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This study provides evidence of the employment impact of AI exposure in European regions, 

addressing one of the many gaps in the emerging literature on AI’s effects on employment in 

Europe. Building upon the occupation-based AI-exposure indicators proposed by Felten et al. 

(2018, 2019, 2021), which are mapped to the European occupational classification (ISCO), 

following Albanesi et al. (2023), we analyse the regional employment dynamics between 2011 

and 2018. After controlling for a wide range of supply and demand factors, our findings 

indicate that, on average, AI exposure has a positive impact on regional employment. Put 

differently, European regions characterised by a relatively larger share of AI-exposed 

occupations display, all else being equal and once potential endogeneity concerns are 

mitigated, a more favourable employment tendency over the period 2011-2018. We also find 

evidence of a moderating effect of robot density on the AI-employment nexus, which however 

lacks a causal underpinning.  
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1. INTRODUCTION  

On the 22 of March 2023, a group of more than 30 thousand IT CEOs, managers and scientists, 

including prominent business figures such as Elon Musk (CEO of SpaceX, Tesla & Twitter) 

and Steve Wozniak (Co-founder, Apple), signed an open letter1 urging ‘AI labs to pause for at 

least 6 months the training of AI systems’. According to the petitioners, AI technologies with 

human-competitive intelligence ‘can pose profound risks to society and humanity’, thus 

‘should be planned for and managed with commensurate care and resources. On the top, there 

are the risk that AI takes over existential activities, allowing no longer intelligible (and 

therefore hardly controllable) machines to be in charge of vital decisions in areas such as 

defence, security or health care. These concerns reflect a pessimistic view on technological 

progress, which is related to the risk that the diffusion of AI may turn into a new wave of 

technological unemployment, bringing back to the fore the same fears surrounding previous 

automation and digitalization waves (Frank et al., 2019; Autor, 2022).2 Similar concerns are 

influencing policy making at the EU level. Speaking at the last G20 summit, the EU 

Commission President Ursula Von der Leyen argued that ‘Europe and its partners should 

develop a new global framework for AI risks…protecting against systemic societal risks and 

foster investments in safe and responsible AI systems’.3  

When it comes to the potential labour disruptive effects of AI, there are at least three 

discontinuities that are worth mentioning. First, AI technologies are, for the first time, putting 

man and machine in competition over tasks so far unattainable for non-human devices, 

particularly in the service sector. Generative AIs – e.g., Open AI’s Chat-GPT or Google’s Bard 

– are already showing their potential replicating and, in some cases, outperforming humans in 

carrying out activities that are based on complex reasoning, value judgements and combination 

of highly heterogeneous elements, such as a legal or a clinical advice (Felten et al., 2023). For 

instance, consider the interpretation of x-ray images and other medical imaging diagnostics, 

which – when performed by humans – requires a lot of knowledge, experience and involves 

non-routine cognitive tasks. Put differently, human workers now face competition in their core 

competences which explains the ‘this time could be different’ attitude with regards to labour 

market effects of technology. Second, AI is expected to magnify the potential of key 

automation technologies (e.g., robots), opening the way for job disruption also in 

manufacturing. Third, as AI-related technologies, knowledge and capabilities are not 

homogeneously distributed, this technological wave may bring about polarisation across 

Global Value Chains (GVCs) as well as within-countries, with peripheral areas losing further 

grounds together with the emergence of new forms of techno-economic dependency (Korinek 

and Stiglitz, 2021). On the other hand, AI promises to complement and enhance workers in 

carrying out a number of tasks, in services and manufacturing alike (Gmyrek et al., 2023). 

Increasing productivity may spur labour demand, potentially compensating AI-induced job 

disruptions, should the latter take place. By the same token, organisational efficiency - 

including managerial tasks aimed at monitoring, coordinating and directing workers – takes a 

leap forward, with potential labour-saving effects as well as changes in the composition of 

occupational profiles and their relative position within organisations (Chowdhury et al., 2023). 

New sectors and market niches are also about to emerge. Thus, it is hard to predict how many 

                                                 
1 The letter and the list of signatures is available at: https://futureoflife.org/open-letter/pause-giant-ai-

experiments/. Last access: September 28, 2023 
2 The ‘man vs machine’ race is already found in the writings of Keynes on the future of work (Keynes, 

2010[1931]). 
3 The full speech of the European Commission President is available at: 

https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4424. Last access: September 28, 2023 

https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4424
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jobs this will bring, as a significant share of disruptive AI applications are in their initial stage 

of development (Mondolo, 2022).  

In other words, the ultimate employment effects of AI remain an open question (Acemoglu, 

2021). What is sure is that exposure to AI technologies is highly heterogenous across 

occupations, sectors, countries and regions (Georgieff and Hyee, 2022). Therefore, structural 

change is a rather predictable outcome implying, as seen with the previous ICT waves (Autor, 

2015), sectoral reshuffling, occupational transitions and reskilling processes. The magnitude 

and distribution of the associated socio-economics costs will depend on the speed of the AI 

diffusion process and the relative resilience of the agents involved.    

In this context, empirical research is struggling to provide policy-makers robust evidence that 

could prove useful in tailoring AI-related policies and regulations (Acemoglu, 2021; Autor, 

2022). As the diffusion of AI gains momentum and its potential applications flourish across 

sectors (e.g., education, finance, legal counselling, insurance), attempts to assess its 

employment impact multiply (among others, see Brynjolfsson et al. 2018; Felten et al. 2018, 

2021; Webb, 2020; Acemoglu et al., 2022; Albanesi et al., 2023).4 Given its complex multi-

purpose nature, measuring AI and, even more so, the impact it may have on employment is a 

challenging endeavour. To complicate things further, a large share of AI-related tasks is 

fundamentally defined by tacit knowledge, organisational skills and procedural routines, 

making occupational heterogeneity and related idiosyncratic characteristics a central element, 

to be analysed at the highest possible level of granularity (on this point, see, among others, 

Tolan et al., 2021). Moreover, AI technologies are often ‘embodied’ in artefacts and productive 

environments, with relevant effects on organisation, quantity and quality of employment but 

with little knowledge and control by the economic agents it may affect (Green et al., 2023).  

The existing empirical evidence refers mainly to the US and largely converges towards a 

positive relationship between AI and employment, particularly concerning high-skill 

occupations. According to Felten et al. (2021), for instance, the top 5 AI-exposed occupations 

include ‘genetic counsellors’, ‘financial examiners’, ‘actuaries’, ‘purchasing agents’ and 

‘budget analysts. On the other hand, the least exposed occupations characterised by a 

prevalence of physical activities, such as ‘dancers’, ‘fitness trainers’, ‘helpers’ (including 

painters, paper hangers, plasterers), ‘iron and rebar workers’ and ‘textile/garment operators’. 

At the global level, heterogeneities emerge based on development levels, with high-income 

countries exhibiting greater exposure and women seemingly more affected than men (Gmyrek 

et al., 2023). Overall, no strong evidence of labour substitution seems to emerge. There can be 

at least three reason to explain this result, though. First, virtually all the available evidence 

relies on ‘potential’ measures of AI exposure to assess employment dynamics of different 

occupations. Consequently, different outcomes may arise once data on actual adoption in 

sectors and firms are available, especially due to the early stage of the AI diffusion process. 

Second, earlier studies did not account for the joint action of AI and automation technologies, 

including robots. Indeed, this can be a relevant source of job disruption, as this kind of 

innovations are mostly aimed at increasing efficiency by reducing the amount of inputs 

employed in production (Barbieri et al., 2020). Third, no studies have explored the AI-

employment nexus at the regional level, accounting for supply, demand and structural factors 

that may reshape the relationship at stake. All in all, the empirical evidence produced so far is 

rather US-centric while less is known on other advanced economies, including Europe.      

This work aims at filling these literature gaps, providing causal evidence on the employment 

impact of AI in European regions. Following Albanesi et al. (2023), we crosswalk the 

occupation-based AI-exposure indicators proposed by Felten et al. (2018, 2019, 2021) to the 

                                                 
4 For an earlier review of the literature on the AI-employment nexus, see Barbieri et al. (2020) and Mondolo 

(2021). 
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European occupational (ISCO) classification, analysing the dynamics of EU regional 

employment between 2011 and 2018. We find that AI-exposure has a rather positive impact on 

employment, while controlling for a rich set of region-level variables, including labour market 

characteristics, the share of manufacturing and medium-large firms, R&D investment and gross 

value added. European regions characterised by a relatively larger share of AI-exposed 

occupations display stronger employment growth, all else being equal and after mitigating for 

potential endogeneity concerns. This points to the prevalence of complementarity effects on 

average, although potential cross-country and regional heterogeneities would require further 

investigation as differentiated patterns could be in order. The situation changes when the joint 

impact of AI technologies and robots is taken into account. Even if not confirmed across all 

model specifications, the relationship turns negative lending support to the hypothesis of a 

labour-saving impact of AI when associated with automation technologies. 

The article is organised as follows. Section 2 provides a brief review of the literature, 

highlighting key issues and systematising the available empirical evidence by unit of analysis 

and AI-exposure measurement approach. Section 3 spells out our main research question, while 

data and descriptive evidence are provided in Section 4. Econometric strategy and results are 

illustrated in Section 5, while Section 6 concludes discussing policy implications, limitations 

of the analysis and avenues for future research.     

2. THE AI-EMPLOYMENT NEXUS: KEY ISSUES AND BACKGROUND 

LITERATURE   

Although relatively recent, the corpus of empirical literature focusing on the AI-employment 

nexus is large enough to be distinguished according to the adopted unit of analysis and related 

approach to measure the potential/actual penetration of such technologies.  

A significant group of contributions rely on occupation and ability-based indicators to assess 

the relative ‘AI exposure’ (Felten et al., 2018), i.e., the likelihood that an occupation will come 

into contact with, be assisted or replaced by AI given the characteristics of the tasks performed 

and the underlying abilities. In line with the literature studying the employment impact of ICTs 

distinguishing occupations according to the degree of ‘routineness’ of their tasks (Autor et al., 

2003) or automation probabilities (Frey and Osborne, 2017), this stream of works starts by 

ranking jobs considering the importance and prevalence of abilities that occupations ‘share’ 

with AI. Brynjolfsson et al. (2018) focus on advancements in machine learning (ML) 

technologies, which are at the basis of virtually all AI applications. Relying on the rubric 

evaluating task potential for ML proposed in Brynjolfsson and Mitchell (2017), the authors 

introduce a task-based measure of ‘Suitability for Machine Learning’ (SML) linking it to 

18,156 tasks included in the O*NET5 database. Their key results are summarised as follows: i) 

most of the occupations included in O*NET display at least some SML tasks; ii) only few of 

them turn out to be fully replaceable by AI technologies; and iii) redesign of job task content 

is often required to employ such technologies. Another occupation-based measure is proposed 

by Felten et al. (2019, 2021), refining the indicator proposed in an earlier contribution (Felten 

et al., 2018). These authors link occupation-level O*NET abilities to the Electronic Frontier 

Foundation dataset (EFF) developed in the context of the ‘AI Progress Measurement initiative’. 

Scores are then assigned by matching 10 AI applications (abstract strategy games, real-time 

video games, image recognition, visual question answering, image generation, reading 

comprehension, language modelling, translation, and speech recognition) to human abilities 

                                                 
5 The O*NET program is the US primary source of occupational information. Central to the project is the O*NET 

database, containing information on hundreds of standardized and occupation-specific descriptors. The database 

is continually updated by surveying a broad range of workers from each occupation. 
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included in O*NET. The matching is realized by administering a questionnaire to 2,000 

individuals, reached with the Amazon’s Mechanical Turk (mTurk) web service. Interviewees 

are asked whether AI applications are related to or could be used for each of the 52 abilities 

listed in the O*NET. Felten et al. (2021)’s AI occupational exposure scores (i.e. AIOE) point 

to white collars as the most exposed occupational group, being however silent regarding the 

likelihood of a complementary/substituting effect. 

The only attempt to apply the Felten et al. (2021)’s occupation-based methodology to assess 

the employment impact of AI on the European economy is the one by Albanesi et al. (2023). 

Carrying out a crosswalk, analogous to the one upon which our analysis is based, to link the 

O*NET-based AIOE to European 3-digit occupations6, these authors find that, in Europe, 

employment shares tend to increase in occupations more exposed to AI. The evidence is 

particularly strong for those occupations characterised by a relatively higher proportion of 

younger and skilled workers. Focusing on 16 European countries over the period 2011- 2019, 

Albanesi et al. (2023) argue that, despite country-level heterogeneities do matter, particularly 

concerning differences in terms of pace of technology diffusion, education levels, product 

market regulation and employment protection laws, there is no EU country where the share of 

the most AI-exposed occupations tends to decline 

In a more recent effort, Felten et al. (2023) updated their indicator to isolate only advances in 

Language Modelling (LM) – i.e., the AI technology which is key for the development of 

‘generative’ applications as GPT-4 - and thus verifying if and to what extent such a specific 

technological development may have a peculiar impact on employment. To do so, the AIOE 

undergoes a weighting procedure allowing to order occupations according to the number of 

abilities that are related to LM disregarding the other AI-related abilities included in the 

original indicator. Although most of the top-exposed occupations can be also found in the list 

provided in Felten et al. (2021), some relevant ‘new entries’ are worth mentioning. Among the 

top occupations exposed to LM AI there are telemarketers and a variety of post-secondary 

teachers, such as English language and literature, foreign language and literature, and history 

teachers. Concerning the distribution of the LM AI indicator across industries, sectors 

displaying the highest values are, as expected, legal services and securities, commodities and 

investments.  

Focusing on occupations but adopting a different approach, Gmyrek et al. (2023) assess the 

employment impact of Generative Pre-Trained Transformers (GPTs). Unlike Felten et al. 

(2021, 2023), these authors make use of Chat GPT-4 to estimate task-level scores of occupation 

exposure to AI. This ranking is then applied to quantify the impact of AI on employment and 

job quality, by country and income group. According to their estimations, only occupations 

related to clerical work are highly exposed to AI, with 24% of clerical tasks considered highly 

exposed and an additional 58% with medium-level exposure. Concerning other occupational 

groups, the greatest share of highly exposed tasks ranges between 1% and 4%, and medium 

exposed tasks do not exceed 25%. As a result, they discard the hypothesis of massive 

substitution, pointing instead to complementary effects that are concentrated among white 

collars and high-skilled occupations. A similar analysis is carried out by Elondou et al. (2023), 

who combine experts’ opinion and GPT-4 classifications to quantify the impact of GPTs on 

the US labour market. Merging task-level information stemming from the O*NET and 

employment data drawn from the Bureau of Labour Statistics (BLS) referring to the years 2020 

and 2021, these authors reveal that around 80% of the US workforce could have at least 10% 

of their work tasks affected by GPTs, while almost one fifth of occupations could have up to 

                                                 
6 The O*NET repository uses SOC occupational codes used in the US, while EU member states follow the 

International Standard Classification of Occupations (ISCO) to classify occupations. 3-digit ISCO codes are 

referred to as sub-minor groups. See also Section 4. 
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50% of their tasks impacted. Confirming previous evidence, the highest level of exposure is 

concentrated at the top of the occupational distribution, i.e., high-skilled and high-income 

workers.  

Despite being very useful for characterising occupations according to their relative AI 

exposure, occupation and task-based measure do have limitations. First, this type of indicators 

provides a proxy of ‘potential’ AI exposure, remaining silent on whether such technologies are 

actually employed – along with the ‘how, when and where’– by firms. Second, and relatedly, 

these indicators lack any information about industry- and firm-level technological 

heterogeneities. The latter, in turn, may be crucial both to more precisely characterise what AI 

technologies actually are, beyond linking AI applications and human abilities; as well to 

consider industry and firm level features (e.g., technological capabilities, distribution of 

complementary goods and competences) which may affect pace and distribution of the same 

technology. In an attempt to account, jointly, for technological and occupational 

heterogeneities, Webb (2020) developed an indicator tracking co-occurrence of verb-noun 

pairs in the title of AI patents and O*NET tasks. This way, he obtains a measure which 

considers, at the same time, technological choices of the firm (and fine-grained characteristics 

of specific AI technologies) as illustrated in patents; and task/abilities-related characteristics of 

occupations, as reported in O*NET. According to Webb (2020)’s results, AI is more likely to 

affect skilled and older workers than previous innovation waves, e.g., robots or software. The 

robustness of such a mixed patent-occupation based AI exposure measure, however, is partly 

undermined by the fact that the titles of patents do not contain a full description of the 

underlying technology. No less relevant, restricting co-occurrence to verb-noun pairs increases 

the risk of false positives.  

Among the few firm-level studies analysing the employment impact of AI, there is a 

contribution by Damioli et al. (2023). These authors rely on a sample of 3.500 front-runner 

companies, stemming from the Orbis BvD database, which patented AI-related inventions over 

the period 2000–2016 (data are drawn from the PATSTAT database). The coefficient 

associated to AI patents is always positive and significant, despite relatively small in terms of 

size, pointing to a moderate positive employment impact of AI patenting (with a short-term 

elasticity of about 3-4%). Such a ‘labour-friendly’ effect is paralleled by an analogously 

positive and significant effect of other (non-AI) firm innovation activities. These findings 

confirm the employment-friendly nature of product innovation in general, provide novel firm-

specific evidence on emerging AI technologies. However, it’s important to note that patents 

are not a proxy of actual AI adoption but rather a partial measure of product innovation, as not 

all innovation activities are patented. Additionally, as the study focuses solely on patenting 

companies, it remains silent on the net aggregate effect of actual AI adoption, as it fails to 

account for aspects such as ‘business stealing’ (see Calvino and Virgillito, 2018). 

Another way to look at the relationship between AI technologies and employment is to use 

job-posting data. In a seminal work, Acemoglu et al. (2022) rely on Burning Glass 

Technologies data, which provide wide coverage of firm-level online job postings, linked to 

SOC occupational codes to assess the relative penetration of AI technologies at the 

establishment level in the US. To quantify the degree of firm-level AI exposure, three different 

definitions are employed, namely those proposed by Brynjolfsson et al. (2018), Felten et al. 

(2021) and Webb (2020). The authors do not find any clear employment effect of AI at the 

industry or occupation-level. Instead, some evidence of a re-composition effect towards more 

AI-intensive jobs seems to emerge. Overall, the lack of effects at the industry and occupation 

level is attributed to the relatively limited diffusion of AI technologies and, relatedly, of niche-

level nature of adoption. In addition, no evidence of any direct complementarity between AI 

job posts and non-AI jobs arises, hinting at a prevalent substitution effect and workforce re-
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composition, rather than productivity enhancement after AI adoption. While online job 

vacancies offer a rich data source, caution is necessary when it comes to their 

representativeness of the overall labour demand as they tend to be biased toward specific 

occupations, industries and countries.  

A systematic overview of different AI proxies, along with the main findings and their 

limitations, is available in Table A1 in Appendix A. 

It is not only about cognitive activities and services, however. AI is going to increase 

capabilities and scope of a number of automation technologies, including robots (Agrawal et 

al. 2019). This connection between AI and digital technologies more broadly is also in line 

with the claim by CIIP (2022) that digitalization, particularly in the industrial domain, is not 

so much about new tangible technologies but manifest itself in the integration of existing 

technologies stemming from the ‘physical’ and the ‘ICT’ world. As robots and other machine 

become ‘smarter’, namely capable to learn and adjust their ‘behaviour’ in ever more complex 

productive contexts, the opportunities for process automation and related efficiency gains grow 

too (Barbieri et al. 2020). If this is the case, a wave of AI-induced job destruction in 

manufacturing could be on the way (Autor et al., 2022). Unless, the same efficiency gains 

translate into compensation mechanisms capable to offset the not so remote possibilities of job 

destruction (for a discussion of these mechanisms, see Calvino and Virgillito, 2018). It is hard 

to say, at present, which is the most likely scenario, as no robust empirical evidence on the 

impact of AI on manufacturing seems to be available.  

An important role could be also played by heterogeneously distributed supply, demand and 

structural factors that are likely to influence AI diffusion patterns (Reljic et al., 2021). 

Countries, sectors and regions characterised by a large share of knowledge intensive services 

are those where deployment of new technologies could be most rapid, especially with regard 

to AI applications capable of complementing human tasks. In contrast, where medium-

technology sectors prevail and firms are predominantly adopters of technologies provided by 

external suppliers, it is more likely to observe labour substitution phenomena (Calvino and 

Fontanelli, 2023). On the other hand, the presence of labour market institutions aimed at 

protecting workers against dismissal could slow down an eventual process of AI-driven 

destruction of occupations (Reljic et al., 2023). The spread of AI could also produce a 

polarization in Global Value Chains (GVCs), rewarding the industries and firms that control 

the most strategic AI services and penalizing, in terms of the amount of value captured along 

the VC, the broad mass of those depending on it. These are all elements which may ultimately 

contribute to determine the net (direct and indirect) employment impact AI, as well as its 

distribution in space and time.   

Four main take-home messages emerge from this brief literature review. First, much more 

needs to be said about the employment impact of AI, as the latter is in its initial stage of 

diffusion and novelties in terms of applications and potential impact on jobs quality and 

quantity are about to come. Second, albeit the available indicators represent a very useful base 

to assess exposure and (potential) employment impact of AI, further refinements, considering 

both the characteristics of occupations and actual business decisions, as well as the specifics of 

industries regarding the adoption process, would be of great advantage. Third, spatial 

specificities (e.g., characteristics of regions, provinces, cities or local labour markets) must be 

adequately taken into account, given the weight that these elements may have in determining 

the diffusion of AI and its impact on the labour market. Fourth, more evidence is needed 

regarding the intertwining of AI and automation technologies in manufacturing (e.g., robots). 

This is of particular relevance in the European case where manufacturing plays an important 

role and the diffusion of AI could be intertwined with phenomena having great transformational 

potential, such as the transition to electric in the energy and automotive sectors. We have now 
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reviewed the relevant literature and highlighted the key issues concerning the AI-employment 

nexus. In what follows, we spell out our research questions aiming to fill some of the 

abovementioned literature gaps.    

3. THE IMPACT OF AI ON EUROPEAN REGIONS: POLICY CONTEXT, 

RESEARCH QUESTIONS AND CONTRIBUTION  

As one of the largest markets in the world, characterised by a substantial share of knowledge 

intensive business services as well as of high-tech manufacturing industries, Europe is 

witnessing an increasing diffusion of AI technologies (European Commission, 2018). As 

alarms on the potential risks of AI started to spread globally, the European Commission (EC) 

reaction followed promptly. Building on its 2021 ‘European AI strategy’7, the EC published a 

‘Regulatory framework proposal on AI’, aiming at addressing AI-related risks, including those 

connected to employment and labour markets. Despite not explicitly mentioning the threat of 

a massive labour disruption, the EC highlights a number of risks specifically created by AI 

applications pointing to the need of a European governance that, among other things, should 

carry out ‘a conformity assessment before the AI system is put into service or placed on the 

market’.8 On the other hand, Europe does not want to fall behind the AI technological frontier 

concerning the development of knowledge, competences and incremental innovation. Because 

of its general-purpose nature (Agrawal et al., 2019), AI is likely to trigger a myriad of 

transformative innovations, in manufacturing and services alike. As a result, economies lagging 

behind technological leaders risk increasing their dependence on external suppliers, with 

potentially negative consequences for growth and employment. European economic policy 

faces a double challenge, then. First, staying on the AI frontier: policy instruments are being 

developed to promote the diffusion of AI technologies and the development of the skills needed 

to seize their potential. Second, mitigating socio-economic risks and preventing the most 

serious adverse effects related to the diffusion of AI, including those that may affect the labour 

market.     

Given the growing attention of EU policy makers, one would expect a blossoming of studies 

providing robust quantitative evidence concerning the effects of AI on the European labour 

markets. This not the case, though. While contributions on the US abound (see above), a certain 

darkness seems to characterize the European context. In particular, three are the main literature 

gaps worth underlining. First, while a number of studies provide evidence of the impact of AI 

exposure on the dynamics of US occupations considering, in a detailed manner, abilities and 

tasks that can be complemented/replaced by AI technologies, no study provides analogous 

evidence for the EU. A notable exception is the work by Albanesi et al. (2023), investigating 

the evolution of AI-exposed occupations/sectors. These authors, however, do not provide any 

causal evidence leaving ground for more exploration. Second, despite one of the key features 

of the European economy is its strong between and within-country structural heterogeneity 

concerning macroeconomic performance, innovativeness and labour force composition – it is 

not by chance that a large chunk of EU funds are destined to cohesion policies aimed at 

reducing macroeconomic and structural gaps across EU member states and regions (Darvas et 

al, 2019; Landesmann and Stöllinger, 2020) – no studies have so far analysed the distribution 

of AI exposed occupations and related employment dynamics taking into account such 

heterogeneity. Third, while the entanglement between AI and automation technologies is 

                                                 
7 Detail on the European AI strategy and on subsequent actions undertaken by the European Commission are 

documented at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:237:FIN.  
8 The Regulatory framework proposal on artificial intelligence of the European Commission can be accessed here: 

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.  

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:237:FIN
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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widely acknowledged, empirical evidence regarding their joint impact on employment is still 

missing.  

In this work, we enrich the approach of Albanesi et al. (2023) studying the impact of AI on 

EU employment by adopting a regional perspective and relying on a novel IV strategy. AI 

exposure is measured by mapping Felten et al. (2021)’s AIOE indicator into 3-digit ISCO 

occupations and then to 2-digit NUTS2 regions (see Section 4 for a detailed description of the 

methodology). A large number of dimensions are considered, accounting for regional 

heterogeneities as well as for supply, demand and structural factors likely to affect the 

relationship at stake. Moreover, we include a regional measure of robot intensity, testing 

whether and to what extent the combined action of AI technologies and robots has a peculiar 

impact on European employment. 

Our main research questions run as follows. First, we assess the relationship between 

occupational AI-exposure and employment dynamics in European regions. Theoretical 

expectations about the direction of the relationship are difficult to establish ex-ante. All other 

things being equal, both a complementarity as well as a substitution effect may prevail. If AI 

operates as a process innovation, increasing efficiency by reducing the amount of labour 

employed, a negative relationship can be expected. Conversely, if new tasks are required or if 

organizational innovation is stimulated enhancing the contribution of the most AI-exposed 

occupations, the effect may go in the opposite direction. Accordingly, the first research 

question (RQ1) reads as: 

 

RQ1: Does AI increase or destroy European jobs?  

 

Once tested RQ1, relying on different AI indicators – so to account whether different 

approaches to measure AI lead to heterogeneous results concerning its employment impact – 

and estimators, we move our focus to the linkage between AI and automation technologies, 

namely robots. As argued, AI technologies may improve the automation potential of robots 

positively affecting their performance and, hence, their labour-saving potential; as well as 

enlarging the set of tasks that such machines are capable to carry out. On the other hand, 

robotization and, even more so, ‘smart robotization’ is hardly a homogeneous process, as EU 

countries and regions are characterized by significantly heterogeneous productive and 

technological capabilities which are likely to influence pace, distribution and, ultimately, the 

employment impact of such process (Reljic et al., 2023). Therefore, we consider the joint effect 

of AI and robots on employment, considering all the region-specific structural factors that may 

shape the relationship. In principle, ex-ante expectations are relatively easier to establish in this 

case, given the fact that intelligent robots are in most cases aimed at increasing the efficiency 

of production processes, giving rise to labour-saving effects. Nonetheless, if intelligent robots 

help improving organisational efficiency this could have a larger and persistent impact on 

economic performance, potentially compensating the labour-saving effects. As a result, our 

second research question (RQ2) is openly worded as the previous one and reads as follows: 

       

RQ2: What is the employment impact of the AI-robots combination on the employment 

dynamics of European regions?   

 

The following sections illustrate data and indicators; offers a comprehensive assessment of 

AI occupational exposure across EU’s occupations and regions; introduces the empirical 

strategy adopted to address RQ1 and RQ2 and provides the main results.   
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4. DATA AND DESCRIPTIVE EVIDENCE 

4.1. Data description  

To investigate the employment impact of AI in European regions, we combine data from 

several sources over the period 2011-20189. Our sample includes 202 NUTS-2 regions from 

23 European countries10. The NUTS-2 classification has undergone changes in some countries 

over time due to a combination of administrative and statistical-related factors (Eurostat, 2020). 

These amendments in NUTS-2 codes pose challenges for regional panel analysis. Thus, to 

ensure the consistency of our data throughout this period, we simply recode regions that have 

only changed the name of NUTS (e.g., French regions), while in other instances, we were 

compelled to aggregate NUTS-2 regions (e.g., LT00-02, IE01-06, DE40-42) 11. 

Artificial Intelligence. Regarding AI, we draw on earlier works by Felten et al. (2018, 2019, 

2021), who proposed and made available the indicator of AI occupational exposure. This 

indicator links various AI applications - abstract strategy games, real-time video games, image 

recognition, visual question answering, image generation, reading comprehension, language 

modelling, translation, speech recognition and instrumental track recognition - to 52 workplace 

abilities (e.g., mathematical reasoning, speech recognition, written comprehension, originality, 

body coordination) using the mTurk web service survey.12 Occupational exposure to AI 

(AIOE) is constructed by weighting the ability-level exposure to AI with their prevalence and 

importance within each occupation: 

 

𝐴𝐼𝑂𝐸𝑘 =
∑ 𝐴𝑖𝑗∗𝐿𝑗𝑘∗𝐼𝑗𝑘

52
𝑗=1

∑ 𝐿𝑗𝑘
52
𝑗=1 ∗ 𝐼𝑗𝑘

      (1) 

 

where 𝐴𝑖𝑗 stands for the ability-level AI exposure, calculated as a sum of relatedness scores 

across ten AI applications for each of the 52 abilities; 𝐿𝑗𝑘 and 𝐼𝑗𝑘 represent prevalence and 

importance of each ability (j) within each occupation (k). 

This means that occupations characterised by a higher prevalence and importance of abilities 

classified as highly exposed to AI exhibit a relatively higher exposure to AI, and vice versa. 

Under the assumption that AI-related workplace abilities of US occupations are similar to those 

characterising their EU counterparts13 (Albanesi et al., 2023), we map Felten et al.’s AIOE 

available at the six-digit SOC occupations into the International Classification of occupations 

(ISCO-08) at the four-digit level, ultimately collapsing at the three-digit ISCO level (126) by 

calculating the mean exposure across occupations.  

As focus of the analysis are European regions, we construct a regional AI exposure (AIRE) 

indicator following the approach suggested by Felten et al. (2021). To this end, we combine 

the occupational AI exposure (AIOE) with the occupational distribution (ISCO 3-digit) of 

employees within regions from the EU LFS, as follows: 

                                                 
9 Our sample starts in 2011 due to a major revision of ISCO (International Standard Classification of Occupations), 

when ISCO-88 was succeeded by ISCO-08, which makes comparisons before and after 2011 impossible. 
10 Austria, Belgium, Bulgaria, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France, Greece, 

Hungary, Ireland, Italy, Lithuania, Latvia, Netherlands, Poland, Portugal, Romania, Sweden, Slovakia, United 

Kingdom. 
11 For example, in the case of Lithuania, the change in classification in 2013 resulted in the separation of Lithuania 

into two NUTS-2 regions. 
12 A detailed methodology is provided in Felten et al. (2021). 
13 An analysis showing the US-EU within-occupation similarities in terms of digital task content has been recently 

provided by Gschwent et al. (2023). 
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𝐴𝐼𝑅𝐸𝑖𝑗𝑡 = ∑
𝐸𝑀𝑃𝑘𝑖𝑗𝑡

𝐸𝑀𝑃𝑖𝑗𝑡
∗ 𝐴𝐼𝑂𝐸𝑘

126
𝑘=1       (2) 

 

where 𝐸𝑀𝑃𝑘𝑖𝑗𝑡 denotes the number of employees in occupation k in region j in country i and 

year t, while 𝐸𝑀𝑃𝑖𝑗𝑡 stands for the total number of employees in region j in country i in year t. 

Thus, the first term denotes the employment share of each of the 126 ISCO 3-digit occupations 

in region r in year t, while 𝐴𝐼𝑂𝐸𝑘 corresponds to occupational AI exposure, as defined in 

Equation 114. The AIRE indicator is normalised to have a zero mean and unit standard deviation 

in each year, representing relative AI exposure across regions. 

The main limitation of Felten et al. (2021)’s indicator is that measures crowd-sourced 

opinions on relative exposure to AI technologies. It sheds light on which occupations, 

industries, countries and regions are most likely to be affected by advancements in AI rather 

than on actual adoption. Therefore, to check the robustness of our regional AI-exposure 

measure we rely on Eurostat ICT business survey data, recording the percentage of enterprises 

employing AI technologies. To allow for comparison, we calculate AI exposure at the country 

level by combining the AIOE data with the occupational distribution (ISCO 3-digit) of 

employees within each country. Figure 1 presents a scatter plot displaying the joint distribution 

of country level AI exposure and Eurostat’s AI adoption indicator. Despite some noise, the 

positive correlation (correlation coefficient: 0.57) suggests that occupational AI exposure is 

likely related to AI adoption. Specifically, countries with higher degree of AI exposure tend to 

have a greater share of enterprises that adopt AI technologies. 

 

Figure 1. AI exposure and share of enterprises using AI technologies by country 

 
Source: Authors’ elaboration based on Felten et al. and Eurostat’s ICT business survey 

 

Robots. We rely on International Federation of Robotics (IFR) database, which provides 

information on the robot stock and new instalments from 1994 to 2019 at the country-industry 

level in manufacturing sector. As extensively discussed in Fernández-Macías et al. (2021), the 

IFR data comes with an important caveat: they do not account for variations in robot quality 

across different industries, countries and time periods. Nevertheless, the IFR remains the most 

reliable source of data upon which empirical literature on the employment effects of robots has 

                                                 
14 Note that we introduce dynamics by allowing our indicator AIRE to vary over time, reflecting the changes in 

the occupational distribution. 



13 

 

flourished (see Acemoglu and Restrepo, 2020; Fernandez-Macias et al., 2021; Petit et al., 2023; 

Reljic et al., 2023, among others).  

In line with earlier studies (Dauth et al., 2021; Petit et al., 2023, among others), to construct 

an indicator of robot density at the regional level we assume that the distribution of robots 

within an industry is uniform across regions within a country, conditional on the industry-

region employment shares. To this end, we combine industry-level data on robot stock with 

employment distribution across the 2-digit NACE Rev.2 industries within regions, as follows: 

 

𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘𝑟𝑡 = ∑
𝐸𝑀𝑃𝑗𝑟𝑡

𝐸𝑀𝑃𝑟𝑡
∗ 𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘𝑗𝑡

𝐽
𝑗=1    (3) 

 

where 𝐸𝑀𝑃𝑗𝑟𝑡 denotes the number of employees in industry j in region r in year t, 𝐸𝑀𝑃𝑟𝑡 

stands for the total number of employees in region r in year t and J represents the complete set 

of industries for which robot stock (𝑅𝑜𝑏𝑜𝑡 𝑠𝑡𝑜𝑐𝑘𝑗𝑡) is available. The remaining variables used 

in the empirical analysis and their sources are listed in Table A2 in Appendix A. 

4.2. Descriptive evidence 

In order to get a first impression of the data and its characteristics, we list the ten ISCO 3-digit 

occupations (sub-minor group) with the highest (Table 1) and the lowest AIOE scores (Table 

2). The most striking feature of the top ten list is the dominance of high-skilled workers, 

predominantly stemming from the group of professionals (ISCO major group 2). This is fully 

in line with the ranking in Felten et al. (2021) for US occupations which also includes many 

professions such as financial examiners, budget analysts or mathematicians, which are all 

represented also in the list in Table 1. The relatively high AI exposure of high-skilled worker 

is also in line with the wide-spread perception that labour market effects of digitalisation – or 

industry 4.0 – will affect not only, and maybe even not most strongly, blue-collar workers as 

was the case with automation (Cirillo et al., 2021). In this context, it is noteworthy that the high 

score of professionals is not built in the construction of the AI index because the AI index is 

considered ‘neutral’. It means that a high exposure to AI does not necessarily imply that 

occupations will be substituted by AI technologies. Rather, they can also score high if they are 

complementary to AI, or as Felten et al. (2021) point out, the methodology for calculating the 

AI index is agnostic as to whether AI substitutes for or complements occupations (respectively 

the abilities needed in occupations).  

 

Table 1. Top 10 most AI exposed occupations  

Ranking ISCO 3-digit ISCO 3-digit label AIOE  
1 212 Mathematicians, Actuaries and Statisticians 1,66 
2 241 Finance Professionals 1,63 
3 261 Legal Professionals 1,63 

4 242 Administration Professionals 1,46 
5 431 Numerical Clerks 1,45 

6 231 University and Higher Education Teachers 1,44 
7 411 General Office Clerks 1,44 

8 122 Sales, Marketing and Development Managers 1,42 

9 251 Software and Applications Developers and Analysts 1,40 
10 233 Secondary Education Teachers 1,38 

Source: Authors’ elaboration based on Felten et al. (2021) 

 

This characteristic of the AIOE presumably also explains why, along with various 

professionals, there are also some medium-skilled occupations present in the list of top-ranking 
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occupations such as numerical or general office clerks. In other words, the rationale of this AI-

exposure index is partly different from the one characterising other well-known occupation-

based indices, such as the routine-task intensity (RTI) index (Autor et al., 2003) or the 

offshoreability index (Acemoglu and Autor, 2011). The latter include a clear task-related 

occupational hierarchy concerning replacement risks vis-à-vis complementarity (i.e. 

occupations characterized by a relatively larger share of routinary task are considered more at 

risk of technology-driven substitution), while no such hypotheses are made to build the AIOE.   

At the other end of the spectrum (Table 2), we find mostly low-skilled occupations, in 

particular elementary ones. Common traits include the relatively lower technological intensity 

of their tasks, which are mostly manual and physical but not necessarily repetitive (i.e. 

routinary). Several of these occupations have little or no relevance anymore in most EU 

member states, which is particularly true for subsistence farmers or subsistence fishers and 

hunters.  

 

Table 2. Bottom 10 least exposed occupations  

Ranking ISCO 3-digit ISCO 3-digit label AIOE 
126 931 Mining and Construction Labourers -1,78 
125 631 Subsistence Crop Farmers -1,74 

124 912 Vehicle, Window, Laundry and Other Hand Cleaning Workers -1,69 
123 911 Domestic, Hotel and Office Cleaners and Helpers -1,64 

122 713 Painters, Building Structure Cleaners and Related Trades Workers -1,60 
121 634 Subsistence Fishers, Hunters, Trappers and Gatherers -1,53 

120 932 Manufacturing Labourers -1,51 
119 921 Agricultural, Forestry and Fishery Labourers -1,51 

118 633 Subsistence Mixed Crop and Livestock Farmers -1,47 

117 712 Building Finishers and Related Trades Workers -1,44 

Source: Authors’ elaboration based on Felten et al. (2021) 

 

Looking at the distribution of the AI exposure at the level of European region (NUTS-2 

regions), it is not surprising to find a high AI exposure in many high-income regions, including 

many capital regions. Examples include, Ile de France (Paris region), Vienna, Berlin, Warsaw 

metropolitan area, Prague and many more. In other cases, larger areas of the country are 

identified as having a high AI exposure, such as North Holland, South Holland and the Utrecht 

region in the Netherlands or Southern Sweden and Lower Bavaria in Germany. All these 

regions, however, are also high-income regions, both in an EU-wide comparison and a national 

comparison.  

In contrast, in the Southern periphery (Spain, Italy) and the Eastern periphery (Romania, 

Bulgaria) there are numerous regions with very low levels of AI exposure. These patterns 

coincide well with other measures for implicit technological capabilities across Europe, such 

as, for example, functional specialisation patterns (Kordalska et al., 2022). These regional 

patterns of AI exposure and their development over time are crucial as they will be reflected in 

the econometric analysis. 
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Figure 2. AI exposure across European regions in 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors’ elaboration based on Felten et al. (2021) 

 

It was already shown that the AI index is related to actual AI adoption (see Figure 1 above). 

However, it is important to see that the AI exposure index does not show any clear correlation 

with robot density, a measure that, following the seminal contribution by Graetz and Michaels 

(2018), has become popular for investigating the employment effects of automation. While 

regions with a low robot density may have very high or very low AI exposures, those with a 

very high robot density, for the most part, do not deviate too strong from the average AI 

exposure of region. This lack of correlation could indicate that the AI exposure and the 

installation of robots reflect different aspects of technological progress. More specifically, it 

could be argued that the former is directly related to digitalisation and the ‘fourth industrial 

revolution’ (or Industry 4.0), while robots are a manifestation of automation belonging to the 

‘third industrial revolution’ (or Industry 3.0). Be that as it may, both ‘generations’ of 

technologies will be considered in the econometric analyses.  
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Figure 3. AI exposure and robot density by region, 2011-2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Values refer to the averages over the period 2011-2018  

Source: Authors’ elaboration 

5. ECONOMETRIC STRATEGY AND RESULTS 

The impact of technology can vary significantly across countries, regions, industries, and 

occupations. Recent studies show that there are structural features likely to affect the capacity 

of countries and regions to leverage new technologies, including sectoral specialisation, 

technological capabilities, positioning in the GVCs and skills (Petit et al. 2023; Reljic et al., 

2023). Industries and occupations tend to cluster geographically, not only across countries but 

also within them (Valentini et al., 2023). Hence, regions emerge as a pertinent unit of analysis 

in this context. 

We estimate the effect of AI exposure on employment at the regional level using the following 

baseline specification: 

 

 ∆𝑌𝑖𝑗𝑡 = 𝛼0 +  𝛽1𝐴𝐼𝑅𝐸𝑖𝑗 𝑡−1 +  𝛾 ∗ 𝑥′𝑖𝑗 𝑡−1 + 𝜏𝑗+ 𝜀𝑖𝑗𝑡    (4) 

 

where the dependent variable is the annual employment change in region j in country i in year 

t, so that  ∆𝑌𝑖𝑗𝑡refers to the annual change in employment between year t and t-1 in region j and 

country i. AIRE denotes the regional AI exposure, which is our main explanatory variable. The 

vector x’ comprises a set of control variables, 𝜏𝑗 denotes region fixed effects and 𝜀 is the error 

term. 

In line with the literature, the regional AI exposure indicator is lagged by one year because it 

may require some time to manifest its effects (Dosi et al., 2021), while other explanatory 

variables are also lagged in order to mitigate potential simultaneity bias (Blanas et al., 2019). 

As discussed above, the capacity to embrace and reap the benefits of AI technologies is likely 

to vary across regions according to their characteristics, potentially complementing labour in 

some areas while substituting it in others.  

To begin addressing these regional differences, we include controls for socio-demographic 

workforce characteristics within regions: the shares of female employees, non-standard 
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employment, youth workers (aged 15-24), senior workers (aged 55-64) and those with 

university degree within regions. 

Furthermore, recent empirical findings highlight the role of firm size in AI adoption. Rammer 

et al. (2021), for instance, found that in Germany large firms with at least 1000 employees are 

nearly ten times more likely to adopt AI compared to the small business (5 to 9 employees). 

Similarly, AI adoption is unevenly distributed across sectors, with the latest Eurostat ICT 

business survey suggesting higher AI adoption rates in ICT services and professional business 

activities. To account for structural heterogeneities across regions that may affect the nexus 

between AI and employment, we control for the size of manufacturing sector and the share of 

firms with more than 50 employees. In addition, we also include regional levels of R&D 

investment and gross value added (proxying heterogeneities concerning aggregate demand). 

While our AI indicator appears effective in capturing the occupational exposure to AI 

technologies (and to some extent AI adoption, see Figure 1), it falls short in accounting for 

AI’s role in the realm of robotics. Indeed, Felten et al. (2019) explicitly acknowledge their 

focus on ‘purely AI technologies,’ intentionally omitting consideration of ‘how the interaction 

between advanced AI and robotics technologies affects abilities or occupations.’ Consequently, 

AI occupational exposure is inherently skewed toward cognitive abilities and tasks, as observed 

in the study by Felten et al. (2021). While this is not necessarily a limitation, it is important to 

note that this indicator does not account for the fact that AI is also enhancing automation 

potential in manufacturing industries by making industrial robots more flexible, autonomous 

and intelligent (IFR, 2022; Soori et al., 2023).  

In line with this, we augment the model in Equation (4) by including an interaction between 

AI exposure and robot density in an attempt to measure AI embodied in robots: 

 

 ∆𝑌𝑖𝑗𝑡 = 𝛼0 +  𝛽1𝐴𝐼𝑅𝐸𝑖𝑗 𝑡−1 + 𝛽2𝐴𝐼𝑅𝐸𝑖𝑗 𝑡−1 ∗ 𝑅𝑜𝑏𝑜𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑗𝑡−1 + + 𝛽3𝑅𝑜𝑏𝑜𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑗𝑡−1 +

𝛾 ∗ 𝑥′𝑖𝑗 𝑡−1 +𝜏𝑗+ 𝜀𝑖𝑗𝑡           (5) 

 

Equation 4 and 5 are estimated using OLS and FE, and standard errors are robust to 

heteroscedasticity and clustered at the country-regional level to account for serial correlation. 

Results are available in Table 3. 

The question that arises is whether we can consider AI exposure as a plausibly exogenous 

factor in driving employment dynamics in European regions. In their recent work on European 

sectors, Albanesi et al. (2023) employ Felten et al.’s indicator and argue that AI exposure is 

‘not that endogenous,’ considering that it was originally constructed for the US economy.  

To address endogeneity concerns and ideally isolate the component of AI exposure driven 

solely by advances in AI technologies, we adopt an instrumental variable approach using a new 

instrument. The approach consists of using the number of daily internet users relative to the 

total population as an instrument. This choice is grounded on the assumption that regions with 

a higher number of daily internet users are more likely to be exposed to and adopt AI 

technologies. This reconciles with the idea that AI technologies have the capacity to 

continuously ‘learn’ from large amount of unstructured data, and regions with a larger internet 

user base are likely to generate more data, thereby creating a conducive environment for 

fuelling advances in AI performance. At the same time, it is reasonable to assume that daily 

internet users are not directly influenced by changes in regional employment dynamics, and 

vice versa. 

We attempt to estimate the causal impact of AI on employment, by employing a two-stage 

least squares, using the instrument discussed above. The results are presented in Table 4. We 

start off with discussing the Fixed Effects (FE) results (Table 3). Ignoring the pooled OLS 

estimates (specification 1), we find that the regional AI exposure, AIRE, as our main variable 
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of interest is positively associated with employment growth. This effect tends to get larger as 

more control variables are added to the model. Specification 4, for example, which includes 

structural and labour market controls as yields a coefficient of 2.3 for AIRE. This suggests that 

a 1 standard deviation increase in the AI exposure of a region is associated with an increase in 

the employment growth by 2.3 percentage points. The coefficient of AIRE tends to increase 

further as the model is augmented to include robot density, along with controls for R&D and 

demand. These results provide an answer to our first research question: on average, AI 

exposure increases regional employment, implying that the AI-job complementarities dominate 

the substitutive forces in the AI-job nexus. This outcome is different from the results reported 

by Felten et al. (2019) concerning the US. In their specification, these authors do not find a 

significant effect of AI on state-level employment growth for the full set of US occupations for 

the period 2010-2016. While the specification of Felten et al. (2019) differs from ours in many 

respects15, this comparison of results signals that the employment effects of AI across regions 

could be different in the EU and the US. This seems all the more likely as Albanesi et al. (2023) 

also find positive employment of AI in a sample of 16 EU countries, which is stronger for high-

skilled occupations. Hence, the (very limited) existing evidence on labour market effects of AI 

in Europe seems to be in line with our regional results. It should be also mentioned that the US 

state-level analysis yield a positive employment effect of AI for the sub-set of high-skilled 

occupations.  

 

Table 3. Employment change and AI exposure  

  (1) (2) (3) (4) (5) (6) (7) 
Variables               

                
AIRE 0.263 2.273* 2.259* 2.287* 2.358** 2.735** 2.669** 
  (0.252) (1.201) (1.193) (1.193) (1.196) (1.213) (1.164) 

Robot density         0.378 0.383* 0.471** 
          (0.232) (0.212) (0.236) 

AIRE x robot density           -0.314*** -0.276** 

            (0.114) (0.113) 

Structural controls No No Yes Yes Yes Yes Yes 

Labour market controls No No No Yes Yes Yes Yes 
R&D No No No No Yes Yes Yes 

Demand No No No No Yes Yes Yes 
Time fixed effect No No No No No No Yes 

                

Constant 1.085*** 1.085*** 6.047* 9.442 7.115 7.130 4.924 
  (0.0838) (1.11e-

07) 

(3.095) (12.26) (17.32) (17.05) (17.36) 

                
Observations 1,413 1,413 1,413 1,413 1,413 1,413 1,413 

R-squared 0.002 0.022 0.028 0.063 0.067 0.073 0.111 

Number of ID   202 202 202 202 202 202 

Notes: The dependent variable is annual employment growth. In all regressions except specification (1), region 

fixed effects are included. Controls consist of structural variables (average firm size and the share of 

manufacturing), labour market characteristics (the shares of female employees, non-standard employment, youth 

workers, senior workers, and those with a university degree), R&D and demand. Standard errors are robust against 

heteroscedasticity and serial correlation at the regional level (in parentheses *** p<0.01, ** p<0.05, * p<0.1). 

Source: Authors’ elaboration 
 

                                                 
15 A first important difference is that Felten et al. (2019) estimate longer term employment effects stretching over 

the period 2010-2016, while we investigate year-on-year employment changes. Second, Felten et al. (2019) use 

occupation-region specific employment changes as the dependent variable, while we use a regionalised version 

of the AI index (see Section 4.1).  
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The next step consists of taking into account regions’ robot density. While robot density in 

itself does not seem to affect regional employment growth (specification 5), it does so in the 

interplay with AI exposure (Specifications 6 and 7). When the interaction term between AIRE 

and robot intensity is included, the positive coefficient of robot density becomes statistically 

significant (at least at the 10 per cent level), indicating that robot density, just like AI exposure, 

is also positively correlated with employment growth. Most importantly, in relation to our 

second research question, the results suggest an interesting relationship between AI exposure 

and robot density. While the coefficient of the AI exposure remains positive, the effect is 

counteracted by the robot density of regions, as indicated by the negative coefficient of the 

interaction term. This means that the joint AI-robots effect is heterogenous across regions. 

More specifically, the combined effect of a 1 standard deviation increase in AIRE would be a 

2.7 percentage points increase in the employment growth rate for a region with zero robot 

density (that is the main effect, 2.669 + (-0.276 × 0). However, for a region with an average 

robot density (5.7 in our sample), this effect would shrink to 0.96 percentage points (2.669 + 

(-0.276 × 5.7 ]). The ‘break-even’ point for an overall positive employment effect of the joint 

AI exposure and robot implementation, that is the robot density which would imply no 

employments effect for a region, is reached at a robot density of 8.7. Given the large dispersion 

of robot intensities at the regional level (see Figure 3), there are numerous regions for which a 

negative overall employment effect must be expected. This would concern above all the 

automotive-oriented regions, including for example Wolfsburg (DE91), headquarter of 

German carmaker Volkswagen and the region with the highest robot density in the sample.  

The economic interpretation of this moderating impact of robot density on the nexus between 

AIRE and employment growth is that the implementation of industrial robots is also associated 

with labour shedding in EU regions, which have high exposure to AI (that is positive values of 

AIRE). This would correspond to a pattern where bot Industry 3.0 technologies (industrial 

robots) and Industry 4.0 technologies (digital technologies) are associated with labour growth. 

However, in regions with a high robot density, AI exposure is expected to lead to less benign 

employment outcomes. In such an environment, a high regional AI exposure is expected to be 

detrimental to job creation, which are presumably routine-task intensive jobs. Hence, there is 

not a unique answer to RQ2, dealing with the combined employment impact of AI exposure 

and robot density, as these effects can be very heterogenous across EU regions.  

In order to make sure that our results are not driven by reverse causality or some other 

confounding factors, we repeat the estimations with the IV approach described above (Table 

4). The IV results question the effects of the robot density16, and that of the interaction terms 

but confirm the relevance of the regional AI exposure, which is the main variable of interest. 

In fact, the coefficient of AIRE remains positive and statistically significant across all 

specifications. And since neither robot density, nor the interaction term seems to matter, it is 

preferable to rely on a simpler model such as the one in specification 4, which yields a 

coefficient of 2.1 for the AIRE variable, which is slightly lower than in the fixed effect 

regression.  

Hence, based on the IV results, we could conclude that high AI exposure is beneficial for 

regions in terms of employment creation. That is, the answer to RQ1 remains the same, while 

RQ2, in light of the IV results, becomes less relevant because the AI-robots-nexus for regional 

employment development cannot be confirmed. Overall, these findings are confirmed even 

when we employ different versions of AI exposure indicator, as presented in Appendix B.  

 

                                                 
16 However, these results should be interpreted with caution, as instrumenting the interaction raises concerns about 

weak identification in specification (6). 

https://en.wikipedia.org/wiki/Wolfsburg
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Table 4. Employment change and AI exposure - IV estimates 

  (1) (2) (3) (4) (5) (6) (7) 

 Variables      
First stage               
Daily internet 

users 

0.0396*** 0.0267*** 0.0244*** 0.0193*** 0.0175*** 0.0166** 0.0106** 
  (10.41) (7.00) (6.08) (5.40) (3.45) (2.79) (2.58) 

Daily internet 

users x robot 

density 

          0.000118 0.00108*** 

            (0.26) (4.05) 
Second stage               
AIRE 0.529* 1.105* 1.584** 2.104** 6.747* 6.273 3.022* 
  (2.19) (2.35) (2.84) (2.62) (1.97) (1.92) (2.18) 

Robot density       0.0525 0.141 0.0943 0.0964 
        (1.44) (1.54) (1.33) (1.93) 

AIRE x robot 

density 

          -0.267 -0.144 

            (-1.44) (-1.42) 
Structural controls No Yes Yes Yes Yes Yes Yes 

Labour market 

controls 

No No Yes Yes Yes Yes Yes 
R&D No No No Yes Yes No No 

Demand No No No Yes Yes No No 

Time fixed effects No No No No Yes Yes Yes 
Country fixed 

effects 

No No No No Yes Yes Yes 

                
Kleibergen-Paap 

rk Wald F statistic 

108.307 48.948 36.955 29.200 11.895 5.462 18.623 

Constant 1.101*** 2.110* 4.449 8.142       
  (12.33) (2.21) (1.44) (1.80)       
        
N 1322 1322 1322 1322 1322 1322 1322 

Notes: The dependent variable is annual employment growth. Controls include structural variables (average firm 

size and the share of manufacturing), labour market characteristics (the shares of female employees, non-standard 

employment, youth workers, senior workers, and those with a university degree), R&D and demand. The AI 

exposure index (AIRE) is instrumented with the share of daily internet users relative to the population in the same 

regions. First-stage results are reported in the first two rows. In columns 5-7, the equation is estimated using 

deviations from means, and column 7 reports regression results weighted by the average number of employees 

for each region. Standard errors are robust against heteroscedasticity and serial correlation at the regional level (t-

statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001). Source: Authors’ elaboration 

6. CONCLUSION AND POLICY IMPLICATIONS 

This paper adds to the nascent literature on the employment effects of the accelerating diffusion 

of AI technologies throughout the European economy. Mirroring the situation in the 

technological domain itself, Europe is also trailing behind the US when it comes to the 

literature discussing the consequences of AI for labour market outcomes. This lag is owed 

primarily to better data availability for the US economy, where researchers can draw on 

publicly available data on occupational profiles as well as employment and wage data at a very 

granular level.   

Country and region-specific empirical analysis are indispensable though because the effects 

of technology adaption and diffusion are likely to differ significantly from one location to the 

other. This is related to a more general aspect of technological change which is ‘Kranzberg’s 

law’ which holds that “Technology is neither good nor bad; nor is it neutral” (Kranzberg, 

1986, p. 545). The point the technological historian put forward in his writings is that the 

consequences of technology depend not only on its technical features but on the societal and 

temporal context. Hence, chances are that there is not one answer to the question of what AI 

means for jobs that researchers are so eager to answer. Rather, answers can only be partial, 

specific to the locations and period in time analysed.  
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Applied to the research questions put forward in this paper this means that there is no 

universal answer to the question, if – and in the affirmative –how AI will affect labour markets 

in general. We do not know whether the ‘future of work’ will resemble the rosy world 

envisaged by Keynes (2010[1931]) in his essay on the Economic Possibilities for Our 

Grandchildren, where new technologies – in our context AI – leads to such massive increases 

in productivity, essentially freeing society from scarcities allowing people to indulge in 

science, arts and philosophy. We would see this as the positive or ‘Star Trek’ scenario. Things 

could play out very differently, though. As sketched by Leontief (1983), humans may face the 

same destiny as horses in their function as ‘workforce’, meaning they will just not be needed 

anymore, apart for some curious nostalgic purposes such as tourist entertainment showing the 

ways of the past, sports, or the circus. This ‘Death of the Workhorse’ scenario in which men 

lose the race against machines has become popular among economists with many facets of it. 

This prevalence of the pessimistic view is the results of two characteristics and their 

interactions, one related to AI, the other to the current economic paradigm. Leontief’s point 

that the horse as a production input became obsolete because the steam engine outcompeted 

the workhorse in its core competences – physical strength and stamina. Likewise, AI in many 

work contexts now outcompetes humans in cognitive tasks and also seriously challenges it in 

(simple) social interactions. This feeds into the ‘this time is different’ narrative which often 

comes with a Luddite undertone but in principle could be counteracted by the fact that, unlike 

the horse, humans themselves can decide whether, to what extent and for which purposes, they 

want to introduce the new technologies which become available. However, this safety valve 

for meaningful humour labour risk being undermined by the current economics paradigm, 

which induces firms to use AI not primarily to find valuable solutions to societal challenges 

but to maximise shareholder value. The latter typically involves the replacement of labour with 

AI algorithms (see Acemoglu and Johnson, 2023)17 – typically in combination with robots and 

other machines. This is what we find in our quantitative analysis of regional employment 

growth across EU regions. Regions with a high robot density, in interplay with a high AI 

exposure, may end up losing jobs. This underlines the fact that labour market effects emanating 

from AI may be very heterogenous across EU regions. However, overall, the results for EU 

regions indicate positive employment effects for the average EU region stemming from AI 

exposure. This is encouraging news and could suggest that the EU is still more on heading 

towards a Star Trek scenario. However, this is only one possible interpretation of the positive 

AI-employment growth nexus in EU regions.  

In fact, our results – reassuring as they are – must be interpreted with great care for a number 

of very different reasons. An important caveat is that by focusing on employment, only one 

aspect of labour markets is captured, while neglecting other relevant dimensions of work, in 

particular working conditions. It could very well be that while new jobs are created, these jobs 

are of a poor quality, which are low in terms of skill requirements but above all lack a sense of 

meaning. The working conditions of many these newly created jobs could be described as 

underpaid, isolated, where workers are stuck at home in front of their computers with work and 

leisure time getting increasingly blurred. While the results of this first regional analysis have 

little to say on this, the fact that AI exposure is skewed towards high-skilled jobs and that other 

studies (Albanesi, et al., 2023; Felten et al., 2019) found that AI leads to employment growth 

primarily for high-skilled labour may question this prediction. At the same time, it cannot be 

ruled out that even jobs of high-skilled workers are getting increasingly monotonous and 

meaningless.  

                                                 
17 The situation is aggravated by the fact that in the US, a major innovator in this domain, AI technologies are 

under the control of a few powerful firms. 
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In addition to the omission of job quality, there are a number of important methodological 

limitations which have to be kept mind. First, quantitative work of the kind undertaken here is 

bound to make inferences from the past onto the future. While this is legitimate, the predictions 

emerging from such an undertaking may be less accurate and reliable when they deal with a 

potentially disruptive technology, i.e, AI, which by definitions marks a break in the 

technological trajectory. Secondly, the diffusion of AI in the economy may still be too limited 

so that its macroeconomic consequences (such as employment growth) are hard to identify in 

the data. A related factor, which implies a downward bias in the effect of AI exposure on 

employment as well, is that new general-purpose technologies have the potential to create 

entirely new markets and associated labour demand that cannot be captured by historical data. 

Furthermore, there are institutional factors, notably the existence of labour unions, which are 

likely to influence labour market outcomes. More specifically, labour unions may to some 

extent be able to soften AI-related labour shedding, so that ‘redundant’ labour is employed 

elsewhere in the company. This is a somewhat different aspect as it could potentially be handled 

in a quantitative analysis, provided the necessary information were available. As such this 

constitutes an interesting avenue for further research as does a more differentiated analyses of 

employment effects by skill groups. 

Finally, it is imperative to be aware of what the AI exposure measure can capture. The AI 

exposure index by Felten et al. (2018) and consequent work on the index merely captures 

technological aspects of occupations. More specifically, they capture the overlap in abilities 

and tasks which can be performed by AI algorithms with the abilities and tasks characterising 

occupations. In other words, it is a measure of technological feasibility of ‘interaction’ between 

AI and human workers, where this interaction could mean labour substitution, task sharing or 

task expansion. The measure does not capture any form of actual implementation of AI 

technologies in the economy. This is in contrast to the industrial robot measure and identifying 

or developing some sort of AI investment indicator, which to the best of our knowledge is 

currently not available yet, would be a great leap forward for the possibilities to analyse the 

labour market effects of AI related technologies. 
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APPENDIX A 

Table A1. AI indicators: Findings and Limitations 

Data Source Findings  Limitations 

AI-related Online Job Vacancies 

(e.g., Burning Glass) 

Acemoglu et al. (2020) found no 

significant effects of AI at the 

occupation and industry level in 

the US 

Online job vacancies are not 

representative of overall labour 

demand; occupation- industry- 

and country-biased 

Patents Damioli et al. (2022) studied 

3,500 leading companies with AI-

related patents and found a 

moderate positive employment 

impact of AI 

Not an indicator of adoption, but 

innovation (partial, as not all 

innovations are patented); sample 

includes only patenting 

companies, silent on net effects 

(i.e., business stealing) 

AI Patents and O*NET Tasks Web (2020) used verb-noun pairs 

in AI patent titles and O*NET 

tasks to measure automation. AI 

more likely to affect skilled and 

older workers compared to 

previous innovation waves (ICT 

and robots) 

Focuses on exposure rather than 

adoption; patent titles may not 

fully describe the underlying 

technology; selection of 

keywords is arbitrary 

Occupation-based Indicators Felten et al. (2018, 2019, 2021) 

found positive effects on wages 

but no impact on employment in 

the US; Gmyrek et al. (2023), 

focusing on GPTs, reveal that 

24% of clerical tasks are highly 

exposed 

Focuses on exposure rather than 

adoption; silent on industry and 

firm-level technological 

differences 

Source: Authors’ elaboration 

 

Table A2. List of variables 

Variable Definition Source 
AI exposure Standardised with 0 mean and unit standard deviation Felten et 

al. (2021) Robot density Robot stock in manufacturing industries per 1000 employees IFR 

 

Labour market 

variables  

  
Total employment Annual employment growth EU LFS 

Women (%) Percentage of female employees over the total EU LFS 
Young workers (%)  Percentage of young employees (15-24 years old) over the total EU LFS 

Senior workers (%)  Percentage of senior employees (55-64 years old) over the total EU LFS 
University degree (%) Percentage of employees with tertiary degree over the total EU LFS 

Non-standard 

employment (%) 

Percentage of employees with either temporary, part-time contract, 

or both out of the total 
 

Economic variables    
Manufacturing firms 

(%) 

Percentage of manufacturing firms out of the total EU LFS  

Large firms (%) Percentage of large firms (50+ employees) out of the total EU LFS  
R&D investments  R&D investment as percentage of GDP Eurostat 

Demand Gross value added in constant (2010) prices Eurostat 

Instrumental variable    
Daily internet users (%) Percentage of individuals who used internet daily  Eurostat 

Source: Authors’ elaboration 

 

APPENDIX B. ROBUSTNESS ANLAYSIS USING DIFFERENT INDICATORS 

In this section, we conduct a series of robustness checks aimed at examining the robustness of 

our findings based on AIOE (forward), when using alternative definitions and calculations of 

AI exposure, summarised in Table B1. We delve into various dimensions, including: 
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(i) Construction of the matrix for matching AI applications and workplace abilities: we 

examine differences between crowd-source survey conducted on Amazon Mechanical Turk 

(MTurk) and insights gathered from PhD students. 

(ii) Different O*NET Waves: we examine whether the choice of the O*NET dataset's wave 

affect results by comparing the indicators using the 2009 vis-à-vis 2019 O*NET waves. 

(iii)Backward vs. Forward-Looking Indicator: we investigate whether our findings are robust 

to the choice between backward and forward-looking indicators. 

 

Table B2 presents a pairwise correlation between different AI exposure indicators at the 

occupational level. It suggests that all indicators are highly correlated with our preferred 

measure (AIOE forward), with correlation coefficients ranging from 0.937 to 0.987. 

 

Table B1. Alternative AI indicators 

Abbreviation Reference Description Matching 

AIOE forward Felten et al. 

2021 

Match between forward-looking 

AI applications and workplace 

abilities (O*NET 2019)  

Matrix constructed with 

inputs from mTurk survey 

(n=2000) 

AIOE backward Felten et al. 

2018 

Match between backward-looking 

(2010-2015) AI progress 

(Electronic Frontier Foundation - 

EFF) and workplace abilities 

(O*NET 2009) 

Matrix constructed using 

inputs from computer science 

PhD students. We modify it 

to account for importance and 

prevalence of each ability 

within occupations  
AIOE backward 

mTurk 

Felten et al. 

2018 

Match between backward-looking 

(2010-2015) AI progress 

(Electronic Frontier Foundation - 

EFF) and workplace abilities 

(O*NET 2009) 

Similar to “AIOE backward” 

but modified by employing a 

matrix that matches abilities 

with AI applications using 

mTurk survey (n=2000) 

AIOE hybrid Felten et al. 

2019 

Match between backward-looking 

(2010-2015) AI progress 

(Electronic Frontier Foundation - 

EFF) and workplace abilities 

(O*NET 2019) 

Matrix constructed with 

inputs from mTurk survey 

(n=2000) 

Source: Authors’ elaboration based on Felten et al. (2018, 2019, 2021) 
 

Table B2. Correlation between Felten et al.’s (2018, 2019, 2021) indicators at the occupational 

level 

Variables (1) (2) (3) (4) 

(1) AIOE (f) 1.000    

(2) AIOE hybrid 0.987* 1.000   

(3) AIOE (b & mturk) 0.937* 0.900* 1.000  

(4) AIOE (b) 0.975* 0.981* 0.902* 1.000 

Source: Authors’ elaboration based on Felten et al. (2018, 2019, 2021) 
 

The high correlation between the alternative AI indicators is reassuring in particular with 

respect to the robustness of the employment effects. Indeed, the results in the main text are 

fully supported by a series of robustness checks (Table B3). Irrespective of the AI indicators 

chosen, they all suggest a positive employment effect of AI exposure for the average EU region. 

Hence, our results are not sensitive to the choice of the AI measure. 

 

 

Table B3. Employment change and AI exposure, alternative AI indicators (IV estimates) 
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  (1) (2) (3) (4) 

          First stage         
Daily internet users 0.0106** 0.01000* 0.00976* 0.00954* 
  (2.58) (2.36) (2.56) (2.33) 

Daily internet users x robot density 0.00108*** 0.00106*** 0.00142*** 0.00106*** 

  (4.05) (4.11) (5.10) (4.07) 
Second stage         

AIRE (f) our indicator 3.022*       
  (2.18)       

AIRE (f) x Robot density -0.144       

  (-1.42)       
AIRE (b & O*NET 2009)   3.046*     

    (2.17)     
AIRE (b & O*NET 2009) x Robot 

density 

  -0.140     

    (-1.46)     

AIRE (b & mturk)     3.132*   
      (2.27)   

AIRE (b & mturk) x Robot density     -0.147   
      (-1.63)   

AIRE (b & O*NET 2019)       3.242* 
        (2.16) 

AIRE (b & O*NET 2019) x Robot 

density 

      -0.146  

(0.10) Robot density 0.0964 0.0973 0.115* 0.107* 
  (1.93) (1.90) (2.04) (1.96) 

Structural controls  Yes Yes Yes Yes 
Labour market controls Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes 

Country fixed effects Yes Yes Yes Yes 
          

Kleibergen-Paap rk Wald F statistic 18.623 17.775 20.406 18.465 
N 1322 1322 1322 1322 

Notes: Alternative indicators as explained in Table B1. Specification refers to those of specification 7 in Table 4 

of the main text using alternative AI indicators. The dependent variable is annual employment growth. Controls 

include structural variables (average firm size and the share of manufacturing), labour market characteristics (the 

shares of female employees, non-standard employment, youth workers, senior workers, and those with a university 

degree), country and time fixed effects. Regression results weighted by the average number of employees for each 

region. The AI exposure index (AIRE) is instrumented with the share of daily internet users relative to the 

population in the same regions. Standard errors are robust against heteroscedasticity and serial correlation at the 

regional level (t-statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001). 

Source: Authors’ elaboration 
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