Capital Budgeting Decisions

Chapter 12 – Part I

Capital Budgeting Decisions

Capital budgeting is used to describe how managers plan *significant investments* in projects that have *long-term implications* (realize future net cash inflows)

Typical Capital Budgeting Decisions

- Plant expansion
- Equipment selection
- Lease or buy
- Equipment replacement
- Cost reduction

Types of Capital Budgeting Decisions

Capital budgeting tends to fall into two broad categories.

- 1. Screening decisions. Does a proposed project meet some preset standard of acceptance?
- 2. Preference decisions. Selecting from among several competing courses of action.

Cash Flows versus Operating Income

- Payback Method
- Net Present Value
- Internal Rate of Return
 - These methods focus on analyzing the cash flows associated with capital investment projects.
- The <u>simple rate of return</u> method focuses on *incremental net operating income*.

Typical Cash Outflows

- Repairs and maintenance
- Initial investment
- Incremental operating costs
- Working capital (difference between <u>current assets</u> cash, account receivable, inventory- and <u>current</u> <u>liabilities</u>)

Typical Cash Inflows

- Salvage value
- Reduction of costs
- Incremental revenues (from a cash flow standpoint)
- Release of working capital

Time Value of Money

- A dollar today is worth more than a dollar a year from now.
- Therefore, projects that promise earlier returns are preferable to those that promise later returns.
- The capital budgeting techniques that best recognize
 the time value of money are those that involve
 discounted cash flows -> translating the value of
 future cash flows to their present value.

Learning Objective 1

Determine the payback period for an investment.

The Payback Method

The payback method focuses on the **payback period**, which is the length of time that it takes for a project to recoup its initial cost out of the cash receipts (inflows) that it generates.

This period is sometimes referred to as "the time that it takes for an investment to pay for itself"

The Payback Method – Key Concepts

- The payback method <u>analyzes cash flows</u>; however, it <u>does not consider the time value of money</u>.
- When the annual net cash inflow is the same each year,
 this formula can be used to compute the payback period:

The Payback Method – An Example

- Management at the Daily Grind wants to install an espresso bar in its restaurant that
 - 1. Costs \$140,000 and has a 10-year life.
 - 2. Will generate annual net cash inflows of \$35,000.
- Management requires a payback period of 5 years or less on all investments.
- What is the payback period for the espresso bar?

The Payback Method

Payback period = $\frac{\text{Investment required}}{\text{Annual net cash inflow}}$ Payback period = $\frac{\$140,000}{\$35,000}$ Payback period = 4.0 years

According to the company's criterion, management would invest in the espresso bar because its payback period is less than 5 years.

Concept Check 1

Consider the following two investments:

	Project X	Project Y
Initial investment	\$100,000	\$100,000
Year 1 cash inflow	\$60,000	\$60,000
Year 2 cash inflow	\$40,000	\$35,000
Year 3 cash inflow	\$0	\$25,000

Which project has the shortest payback period?

- A. Project X
- B. Project Y
- C. Cannot be determined

Concept Check 1a (1 of 2)

Consider the following two investments:

	Project X	Project Y
Initial investment	\$100,000	\$100,000
Year 1 cash inflow	\$60,000	\$60,000
Year 2 cash inflow	\$40,000	\$35,000
Year 3 cash inflow	\$0	\$25,000

Which project has the shortest payback period?

- A. Project X
- B. Project Y
- C. Cannot be determined

Answer: A

Concept Check 1a (2 of 2)

- Project X has a payback period of 2 years.
- Project Y has a payback period of slightly more than 2 years.
- Which project do you think is better?

Evaluation of the Payback Method: Criticisms

- Ignores the time value of money (it treats a dollar received today as being of equal value to a dollar received at any point in the future)
- Ignores cash flows after the payback period
- Shorter payback period does not always mean a more desirable investment

Evaluation of the Payback Method: Strengths

- Serves as screening tool
- Identifies investments that recoup cash investments quickly
- Identifies products that recoup initial investment quickly

Payback and Uneven Cash (in)Flows — Part 1

- When the cash flows associated with an investment project change from year to year, the payback formula introduced earlier cannot be used.
- Instead, the unrecovered investment must be tracked year by year.

Year 1	Year 2	Year 3	Year 4	Year 5
\$1,000	\$0	\$2,000	\$1,000	\$500

Payback and Uneven Cash (in)Flows — Part 2

For example, if a project requires an initial investment of \$4,000 and provides uneven net cash inflows in Years 1–5 as shown, the investment would be fully recovered in Year 4.

Year 1	Year 2	Year 3	Year 4	Year 5
\$1,000	\$0	\$2,000	\$1,000	\$500

Learning Objective 2

Evaluate the acceptability of an investment project using the net present value method.

- The net present value method compares the present value of a project's cash inflows with the present value of its cash outflows.
- The difference between these two streams of cash flows is called the net present value.

Two Simplifying Assumptions

- All cash flows other than the initial investment occur at the end of periods.
- All cash flows generated by an investment project are immediately reinvested at a rate of return equal to the discount rate. If this condition is not met, the NPV computations will not be accurate.

Lester Company has been offered a five-year contract to provide component parts for a large manufacturer.

Cost and revenue information:

Cost of special equipment	\$ 160,000
Working capital required	100,000
Relining equipment in 3 years	30,000
Salvage value of equipment in 5 years	5,000
Annual cash revenue and costs:	
Sales revenue from parts	750,000
Cost of parts sold	400,000
Salaries, shipping, etc.	270,000

Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

- At the end of five years, the working capital will be released and may be used elsewhere by Lester.
- Lester Company uses a discount rate of 11%.
- Should the contract be accepted?

Annual net cash inflow from operations

Sales revenue	\$ 750,000
Costs of parts sold	(400,000)
Salaries, shipping, etc.	(270,000)
Annual net cash Inflows	\$ 80,000

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Net present value				

The Net Present Value Method – Part 7 (1 of 2)

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash Inflows	1–5	80,000	3.696	<u>295,680</u>

Present value of an annuity of \$1 factor for 5 years at 11%: 3.696.

The Net Present Value Method – Part 7 (2 of 2)

 Alternatively, the individual annual net cash inflows could be discounted using the related five separate "present value of a single payment of \$1" factors.
 That method would produce the same present value of \$295,680.

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash Inflows	1–5	80,000	3.696	295,680
Relining of equipment	3	(30,000)	0.731	(21,930)

Present value of \$1 factor for 3 years at 11%: 0.731.

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash Inflows	1–5	80,000	3.696	295,680
Relining of equipment	3	(30,000)	0.731	(21,930)
Salvage value of equipment	5	5,000	0.593	2,965
Working capital released	5	100,000	0.593	<u>59,300</u>

- Present value of \$1 factor for 5 years at 11% (0.593).
- Total present value of the release of the working capital and the salvage value of the equipment is \$62,265.

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash Inflows	1–5	80,000	3.696	295,680
Relining of equipment	3	(30,000)	0.731	(21,930)
Salvage value of equipment	5	5,000	0.593	2,965
Working capital released	5	100,000	0.593	<u>59,300</u>
Net present value				\$ 76,01 <u>5</u>

Accept the contract because the project has a **positive** net present value.

Concept Check 2 (1 of 2)

Denny Associates has been offered a four-year contract to supply the computing requirements for a local bank.

Cash flow information:

Cost of computer equipment	\$ 250,000
Working capital required	20,000
Upgrading of equipment in 2 years	90,000
Salvage value of equipment in 4 years	10,000
Annual net cash inflow	120,000

- The working capital would be released at the end of the contract.
- Denny Associates requires a 14% return.

Concept Check 2 (2 of 2)

What is the net present value of the contract with the local bank?

- A. \$150,000
- B. \$28,230
- **C.** \$92,340
- D. \$132,916

Concept Check 2a (1 of 2)

What is the net present value of the contract with the local bank?

- A. \$150,000
- B. \$28,230
- **C.** \$92,340
- D. \$132,916

Answer: B

Concept Check 2a (2 of 2)

	Years	Cash Flows	14% Factor	Present Value
Investment in equipment	NOW	\$ (250,000)	1.000	\$ (250,000)
Working capital needed	NOW	(20,000)	1.000	(20,000)
Annual net cash inflows	1–4	120,000	2.914	349,680
Upgrading of equipment	2	(90,000)	0.769	(69,210)
Salvage value of equipment	4	10,000	0.592	5,920
Working capital released	4	20,000	0.592	<u>11,840</u>
Net present value				<u>\$ 28,230</u>

- Let's look at another way to calculate the NPV.
- Lester Company has been offered a five-year contract to provide component parts for a large manufacturer.
- Cost and revenue information:

Cost of special equipment	\$ 160,000
Working capital required	100,000
Relining equipment in 3 years	30,000
Salvage value of equipment in 5 years	5,000
Annual cash revenue and costs:	
Sales revenue from parts	750,000
Cost of parts sold	400,000
Salaries, shipping, etc.	270,000

- At the end of five years, the working capital will be released and may be used elsewhere by Lester.
- Lester Company uses a discount rate of 11%.
- Should the contract be accepted?

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)

Since the investments in equipment (\$160,000) and working capital (\$100,000) occur immediately, the discounting factor used is 1.000.

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash inflows	1	80,000	0.901	72,080
Annual net cash inflows	2	80,000	0.812	64,960
Annual net cash inflows	3	50,000	0.731	36,550
Annual net cash inflows	4	80,000	0.659	52,720
Annual net cash inflows	5	80,000	0.593	47,440
Salvage value of equipment	5	5,000	0.593	2,965
Working capital released	5	100,000	0.593	<u>59,300</u>

The total cash flows for years 1–5 are discounted to their present values using the discount factors.

For example, the total cash flows in Year 1 of \$80,000 are multiplied by the discount factor of **0.901** to derive this future cash flow's present value of \$72,080.

As another example, the total cash flows in Year 3 of \$50,000 are multiplied by the discount factor of **0.731** to derive this future cash flow's present value of \$36,550.

	Years	Cash Flows	11% Factor	Present Value
Investment in equipment	NOW	\$ (160,000)	1.000	\$ (160,000)
Working capital needed	NOW	(100,000)	1.000	(100,000)
Annual net cash inflows	1	80,000	0.901	72,080
Annual net cash inflows	2	80,000	0.812	64,960
Annual net cash inflows	3	50,000	0.731	36,550
Annual net cash inflows	4	80,000	0.659	52,720
Annual net cash inflows	5	80,000	0.593	47,440
Salvage value of equipment	5	5,000	0.593	2,965
Working capital released	5	100,000	0.593	<u>59,300</u>
Net Present Value				<u>\$ 76,015</u>

The net present value of the investment opportunity is \$76,015. Notice this amount equals the net present value from the earlier approach.

Once you have computed a net present value, you should interpret the results as follows:

- A positive net present value indicates that the project's return exceeds the discount rate.
- 2. A **negative net present value** indicates that the project's return is **less than the discount rate**.

If the Net Present Value is	Then the Project is		
Positive	Acceptable because it promises a return greater than the required rate of return.		
Zero	Acceptable because it promises a return equal to the required rate of return.		
Negative	Not acceptable because it promises a return less than the required rate of return.		

Choosing a Discount Rate

- The company's cost of capital is usually regarded as the minimum required rate of return.
- The cost of capital is the average return the company must pay to its long-term creditors and stockholders.

Recovery of the Original Investment – Part 1

The net present value method automatically provides for **return of the original investment**.

Recovery of the Original Investment – Part 2

Carver Hospital is considering buying an attachment for its X-ray machine.

Cost	\$ 3,169
Life	4 years
Salvage value	\$ -
Increase in annual cash inflows	\$ 1,000

No investments are to be made unless they have an annual return of at least 10%.

Will we be allowed to invest in the attachment?

Recovery of the Original Investment – Part 3

	Year(s)	Amount of Cash Flow	10% Factor	Value of Cash Flows
Initial investment (outflows)	NOW	\$ (3,169)	1.000	\$ (3,169)
Annual cash inflows	1	\$ 1,000	0.909	\$ 909
Annual cash inflows	2	\$ 1,000	0.826	\$ 826
Annual cash inflows	3	\$ 1,000	0.751	\$ 751
Annual cash inflows	4	\$ 1,000	0.683	<u>\$ 683</u>
Net present value				

Notice that the net present value of the investment is zero.

Recovery of the Original Investment – Part 4

This implies that the cash inflows are sufficient to recover the \$3,169 initial investment and to provide exactly a 10% return on the investment.