Process Costing

Chapter 5

JOB-ORDER COSTING

- Furniture manufacturing;
- Special-order printing;
- Ship-building
- Service organizations

Many different jobs/products worked on each period

PROCESS COSTING

- Bricks;
- Soda;
- Paper;
- Gas, water, electricity

Raw materials converted into homogeneous (i.e. uniform) products

Similarities Between Job-Order and

 Process Costing- Both systems assign material, labor, and overhead costs to products and they provide a mechanism for computing unit product costs.
- Both systems use the same manufacturing accounts, including Manufacturing Overhead, Raw Materials, Work in Process, and Finished Goods.
- The flow of costs through the manufacturing accounts is basically the same in both systems.

Differences Between Job-Order and Process Costing: Job-Order Costing Characteristics

Job-Order costing:

1. Many different jobs are worked on during each period, with each job having unique production requirements.
2. Costs are accumulated by individual job.
3. Unit costs are computed by job on the job cost sheet.

Differences Between Job-Order and Process Costing: Process Costing Characteristics

Process costing:

1. A single product is produced either on a continuous basis or for long periods of time. All units of product are identical.
2. Costs are accumulated by department.
3. Unit costs are computed by department.

Concept Check I

Process costing is used for products that are:
a. Different and produced continuously.
b. Similar and produced continuously.
c. Individual units produced to customer specifications.
d. Purchased from vendors.

Concept Check la

Process costing is used for products that are:

Similar and produced continuously.
Individual units produced to customer specifications.

Purchased from vendors.

Processing Departments

Any unit in an organization where work is performed and materials, labor, or overhead are added to the product.

The activities performed in a processing department are performed uniformly on all units of production.

Furthermore, the output of a processing department must be homogeneous.

Products in a process costing environment typically flow in a sequence from one department to another.

Learning Objective I

Record the flow of materials, labor, and overhead through a process costing system.

The Flow of Costs in Job-Order and Process Costing - Similarities

The Flow of Costs in a Job-Order

Costing System

The Flow of Costs in a Processing

 Costing System
Direct
 Materials

 \section*{Direct Labor
 \section*{Direct Labor

 Manufacturing

 Manufacturing Overhead} Overhead}Work in process - separate account for each department

Transferred-in costs process account to another department

Processing Department

Cost of Goods Sold

Flow of Raw Material Costs

For purposes of this example, assume there are two processing departments Departments A and B. We will use T-accounts and journal entries.

Flow of Raw Material Costs: T-Account Form

Raw Materials

Work in Process Department A
-Direct Materials

Work in Process Department B

-Direct
Materials

Flow of Raw Material Costs: Journal Entry Form

> As in job-order costing, materials are drawn from the storeroom using a materials requisition form. Materials can be added in any processing department. Here is the journal entry to issue raw materials to Processing Department A and Department B.

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Raw Materials		XXXXX

The Flow of Labor Costs:

T-Account Form

Salaries and
Wages Payable

Work in Process Department A
-Direct
Materials
-Direct
Labor

Work in Process Department B
-Direct
Materials
-Direct
Labor

The Flow of Labor Costs: Journal Entry

 Form> In process costing, labor costs are traced to departments - not to individual jobs. The following journal entry records the labor costs recorded to Department A and Department B.

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Salaries and Wages Payable		XXXXX

The Flow of Manufacturing Overhead

 Costs: in T-Account Form
Work in Process Department A

Manufacturing
Overhead
-Direct
Materials
-Direct
Labor
-Applied
Overhead
Work in Process
Department B
-Direct
Materials
-Direct
Labor

- Applied

The Flow of Manufacturing Overhead Costs: Journal Entry Form

In process costing, as in job-order costing, predetermined overhead rates are usually used. Manufacturing overhead cost is applied according to the amount of the allocation base that is incurred in the department. The following journal entry records the overhead cost applied to Department A and Department B.

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Manufacturing Overhead		XXXXX

Transfers from Work In Process Dept. A to Work in Process - Dept. B: T-Account Form

Work in Process Department A

Work in Process Department B

-Direct
Materials
-Direct
Labor
-Applied
Overhead
-Transferred from Dept. A

Transfers from Work In Process Dept. A to Work in Process - Dept. B: Journal Entry Form

Once processing has been completed in a department, the units are transferred to the next department for further processing.

Work in Process - Department B	XXXXX	
Work in Process - Department A		XXXXX

Transfers from Work In Process Dept. B to Finished Goods:T-Account Form

Work in Process Department B

-Direct	•Cost of
Materials	Goods
-Direct	Manufactured
Labor	
-Applied	
Overhead	
-Transferred	
from Dept. A	

Transfers from Work In Process -

Dept. B to Finished Goods: Journal Entry Form

After processing has been finished in Department B, the costs of the completed units are transferred to the Finished Goods inventory account:

Finished Goods	Xxxxx	
Work in Process - Department B		xxxxx

Transfers from Finished Goods

Inventory to Cost of Goods Sold:

T-Account Form

Work in Process
 Department B

-Direct
Materials
-Direct
Labor
-Applied
Overhead
-Transferred from Dept. A

Cost of Goods Sold

-Cost of Goods Sold

Transfers from Finished Goods to Cost of Goods Sold: Journal Entry Form

Finally, when a customer's order is filled and units are sold, the cost of the units is transferred to Cost of Goods Sold:

Cost of Goods Sold	XXXXX	
Finished Goods		XXXXX

Process Costing Computations:Three Key Concepts - Overview

In process costing, each department needs to calculate two numbers for financial reporting purposes-the cost of its ending work in process inventory and the cost of its completed units that were transferred to the next stage of the production process. The key to deriving these two numbers is calculating unit costs within each department.

Process Costing Computations:Three Key Concepts - Part I

Key Concept \#1: There are two methods for performing the computations of departmental unit costs: the weighted-average method and the FIFO method.

> The weighted-average method of process costing calculates unit costs by combining costs and outputs from the current and prior periods.

Process Costing Computations:Three Key Concepts - Part 2

Characteristics of the weighted-average method:
a) This method makes no distinction between work done in the prior and current periods. It blends together units and costs from the prior and current periods.
b) The equivalent units of production for a department are the number of units transferred to the next department (or finished goods) plus the equivalent units in the department's ending work in process inventory.

Process Costing Computations:Three Key Concepts - Part 3

Key Concept \#2: Conversion Costs: direct labor plus manufacturing overhead.

- Direct labor costs are often small in comparison to the other product costs in process cost systems.

Process Costing Computations:Three Key Concepts - Part 4

- Therefore, direct labor and manufacturing overhead are often combined into one classification of product cost called conversion costs. The example combines these costs:

Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Process Costing Computations:Three Key Concepts - Part 5

Key Concept \#3: Equivalent Units

Equivalent units are the product of the number of partially completed units and the percentage completion of those units.

Equivalent units need to be calculated because a department usually has some partially completed units in its beginning and ending inventories.
These partially completed units complicate the determination of a department's output for a given period, and the unit cost that should be assigned to that output.
Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Calculating Equivalent Units

Equivalent units = Number of partially completed units x Percentage completion.

Equivalent units is the product of the number of partially completed units and the percentage completion of those units with respect to the processing in the department.

The equivalent units is the number of complete units that could have been obtained from the materials and effort that went into the partially complete units.

Calculating Equivalent Units: Examples

Assume Department A has 500 units in its ending work in process inventory that are 60% complete with respect to processing in the department.

These 500 partially complete units are equivalent to 300 fully complete units ($500 \times 60 \%=300$).

Department A's ending work in process inventory would contain 300 equivalent units for the period.

Concept Check 2

For the current period, Jones started 15,000 units and completed 10,000 units, leaving 5,000 units in process 30 percent complete. How many equivalent units of production did Jones have for the period?
a. 10,000
b. 11,500
c. 13,500
d. 15,000

Concept Check 2a

For the current period, Jones started 15,000 units and completed 10,000 units, leaving 5,000 units in process 30 percent complete. How many equivalent units of production did Jones have for the period?

a. 10,000
b. 11,500

10,000 units $+(5,000$ units $\times 0.30)$
$=11,500$ equivalent units

The weighted-average method: an example

3 steps:

1. Compute the equivalent units of production;
2. Compute the cost per equivalent unit;
3. Assign costs to unit;

Learning Objective 2

Compute the equivalent units of production using the weighted-average method.

Compute the equivalent units of production

Equivalent units of production: is the denominator in unit cost calculations. Each processing department calculates the equivalent units of production for each of its manufacturing cost categories. In the weighted-average method, the equivalent units of production for a department is the number of completed units transferred to the next department (or to finished goods) plus the equivalent units in the department's ending work in process inventory.

Weighted-average method: a separate calculation is made for each cost category in each processing department.

Equivalent units of production= Units transferred to the next department or to finished goods + Equivalent units in ending work in process inventory

Step I: Compute the Equivalent Units of Production - Part I

Smith Company reported the following activity in the Assembly Department for the month of June:

Work in process, June 1

	Percent Completed	
Units	Materials	Conversion
300	40%	20%

Units started into production in June
6,000
Units completed and transferred out of Department A during June

Work in process, June 30

Step I: Compute the Equivalent Units of Production - Part 2

Begin by calculating the equivalent units completed and transferred out of the Assembly Department in June (5,400 units).

Units completed and transferred out of the Department in June

Materials Conversion

Step I: Compute the Equivalent Units of Production - Part 3

Next, identify the equivalent units of production in ending work in process with respect to materials for the month (540 units) and adding this to the 5,400 units from step one.

Step I: Compute the Equivalent Units of Production - Part 4

Finally, identify the equivalent units of production in ending work in process with respect to conversion for the month (270 units) and adding this to the 5,400 units.

Units completed and transferred out of the Department in June

5,400
5,400
Work in process, June 30:
900 units $\times 60 \%$
900 units $\times 30 \%$
540

Equivalent units of Production in the Department during June

$$
\begin{array}{r}
5,940 \\
\hline \hline
\end{array}
$$

Step I: Compute the Equivalent Units of Production - Part 5

Equivalent units of production always equals:
Units completed and transferred

+ Equivalent units remaining in work in process

Units completed and transferred out of the Department in June
Work in process, June 30:
900 units $\times 60 \%$
900 units $\times 30 \%$
Equivalent units of Production in the Department during June

Materials		Conversion
5,400		5,400
540		270
		5,670

Learning Objective 3

Compute the cost per equivalent unit using the weighted-average method.

Step 2: Compute the Cost per Equivalent Unit - Part I: Beginning Work in Process

Beginning Work in Process Inventory: 300 units
Materials: 40\% complete
6,119
Conversion: 20\% complete \$ 3,920

Production started during June Production completed during June

Costs added to production in June
Materials cost
Conversion cost \$ 81,130\$ 118,621

Ending Work in Process Inventory:
900 units
Materials: 60\% complete
Conversion: 30\% complete

Step 2: Compute the Cost per Equivalent Unit - Part 2

The formula for computing the cost per equivalent unit is:

Weighted-Average Method (a separate calculation is made for each cost category in each processing department)

Cost per equivalent = unit

Cost of beginning
Work in Process + Cost added during Inventory the period
Equivalent units of production

Step 2: Compute the Cost per Equivalent Unit - Part 3

Here is a schedule with the cost and equivalent unit information.

Cost to be accounted for:

Work in process, June 1
Cost added in Assembly
Total cost

Equivalent units

Total
Cost Materials Conversion

\$	10,039	\$ 6,119	\$	3,920
	199,751	118,621		81,130
\$	209,790	\$ 124,740	\$	85,050

$5,940 \quad 5,670$

Step 2: Compute the Cost per Equivalent Unit - Part 4: Basic Information

Here is a schedule with the cost and equivalent unit information.
$\$ 124,740 \div 5,940$ units $=\$ 21.00-\$ 85,050 \div 5,670$ units $=\$ 15.00$ Total

Cost to be accounted for:
Work in process, June 1
Cost added in Assembly
Total cost

Equivalent units
Cost per equivalent unit
Cost Materials Conversion

	$\begin{array}{r} 10,039 \\ 199,751 \\ \hline \end{array}$	$\begin{array}{r} \text { \$ } \\ \mathbf{6 , 1 1 9} \\ \hline \end{array}$	$\begin{array}{r} 3,920 \\ 81,130 \\ \hline \end{array}$
\$	209,790	\$ 124,740	\$ 85,050

Cost per equivalent unit $=\$ 21.00+\$ 15.00=\$ 36.00$

Learning Objective 4

Assign costs to units using the weightedaverage method.

Step 3:Assign Costs to Units Part I

Assembly Department
 Cost of Ending WP Inventory and Units Transferred Out

Materials Conversion Total
Ending WIP inventory:
Equivalent units 540270

Step 3:Assign Costs to Units Part 2

Assembly Department

Cost of Ending WP Inventory and Units Transferred Out
Materials Conversion Total

Step 3:Assign Costs to Units Part 3

Assembly Department
 Cost of Ending WP Inventory and Units Transferred Out

Ending WIP inventory:
Equivalent units
Cost per equivalent unit Cost of Ending WIP inventory
Materials Conversion Total

540		270			
\$	21.00	\$	15.00		
\$	11,340	\$	4,050	\$	15,390

Step 3: Compute Cost of Units Transferred Out

Assembly Department
 Cost of Ending WP Inventory and Units Transferred Out

Materials Conversion Total
Ending WIP inventory:
Equivalent units
Cost per equivalent unit Cost of Ending WIP inventory Units completed and transferred out:
Units transferred $\quad 5,400 \quad 5,400$

Step 3:Assign Costs to Units Part 4

Assembly Department
 Cost of Ending WP Inventory and Units Transferred Out

Ending WIP inventory:	Materials		Conversion		Total	
Equivalent units		540		270		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of Ending WIP inventory	\$	11,340	\$	4,050	\$	15,390
Units completed and transferred out:						
Units transferred		5,400		5,400		
Cost per equivalent unit	\$	21.00	\$	15.00		

Step 3:Assign Costs to Units Part 5

Assembly Department
 Cost of Ending WIP Inventory and Units Transferred Out

Ending WIP inventory: Equivalent units		540		270	\$	15,390	
Cost per equivalent unit	\$	21.00	\$	15.00			
Cost of Ending WIP inventory	\$	11,340	\$	4,050			
Units completed and transferred out: Units transferred		5,400		5,400	\$ 194,400		
Cost per equivalent unit	\$	21.00	\$	15.00			
Cost of units transferred out	\$	113,400	\$	81,000			

End of Chapter 5

Duntroon Company uses the weighted-average method in its process costing system. It processes used tires for various manufacturers of basketball courts. Data relating to tons of tires processed during November are provided below:

		Percent Completed	
	Tons	Materials	Labor and Overhead
Work in process, November 1	18,000	80%	60%
Work in process, November 30	37,000	40%	50%
Started into production during November	225,000		

Required:

I. Compute the number of tons of tires completed and transferred out during November.
2. Compute the equivalent units of production for materials and for labor and overhead for November.

Requirement I: Compute the number of tons of tires completed and transferred out during November.

Tons
Work in process, November I18,000
Started into production during the month 225,000
Total tons in process 243,000
Deduct work in process, November 30 37,000
Completed and transferred out during the month $\underline{206,000}$

Requirement 2: Compute the equivalent units of production for materials and for labor and overhead for November.

Equivalent Units

	Materials	 Overhead
Units transferred out	206,000	206,000
Work in process, ending:		
37,000 units $\times 40 \%$	14,800	
37,000 units $\times 50 \%$		$\underline{18,500}$
Equivalent units of production	$\underline{220,800}$	$\xlongequal{224,500}$

Superior Micro Products uses the weighted average method in its processes costing system. Data for the Assembly Department for May appear below:

| | Materials | Labor | Overhead |
| :--- | ---: | ---: | ---: | ---: |
| Work in process, May $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\$ 18,000$ | $\$ 5,500$ | $\$ 27,500$ |
| Cost added during May $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\$ 238,900$ | $\$ 80,300$ | $\$ 401,500$ |
| Equivalent units of production $\ldots \ldots \ldots \ldots \ldots \ldots$ | 35,000 | 33,000 | 33,000 |

Required:

1. Compute the cost per equivalent unit for materials, labor, overhead and in total.

Requirement: Compute the cost per equivalent unit for materials, labor, overhead and in total

Materials Labor Overhead

| Cost of beginning work in process
 inventory | $\$ 18,000$ | $\$ 5,500$ | $\$ 27,500$ |
| :--- | :---: | :---: | :---: | :---: |
| Cost added during the period | $\underline{238,900}$ | $\underline{80,300}$ | $\underline{401,500}$ |
| Total cost (a) | $\underline{\$ 256,900}$ | $\underline{\$ 85,800}$ | $\underline{\$ 429,000}$ |
| Equivalent units of production (b) | 35,000 | 33,000 | 33,000 |
| Cost per equivalent unit (a) $\div(\mathrm{b})$ | $\$ 7.34$ | $\$ 2.60$ | $\$ 13.00$ |

Materials
Labor
Overhead
Total cost per equivalent unit

Total

\$ 7.34
2.60
13.00
\$22.94

Highlands Company uses the weighted average method in its process costing system. It processes wood pulp for various manufacturers of paper products. Data relating to tons of pulp processed during June are provided below:

| | | Percent Completed | |
| :--- | ---: | ---: | :---: | :---: |
| | Tons of Pulp | Materials | Labor and Overhead |
| Work in process, June $1 \ldots \ldots \ldots \ldots$ | 20,000 | 90% | 80% |
| Work in process, June $30 \ldots \ldots \ldots \ldots$ | 30,000 | 60% | 40% |
| Started into production during June... | 190,000 | | |

Required:

1. Compute the number of tons of pulp completed and transferred out during June;
2. Compute the equivalent units of production for materials and for labor and overhead for June.

Requirement 1: Compute the number of tons of pulp completed and transferred out during June;

	Tons of Pulp
Work in process, June 1	20,000
Started into production during the month	$\underline{190,000}$
Total tons in process	210,000
Deduct work in process, June 30	$\underline{30,000}$
Completed and transferred out during the month	$\underline{\underline{180,000}}$

Requirement 2: Compute the equivalent units of production for materials and for labor and overhead for June.

	Equivalent Units of Production	
	Materials	Labor and Overhead
Units transferred out	180,000	180,000
Equivalent units in ending work in process inventory:		
Materials: 30,000 tons $\times 60 \%$ complete	18,000	
Labor and overhead: 30,000 tons $\times 40 \%$ complete		12,000
Equivalent units of production	$\underline{198,000}$	$\underline{\underline{192,000}}$

