more efficient the market for the risky asset

are. Tallarini (2000) suggests how to rationalize this result, as he finds that the recursive

risk-sensitive preferences described in Section 3 are characterized by a coefficient of relative

risk-aversion which exceeds the inverse of the inter-temporal elasticity of substitution. Thanks

to this property it can then be established that such preferences induce earlier resolution of

uncertainty vis-à-vis the case of expected utility (see Kreps and Porteus (1978) and Epstein and

Zin (1989)).

This implies that when θ is larger the risk-averse insider considered in Section 3 is willing

to accept smaller expected profits in order to reduce her uncertainty. In fact, within Chau and

Vayanos’ model the insider faces a trade-off between the expected value of her current profits

and the variability of her future ones. Then, when risk-averse, she is actually willing to forgo

part of her expected current profits to reduce their future variability, consistently with the

prescription that an agent endowed with the recursive risk-sensitive preferences introduced in

Section 3 prefers early resolution of uncertainty.
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Because of Proposition 2 this explanation of the behavior of the risk-averse insider extends

to the formulation with an ambiguity-averse insider. Indeed, we conclude that in a dynamic

context an ambiguity-averse insider also favors early resolution of uncertainty and trades in

order to make the environment in which she operates less uncertain. In general, we argue that

when either risk- or ambiguity-averse the insider will be willing to trade more aggressively

than she would if she were simply maximizing her expected profits. Consequently, she will

reveal more information to the market maker, as this will make the prices at which she will

trade less volatile and her profits less uncertain. Since the variability of such profits increases

with the volume of liquidity trading, when σ2
l is larger the impact on ambiguity/risk-aversion

on the insider’s trading strategy is even stronger.

These conclusions are analogous to those derived by Holden and Subrahmanyam (1994)

in their analysis of the impact of risk-aversion within Kyle’s sequential auction model (Kyle,

1985), as they find that a risk-averse insider reveals her private information at a faster pace

than her risk-neutral counterpart. Indeed, even within Kyle’s model the insider finds it conve-

nient to sacrifice part of her trading profits in order to reduce their variability.

Our analysis is however not a mere replica of Holden and Subrahmanyam’s, in that in the

analytical framework we employ, differently from Kyle’s, there is an infinite horizon, future

payoffs are discounted and the risky asset’s fundamental value is subject to stochastic shocks.

Then, because of time-discounting, we cannot adopt the CARA utility function Holden and

Subrahmanyam employ to introduce risk-aversion in Chau and Vayanos’ framework. In fact,

if we were to combine the CARA utility function with time-discounting the optimal trading

strategy of the insider would fail to be time-invariant.10 Consequently, in our analysis we rely

on the recursive preferences described in Section 3.

The impact of ambiguity-aversion on traders’ behavior we unveil contrasts with the port-

folio inertia typically exhibited in models of asset markets with ambiguity-averse investors

(Dow and Ribeiro da Costa Werlang, 1992; Caskey, 2009; Condie and Ganguli, 2011, 2014;

Ozsoylev and Werner, 2011; Easley, O’Hara, and Yang, 2014; Mele and Sangiorgi, 2015). In

these models ambiguity-averse investors fail to trade if prices are not sufficiently favorable as

to overcome their Knightian uncertainty on their payoffs. As these traders are less aggres-

sive vis-à-vis their expected-utility maximizer counterparts, ambiguity-aversion reduces price

informativeness and market efficiency.

10See Whittle (1990; Chapter 18.1) and Hansen and Sargent (1994) on the interplay between the exponential
transformation of the CARA utility function and time-discounting.
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Such disparity stems from several facets of our analysis which are novel with respect to

the existing literature on ambiguity-aversion in asset markets. In particular, according to our

formulation: i) Knightian uncertainty pertains to the pricing process and not to fundamentals

or to signals received on such fundamentals; ii) the ambiguity-averse trader acts strategically;

and iii) she solves a dynamic rather than a static optimization exercise, so that she considers

the future implications of her trading decisions.

4.4 Trading Volume, Trading Frequency and Market Quality

An implication of our analysis pertains to the access of unsophisticated traders to securities

markets. Retail traders and institutional investors, such as pension funds, insurance companies

and mutual funds, represent the bulk of this class of traders in securities markets as they trade

securities for liquidity, hedging and diversification motives. As they do not possess privileged

information on the fundamentals of the securities they trade, their transactions do not present

any information content. However, they contribute to the liquidity of securities markets and

according to our analysis increase their efficiency. Indeed, in Sections 4.1 and 4.2 we have

seen that as the volume of liquidity trading increases so does market efficiency. Consequently,

technological innovations and normative changes in securities markets which facilitate market

participation of unsophisticated traders and increase trading volume should benefit market

quality and ought to be favored by regulators and exchanges.

A second implication of our analysis is that technological innovations which increase the

pace of the market have important effects on the quality of securities markets. Indeed, from

the analysis of Figures 1 to 3 we have concluded that as the frequency of trading increases the

market for the risky asset becomes more efficient and less liquid, as the insider finds it optimal

to trade at a faster speed. In fact, as with a larger trading frequency the signal-to-noise ratio in

order flow is larger, an increase in the pace of the market presents opposite effects on liquidity

and efficiency. On the one hand, more severe adverse-selection induces the market maker to

increase λx, so that transaction costs augment and liquidity deteriorates; on the other hand,

as more information is conveyed through the trading process, market efficiency improves.

Such findings contribute to the recent debate among regulators, practitioners and researchers

on the impact of high frequency trading on liquidity, efficiency and other features of securities

markets. Interestingly, several empirical studies on the impact of high frequency traders in se-

curities markets (notably Carrion (2013), Hasbrouck and Saar (2013), Brogaard et al. (2014))
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find that they tend to improve market efficiency, consistently with the implications of our anal-

ysis. However, these studies also find that, differently from the conclusions of our analysis,

high frequency traders also benefit market liquidity.

Concluding Remarks

We have studied the trading strategy of an agent who possesses some private information

on the fundamental value of a risky asset but who is also uncertain about the beliefs of a

market maker who sets the corresponding transaction price. As she cannot determine the

exact probability distribution of the profits her trades will generate, the insider faces Knightian

uncertainty and selects a robust trading strategy. In this way we have investigated the impact

of ambiguity-aversion on her trading strategy and on market quality.

The results of our analysis can be summarized as follows:

• The robust trading strategy of an ambiguity-averse trader is identified via a max-min

choice mechanism, according to which she selects as her market orders those which

maximize her expected profits against those market maker’s beliefs which penalize her

most.

• This robust trading strategy is equivalent to that of an insider who does not face any

Knightian uncertainty and who is endowed with risk-sensitive recursive preferences.

• When trading in the market for the risky asset is continuous, the intensity of trading on

the part of the insider is increasing in her degree of ambiguity-aversion. This implies

that when the insider is more ambiguity-aversion, the market for the risky asset is more

efficient.

• The impact of ambiguity-aversion on the insider’s behavior and on market quality is

exacerbated with a larger volume of liquidity trading in the market for the risky asset.

• The same conclusions hold when trading takes place at equally-spaced-in-time auctions.

• When the frequency of trading augments the market for the risky asset becomes more

efficient but less liquid as the insider trades at a faster pace.

These results, which contrast with the portfolio inertia typically exhibited in models of asset
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markets with ambiguity-averse investors, are the consequence of the earlier resolution of un-

certainty favored by ambiguity/risk-averse agents.
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Appendix

• Conditional Entropy of Approximating and Distorted Specifications.

Under the approximating specification in n zn | zn−1 ∼ N(µn, σ
2
ε ), with µn = (1 − (κ + λdν)∆

)
zn−1 −

λxxn, as xn is known to be function of zn−1, while under the distorted one zn | zn−1 ∼ N(µn+σεwn, σ
2
ε ).

Then, the relative entropy I(fa, fd)(zn−1) is equal to 1
2w

2
n. In fact,

fa(zn | zn−1) =
1√
πσε

exp

[
−1

2

(
zn − µn
σε

)2
]

and fd(zn | zn−1) =
1√
πσε

exp

[
−1

2

(
zn − µn − σεwn

σε

)2
]
.

Thus,
fd(zn | zn−1)

fa(zn | zn−1)
= exp

[
1

2

1

σ2
ε

(
(zn − µn)2 −

(
(zn − µn − σεw)2

)]
.

Since

(zn − µn)2 = (zn − µn − σεwn)2 + σ2
εw

2
n + 2σεwn(zn − µn − σεwn) ,

fd(zn | zn−1)

fa(zn | zn−1)
= exp

[
1

2
w2
n +

wn
σε

(zn − µn − σεwn)

]
.

Then,

log

(
fd(zn | zn−1)

fa(zn | zn−1)

)
=

1

2
w2
n +

wn
σε

(zn − µn − σεwn) ,

so that

I(fa, fd)(zn−1) =

∫
log

(
fd(zn | zn−1)

fa(zn | zn−1)

)
fd(zn | zn−1)dzn

=

∫
1

2
w2
n fd(zn | zn−1)dzn +

wn
σε

∫
(zn − µn − σεwn) fd(zn | zn−1)dzn =

1

2
w2
n .

• Proof of Lemma 1.

Let us solve the modified Bellman equation (2.1). To simplify the algebra we rewrite it as follows

B(gn−1 − ĝn−1)2 = max
xn

min
ξn

[π∗n +
1

θ

1

σ2
ε

ξ2
n + e−r∆ B(gn − ĝn)2 ] with ξn ≡ σε wn .

Under the assumption that gn − ĝn respects equation (1.6), taking the derivative of the expression in
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brackets with respect to ξn we have that as 1 + e−r∆θσ2
εB > 0,

ξmin
n = ψg(gn−1 − ĝn−1) + ψxxn ,

where ψg = − e−r∆
(
1− (κ+ νλd)∆

) θσ2
ε

1 + e−r∆θσ2
εB

B ,

ψx = −1

2
(1− 2e−r∆ λxB)

θσ2
ε

1 + e−r∆θσ2
εB

.

Inserting into the expression in brackets that for ξmin
n and maximizing with respect to xn we find, after

some tedious algebra, that if 4λx(1 − e−r∆λB) + θσ2
ε > 0, a minimum is reached for xn = β(gn − ĝn),

with

β =

(
1− (κ+ νλd)∆

)
(1− 2e−r∆λxB)

2λx(1− e−r∆λxB) + 1
2θσ

2
ε

.

Plugging this expression back into into that in brackets, after some long but straightforward algebra,

we find that maxxn minξn [π∗n + 1
θ

1
σ2
ε
ξ2
n + e−r∆ B(gn − ĝn)2] = B(gn−1 − ĝn−1)2, where

B =
(1− 2e−r∆λxB)

(
1− (κ+ νλd)∆

)2
λx

4[(1− e−r∆λxB)λx + 1
4θσ

2
ε ]2

+ e−r∆
(
1− (κ+ νλd)∆

)2
λ2
x

4[(1− e−r∆λxB)λx + 1
4θσ

2
ε ]2

B

+

(
1− (κ+ νλd)∆

)2
16[(1− e−r∆λxB)λx + 1

4θσ
2
ε ]2

θσ2
ε .

Rearranging this expression it is found that B solves the cubic equation[(
1 +

1

4

1

λx
θσ2

ε

)
− e−r∆λxB

] (
4e−r∆λ2

xB
2 − 4λxB

(
1 +

1

4

1

λx
θσ2

ε

)
+
(
1− (κ+ νλd)∆

)2)
= 0 .

This possesses three roots. However,
(

1 + 1
4

1
λx
θσ2

ε

)
− e−r∆λxB = 0 entails that 4λx(1− e−r∆λxB) +

θσ2
ε = 0 and hence it violates the second order condition of the maximization with respect to xn. The

second part of this equation presents two roots,

B± =
1

2λx

1

e−r∆

1 +
1

4λx
θσ2

ε ±

[(
1 +

1

4λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2
 .

Now consider that

βλx =

(
1− (κ+ νλd)∆

)
(1− 2e−r∆λxB)

2(1− e−r∆λxB) + 1
2

1
λx
θσ2

ε

.

Since, given the expression for λd in equation (2.5)

1− (κ+ νλd)∆ = (1− κ∆)
Σgβ

2σ2
d + σ2

d σ
2
l ∆

Σ2
g(β

2σ2
d + ν2 σ2

l ∆2) + σ2
d σ

2
l ∆

> 0 ,
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the condition βλx > 0 implied by equation (2.6) is equivalent to

(1− 2e−r∆λxB)

2(1− e−r∆λxB) + 1
2

1
λx
θσ2

ε

> 0 .

It is immediate to check that for B+ the numerator in this ratio is negative, while the denominator

is positive, so that this constraint is violated. Instead, for B− both numerator and denominator are

positive and the constraint is satisfied. 2

• Proof of Corollary 1.

For θ ↓ 0

β →
(
1− (κ+ νλd)∆

)
(1− 2e−r∆λxB)

2λx(1− e−r∆λxB)
,

B → er∆

2λx

(
1 −

[
1− e−r∆

(
1− (κ+ νλd)∆

)2]1/2)
.

As σ2
ε = (λ2

dσ
2
d + σ2

g + λ2
xσ

2
u)∆ these expressions correspond to those derived by Chau and Vayanos. 2

• Proof of Lemma 2.

To prove this Lemma we first need to establish a preliminary result.

Lemma 3 If Q(x, ε) is a quadratic form in the vectors x and ε which admits the saddle point value

maxx minεQ(x, ε), then the following holds

min
x

∫
exp

[
− 1

2
Q(x, ε)

]
dε ∝ exp

[
− 1

2
max
x

min
ε

Q(x, ε)

]
.

Proof.

Consider the quadratic form Q(x, ε) in the vectors x and ε, where

Q(x, ε) =

 x

ε

′  Qxx Qx ε

Qεx Qε ε

  x

ε

 .

Assume Q admits a minimum in ε in that Qε ε is positive definite. Then, the following holds∫
exp

[
− 1

2
Q(x, ε)

]
d ε ∝ exp

[
− 1

2
min
ε

Q(x, ε)

]
. (A.1)

In fact, for ε̂ the vector ε minimizing Q, we can write Q(x, ε) = Q(x, ε̂) + (ε− ε̂)′Qε ε(ε− ε̂). Consider

that as Qε ε is positive definite and invertible, the minimum of Q with respect to ε is obtained for
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ε̂ = −Q−1
ε ε Qεx x and is equal to Q(x, ε̂) = x′[Qxx − Qx ε Q−1

ε ε Qεx]x. Thus,

Q(x, ε)−Q(x, ε̂) = ε′Qε ε ε + ε′Qεx x + x′Qx ε ε + x′Qx ε Q−1
ε ε Qεxx

= ε′Qε ε ε − ε′Qε ε ε̂ − ε̂′Qε ε ε + ε̂′Qε ε ε̂

= (ε − ε̂)′Qε ε (ε − ε̂) .

As Q(x, ε̂) = minε Q(x, ε) is a constant in the integral in equation (A.1), we find that∫
exp

[
− 1

2
Q(x, ε)

]
d ε = exp

[
− 1

2
min
ε

Q(x, ε)

]
×
∫

exp[− 1

2
(ε− ε̂)′Qε ε(ε− ε̂)] d ε .

Therefore, the constant of proportionality in equation (A.1) is
∫

exp(− 1
2 ∆′Qε ε∆) d∆ = (2π)m/2det(Qε ε)

−1/2,

where m is the dimension of ε, and hence it is independent of x. Then, suppose that we solve the pro-

gram minx

∫
exp

[
− 1

2 Q(x, ε)
]
. Assume that Q admits a saddle point with respect to ε and x, so that

maxx minε Q(x, ε) exists. From equation (A.1)

min
x

∫
exp

[
−1

2
Q(x, ε)

]
d ε ∝ min

x
exp

[
−1

2
min
ε

Q(x, ε)

]
= exp

[
−1

2
max
x

min
ε

Q(x, ε)

]
.�

It is worth noting this result applies also when Q is a non-homogeneous quadratic form, which depends

on x and ε, alongside a third vector z, insofar it admits a saddle point maxx minεQ(x, ε, z).

Then, let us introduce the stress function proposed by Vitale (2015).

Definition 1 The (discounted) stress function in n is Sn ≡ c∗n − 1
ρ∗ (εn)2/σ2

ε + e−r∆ Wn+1.

Proof of Lemma 2.

Let assume that in n + 1 the optimization criterion Wn+1 is a quadratic form in gn − ĝn, so that

two positive constants, Bn+1 and Cn+1, exist such that Wn+1 = −Bn+1(gn− ĝn)2−Cn+1. Because the

exponential function is monotonic we have that exp(ρ
∗

2 Wn) = minxn En

[
exp

(
ρ∗

2 (c∗n + e−r∆ Wn+1)
)]

.

Since i) gn − ĝn is linearly dependent on εn via equation (1.5), ii) c∗n = −(gn − ĝn)xn and iii) the

optimization criterion Wn+1 is assumed to be a quadratic form in gn − ĝn, then the distribution of

c∗n + e−r∆ Wn+1 depends on that of εn and hence, given that εn ∼ N(0, σ2
ε ),

min
xn

En

[
exp

(
ρ∗

2
(c∗n + e−r∆ Wn+1)

)]
=

(
2πσ2

ε

)−1/2
min
xn

∫
exp

(
ρ∗

Sn
2

)
dεn .

Now, since Wn+1 is assumed to be a quadratic form in gn−ĝn and this is linear in εn, xn and gn−1−ĝn−1,

Wn+1 can be expressed as a quadratic form in εn, xn and gn−1 − ĝn−1. Similarly, c∗n is a quadratic

form in εn, xn and gn−1 − ĝn−1 and so is Sn. Thus, if the stress in n admits a saddle point, in that

minxn maxεn Sn exists, then −Sn admits a saddle point in the statement of Lemma 3. Exploiting this
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Lemma

min
xn

∫
exp

(
ρ∗

Sn
2

)
d εn = min

xn

∫
exp

(
−1

2
(−ρ∗Sn)︸ ︷︷ ︸
Q(xn,εn)

)
dεn

= Kn exp

(
−1

2
max
xn

min
εn

(−ρ∗Sn)

)
= Kn exp

(
ρ∗

2
min
xn

max
εn

Sn
)
,

where, using the result outlined in the proof of Lemma 3, we establish that Kn = (2π/qεnεn)1/2 with

qεnεn equal to the second derivative of −ρ∗Sn with respect to εn. This implies that

min
xn

En

[
exp

(
ρ∗

2
(c∗n + e−r∆ Wn+1)

)]
= (σ2

ε qεnεn)−1/2 exp(
ρ∗

2
min
xn

max
εn

Sn) .

This implies that extremizing Sn, i.e. maximizing it with respect to εn and minimizing the resulting

function with respect to xn, we find that in period n: i) the saddle point pins down the optimal mar-

ket order for the insider; ii) the extremized stress, equal to the saddle point value minxn maxεn Sn,

is a quadratic form in gn−1 − ĝn−1, −Bn(gn−1 − ĝn−1)2 − e−r∆Cn+1, and iii) because exp(ρ
∗

2 Wn) =

minxn En

[
exp

(
ρ∗

2 (c∗n + e−r∆ Wn+1)
)]

, the optimization criterion Wn is a quadratic form in gn−1 −
ĝn−1 equal to the extremized stress plus a constant independent of gn−1 − ĝn−1,

Wn = − γn + min
xn

max
εn

Sn , where γn =
1

ρ∗
ln(σ2

ε qεnεn) .

In general the saddle point for Sn+j must be derived in all future dates (n + 1, n + 2, · · · , n + j,

· · · ) before it can be found in n to determine the optimal market order xn. However, with a sta-

tionary trading strategy we simply need to find a fix point in the double recursion implied by the

extermination of the stress. In fact, with a stationary strategy we see that Bn = Bn+1 = B, Cn =

Cn+1 = C and γn = γ = 1
ρ∗ ln(σ2

ε qεnεn), with qεnεn = 1
σ2
ε

+ e−r∆ρ∗B. Then, we have Wn =

− γ+minxn maxεn

{
c∗n − 1

ρ∗ (εn)2/σ2
ε − e−r∆B(gn − ĝn)2 − e−r∆C

}
, so that a stationary trading strat-

egy implies that the following fixed points hold,

−B(gn−1 − ĝn−1)2 = min
xn

max
εn

{
c∗n −

1

ρ∗
ε2n
σ2
ε

− e−r∆B(gn − ĝn)2

}
and C = γ + e−r∆C .�

• Proof of Proposition 3.

Let us introduce b and Sg such that β = b
√

∆ and Σg = Sg
√

∆. Chau and Vayanos show that for ∆ ↓ 0

equation (2.7) converges to S2
gb

2 = σ2
gσ

2
l . Then, consider that plugging equation (2.4) into (2.3) and
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readjusting we find that

βλx(
1− (κ+ νλd)∆

) =

[(
1 + 1

4
1
λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2

− 1
4

1
λx
θσ2

ε

1 +

[(
1 + 1

4
1
λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2

+ 1
4

1
λx
θσ2

ε

Plugging equations (2.5) and (2.6) into the left hand side of this equation we find that this is equal to

β2Σg/(β
2Σg + σ2

l ∆), so an equilibrium value for β is found when it solves the following equation

β2Σg
β2Σg + σ2

l ∆
=

[(
1 + 1

4
1
λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2

− 1
4

1
λx
θσ2

ε

1 +

[(
1 + 1

4
1
λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2

+ 1
4

1
λx
θσ2

ε

. (A.2)

Now, (A.2) can also be written as follows

Sgb
2

Sgb2
√

∆ + σ2
d

=

[
1
∆

(
1 + 1

4
1
λx
θσ2

ε

)2

− 1
∆e
−r∆(1− (κ+ νλd)∆

)2]1/2

− 1
4

1√
∆

1
λx
θσ2

ε

1 +

[(
1 + 1

4
1
λx
θσ2

ε

)2

− e−r∆
(
1− (κ+ νλd)∆

)2]1/2

+ 1
4

1
λx
θσ2

ε

. (A.3)

Using equations (2.5) and (2.6) we can write

1− (κ+ νλd)∆ = (1− κ∆)
Σgβ

2σ2
l + σ2

dσ
2
l ∆

Σg(β2σ2
l + ν2σ2

l ∆2) + σ2
dσ

2
l ∆

. (A.4)

Inspection of this equation allows to write 1 − (κ + νλd)∆ = (1 − κ∆)(1 + o(∆3/2)) where o(∆3/2)

denotes a function of ∆ of order 3/2. Similarly, considering the definition of σ2
ε and equation (2.6), we

can write 1
λx
σ2
ε = (λxσ

2
l + 1

λx
σ2
g)∆ + o(∆3/2). Exploiting these expressions we can write the right hand

side of equation (A.3) as follows

[
1
∆

(
1 − e−r∆ + 2κ∆e−r∆ + 1

2θ
(
λxσ

2
l + 1

λx
σ2
g

)
∆ + o(∆3/2)

)]1/2
− 1

4θ
(
λxσ

2
l + 1

λx
σ2
g + o(∆1/2)

)√
∆

1 +
[(

1− e−r∆ + 2κ∆e−r∆ + 1
2θ
(
λxσ2

l + 1
λx
σ2
g

)
∆ + o(∆3/2)

)]1/2
+ 1

4θ
(
λxσ2

l + 1
λx
σ2
g + o(∆1/2)

)
∆

.

Exploiting the Hôpital’s rule and considering that for ∆ ↓ 0 λx converges to Sgb

σ2
l

, we find that, the right

hand side of equation (A.3) converges to 2κ+r+ 1
2θ

1
Sgb

(S2
gb

2+σ2
gσ

2
l ), while the left hand side converges

to Sgb
2

σ2
d

. In brief, we find that for ∆ ↓ 0 equations (2.7) and (A.2) converge to the following

S2
gb

2 = σ2
gσ

2
l ,

Sgb
2

σ2
d

= 2κ + r +
1

2
θ

1

Sgb
(S2
gb

2 + σ2
gσ

2
l ) .
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From these equations we see that

lim
∆↓0

b =

(
2κ + r + θσlσg

)1/2
σl
σg

, lim
∆↓0

Sg =
1(

2κ + r + θσlσg

)1/2
σ2
g .

In addition, lim∆↓0 λx = lim∆↓0
Sgb

σ2
l

=
σg
σl

. As for λd, notice that it can be written as

λd =
(1− κ∆)Sg νσ

2
l

√
∆

Sg
√

∆ (b2σ2
d + ν2σ2

l ∆) + σ2
dσ

2
l

,

so that lim∆↓0
λd√
∆

= lim∆↓0
Sgν

σ2
d

= ν
σ2
g

σ2
d

(
2κ + r + θσlσg

)−1/2

. In addition, since lim∆↓0
1
λx
σε = 0,

lim∆↓0 1− (κ+ νλd)∆ = 1 and lim∆↓0 e
r∆ = 1, it is found that lim∆↓0B = lim∆↓0

1
2

1
λx

= 1
2
σl
σg

.
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