Chapter 12- Exercises

Annual cash inflows that will arise from two competing investment projects are given below: The discount rate is 8%.

Year	Investment A		Investment B	
1	\$	4,000	\$	16,000
2		8,000		12,000
3		12,000		8,000
4		16,000		4,000
	\$	40,000	\$	40,000

Required:

Compute the present value of the cash inflows for each investment.

Requirement : Compute the present value of the cash inflows for each investment.

	Amount of Cash Flows		8\%	Present Value of Cash Flows	
Year	Investment A	Investment B	Factor	Investment A	Investment B
1	\$4,000	\$16,000	0.926	\$3,704	\$14,816
2	\$8,000	\$12,000	0.857	6,856	10,284
3	\$12,000	\$8,000	0.794	9,528	6,352
4	\$16,000	\$4,000	0.735	11,760	2,940
				\$31,848	\$34,392

Conrad has just retired. His company's retirement program has two options as to how retirement benefits can be received. Under the first option, Conrad would receive a lump sum of $\$ 200,000$ immediately as his full retirement benefit. Under the second option, he would receive $\$ 16,000$ each year for 20 years plus a lump-sum payment of $\$ 65,000$ at the end of the 20-year period.

Required:

If he can invest money at 7\%, which option would you recommend that he accept? Use present value analysis.

Requirement : If he can invest money at 7\%, which option would you recommend that he accept? Use present value analysis.

Annual annuity: $\$ 16,000 \times 10.594$	$\$ 169,504$
Lump-sum payment: $\$ 65,000 \times 0.258$	$\underline{16,770}$
Total present value	$\$ 186,274$

Total present value: $\$ 200,000 \times 1.000$
$\$ 200,000$

In three years, when she is discharged from the Marines, Renita wants to buy a $\$ 12,000$ power boat.

Required:

What lump-sum amount must Renita invest now to have the $\$ 12,000$ at the end of three years if she can invest money at:

1. Eight percent?
2. Twelve percent?

Requirement : What lump-sum amount must Renita invest now to have the $\$ 12,000$ at the end of three years if she can invest money at:

1. Eight percent?
2. Twelve percent?

$$
\begin{aligned}
& P V=\$ 12,000 \times 0.794=\$ 9,528 \\
& P V=\$ 12,000 \times 0.712=\$ 8,544
\end{aligned}
$$

Allen's Attractions, Inc., is considering the purchase of new video games to place in its stores. The games would cost a total of $\$ 480,000$, have an three-year useful life, and have a total salvage value of $\$ 4,000$. The company estimates that annual revenues and expenses associated with the games would be as follows:

Revenues		$\$ 400,000$
Less operating expenses:		
Insurance	$\$ 40,000$	
Depreciation	160,000	
Maintenance	110,000	$\$ 310,000$
Net operating income		$\underline{\$ 90,000}$

Required:

1. What is the payback period for the new video games? Assume that Allen's Attractions, Inc., will not purchase new games unless they provide a payback period of two years or less. Would the company purchase the new games?
2. What is the simple rate of return promised by the games? If the company requires a simple rate of return of at least 7\%, will the games be purchased?

Requirement 1: What is the payback period for the new video games? Assume that Allen's Attractions, Inc., will not purchase new games unless they provide a payback period of two years or less. Would the company purchase the new games?

Net operating income	$\$ 90,000$
Add: noncash deduction for depreciation	$\underline{160,000}$
Annual net cash inflow	$\underline{\underline{\$ 250,000}}$
Payback period $=\frac{\text { Investment required }}{\text { Annual net cash inflow }}$	$=\frac{\$ 480,000}{\$ 250,000}$

Requirement 2: What is the simple rate of return promised by the games? If the company requires a simple rate of return of at least 7%, will the games be purchased?

$$
\text { Simple rate of return }=\frac{\begin{array}{c}
\text { Annual incremental } \\
\text { net income }
\end{array}}{\text { Initial investment }} \quad=\frac{\$ 90,000}{\$ 480,000} \quad=18.8 \%
$$

Stephani Anthony is a divisional manager for Bradlen Company. Her annual pay raises are largely determined by her division's return on investment (ROI), which has been above 18% each of the last three years. Stephani is considering a capital budgeting project that would require a $\$ 6,000,000$ investment in equipment with a useful life of four years and no salvage value. Bradlen Company's discount rate is 12%. The project would provide net operating income each year for five years as follows:

Sales		$\$ 6,500,000$
Variable expenses		$3,200,000$
Contribution margin		$3,300,000$
Fixed expenses:		
Advertising, salaries, and other fixed out-of-pocket costs	$\$ 1,300,000$	
Depreciation	$\mathbf{1 , 5 0 0 , 0 0 0}$	
Total fixed expenses		$\mathbf{2 , 8 0 0 , 0 0 0}$
Net operating income		$\mathbf{\$ 5 0 0 , 0 0 0}$

Required:

1. Compute the project's net present value.
2. Compute the project's simple rate of return.
3. Would the company want Stephani to pursue this investment opportunity? Would Stephani be inclined to pursue this investment opportunity?

Requirement 1: Compute the project's net present value.

	Now	Years 1-4
Purchase of equipment	$\$(6,000,000)$	
Sales		$\$ 6,500,000$
Variable expenses		$(3,200,000)$
Out-of-pocket costs		$(1,300,000)$
Total cash flows (a)	$1.000,000)$	$\$ 2,000,000$
Discount factor (12\%) (b)	$\$(6,000,000)$	$\$ 6,074,000$
Present value (a)×(b)	$\$ 74,000$	
Net present value		

Requirement 2: Compute the project's simple rate of return.

Simple rate of return $=\frac{$| Annual incremental |
| :---: |
| net income |}{Initial investment}$\quad=\frac{\$ 500,000}{\$ 6,000,000} \quad=8 \%$

Requirement 3: Would the company want Stephani to pursue this investment opportunity? Would Stephani be inclined to pursue this investment opportunity?
$\begin{array}{lllllllllllllllllllllllllllllllllll}0.962 & 0.952 & 0.943 & 0.935 & 0.926 & 0.917 & 0.909 & 0.901 & 0.893 & 0.885 & 0.877 & 0.870 & 0.862 & 0.855 & 0.847 & 0.840 & 0.833 & 0.826 & 0.820 & 0.813 & 0.806 & 0.800\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.925 & 0.907 & 0.890 & 0.873 & 0.857 & 0.842 & 0.826 & 0.812 & 0.797 & 0.783 & 0.769 & 0.756 & 0.743 & 0.731 & 0.718 & 0.706 & 0.694 & 0.683 & 0.672 & 0.661 & 0.650 & 0.640\end{array}$ $\begin{array}{lllllllllllllllllllll}0.889 & 0.864 & 0.840 & 0.816 & 0.794 & 0.772 & 0.751 & 0.731 & 0.712 & 0.693 & 0.675 & 0.658 & 0.641 & 0.624 & 0.609 & 0.593 & 0.579 & 0.564 & 0.551 & 0.537 & 0.524 \\ 0.512\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.855 & 0.823 & 0.792 & 0.763 & 0.735 & 0.708 & 0.683 & 0.659 & 0.636 & 0.613 & 0.592 & 0.572 & 0.552 & 0.534 & 0.516 & 0.499 & 0.482 & 0.467 & 0.451 & 0.437 & 0.423 & 0.410\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}0.822 & 0.784 & 0.747 & 0.713 & 0.681 & 0.650 & 0.621 & 0.593 & 0.567 & 0.543 & 0.519 & 0.497 & 0.476 & 0.456 & 0.437 & 0.419 & 0.402 & 0.386 & 0.370 & 0.355 & 0.341 & 0.328\end{array}$
$\begin{array}{llllllllllllllllllllll}0.790 & 0.746 & 0.705 & 0.666 & 0.630 & 0.596 & 0.564 & 0.535 & 0.507 & 0.480 & 0.456 & 0.432 & 0.410 & 0.390 & 0.370 & 0.352 & 0.335 & 0.319 & 0.303 & 0.289 & 0.275 & 0.262\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}0.760 & 0.711 & 0.665 & 0.623 & 0.583 & 0.547 & 0.513 & 0.482 & 0.452 & 0.425 & 0.400 & 0.376 & 0.354 & 0.333 & 0.314 & 0.296 & 0.279 & 0.263 & 0.249 & 0.235 & 0.222 & 0.210\end{array}$ $\begin{array}{lllllllllllllllllllll}0.731 & 0.677 & 0.627 & 0.582 & 0.540 & 0.502 & 0.467 & 0.434 & 0.404 & 0.376 & 0.351 & 0.327 & 0.305 & 0.285 & 0.266 & 0.249 & 0.233 & 0.218 & 0.204 & 0.191 & 0.179\end{array} 0.168$ $\begin{array}{llllllllllllllllllllll}0.703 & 0.645 & 0.592 & 0.544 & 0.500 & 0.460 & 0.424 & 0.391 & 0.361 & 0.333 & 0.308 & 0.284 & 0.263 & 0.243 & 0.225 & 0.209 & 0.194 & 0.180 & 0.167 & 0.155 & 0.144 & 0.134\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.676 & 0.614 & 0.558 & 0.508 & 0.463 & 0.422 & 0.386 & 0.352 & 0.322 & 0.295 & 0.270 & 0.247 & 0.227 & 0.208 & 0.191 & 0.176 & 0.162 & 0.149 & 0.137 & 0.126 & 0.116 & 0.107\end{array}$
$\begin{array}{llllllllllllllllllll}0.650 & 0.585 & 0.527 & 0.475 & 0.429 & 0.388 & 0.350 & 0.317 & 0.287 & 0.261 & 0.237 & 0.215 & 0.195 & 0.178 & 0.162 & 0.148 & 0.135 & 0.123 & 0.112 & 0.103 \\ 0.094 & 0.086\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.625 & 0.557 & 0.497 & 0.444 & 0.397 & 0.356 & 0.319 & 0.286 & 0.257 & 0.231 & 0.208 & 0.187 & 0.168 & 0.152 & 0.137 & 0.124 & 0.112 & 0.102 & 0.092 & 0.083 & 0.076 & 0.069\end{array}$
 $\begin{array}{llllllllllllllllllllll}0.577 & 0.505 & 0.442 & 0.388 & 0.340 & 0.299 & 0.263 & 0.232 & 0.205 & 0.181 & 0.160 & 0.141 & 0.125 & 0.111 & 0.099 & 0.088 & 0.078 & 0.069 & 0.062 & 0.055 & 0.049 & 0.044\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.555 & 0.481 & 0.417 & 0.362 & 0.315 & 0.275 & 0.239 & 0.209 & 0.183 & 0.160 & 0.140 & 0.123 & 0.108 & 0.095 & 0.084 & 0.074 & 0.065 & 0.057 & 0.051 & 0.045 & 0.040 & 0.035\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllll}0.534 & 0.458 & 0.394 & 0.339 & 0.292 & 0.252 & 0.218 & 0.188 & 0.163 & 0.141 & 0.123 & 0.107 & 0.093 & 0.081 & 0.071 & 0.062 & 0.054 & 0.047 & 0.042 & 0.036 & 0.032 & 0.028\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}0.513 & 0.436 & 0.371 & 0.317 & 0.270 & 0.231 & 0.198 & 0.170 & 0.146 & 0.125 & 0.108 & 0.093 & 0.080 & 0.069 & 0.060 & 0.052 & 0.045 & 0.039 & 0.034 & 0.030 & 0.026 & 0.023\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}0.494 & 0.416 & 0.350 & 0.296 & 0.250 & 0.212 & 0.180 & 0.153 & 0.130 & 0.111 & 0.095 & 0.081 & 0.069 & 0.059 & 0.051 & 0.044 & 0.038 & 0.032 & 0.028 & 0.024 & 0.021 & 0.018\end{array}$

$\begin{array}{lllllllllllllllllllllllllll}0.439 & 0.359 & 0.294 & 0.242 & 0.199 & 0.164 & 0.135 & 0.112 & 0.093 & 0.077 & 0.064 & 0.053 & 0.044 & 0.037 & 0.031 & 0.026 & 0.022 & 0.018 & 0.015 & 0.013 & 0.011 & 0.009\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}0.390 & 0.310 & 0.247 & 0.197 & 0.158 & 0.126 & 0.102 & 0.082 & 0.066 & 0.053 & 0.043 & 0.035 & 0.028 & 0.023 & 0.019 & 0.015 & 0.013 & 0.010 & 0.008 & 0.007 & 0.006 & 0.005\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0.361 & 0.281 & 0.220 & 0.172 & 0.135 & 0.106 & 0.084 & 0.066 & 0.053 & 0.042 & 0.033 & 0.026 & 0.021 & 0.017 & 0.014 & 0.011 & 0.009 & 0.007 & 0.006 & 0.005 & 0.004 & 0.003\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}0.347 & 0.268 & 0.207 & 0.161 & 0.125 & 0.098 & 0.076 & 0.060 & 0.047 & 0.037 & 0.029 & 0.023 & 0.018 & 0.014 & 0.011 & 0.009 & 0.007 & 0.006 & 0.005 & 0.004 & 0.003 & 0.002\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllll}0.321 & 0.243 & 0.185 & 0.141 & 0.107 & 0.082 & 0.063 & 0.048 & 0.037 & 0.029 & 0.022 & 0.017 & 0.014 & 0.011 & 0.008 & 0.006 & 0.005 & 0.004 & 0.003 & 0.002 & 0.002 & 0.002\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.308 & 0.231 & 0.174 & 0.131 & 0.099 & 0.075 & 0.057 & 0.044 & 0.033 & 0.026 & 0.020 & 0.015 & 0.012 & 0.009 & 0.007 & 0.005 & 0.004 & 0.003 & 0.003 & 0.002 & 0.002 & 0.001\end{array}$

| Periods | 4\% | 5\% | 6\% | 7\% | 8\% | 9\% | 10\% | 11\% | 12\% | 13\% | 14\% | 15\% | 16\% | 17\% | 18\% | 19\% | 20\% | 21\% | 22\% | 23\% | 24\% | 25\% |
| :---: | $\begin{array}{lllllllllllllllllllllllllllllllllllllll}0.962 & 0.952 & 0.943 & 0.935 & 0.926 & 0.917 & 0.909 & 0.901 & 0.893 & 0.885 & 0.877 & 0.870 & 0.862 & 0.855 & 0.847 & 0.840 & 0.833 & 0.826 & 0.820 & 0.813 & 0.806 & 0.800\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1.886 & 1.859 & 1.833 & 1.808 & 1.783 & 1.759 & 1.736 & 1.713 & 1.690 & 1.668 & 1.647 & 1.626 & 1.605 & 1.585 & 1.566 & 1.547 & 1.528 & 1.509 & 1.492 & 1.474 & 1.457 & 1.440\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllllll}2.775 & 2.723 & 2.673 & 2.624 & 2.577 & 2.531 & 2.487 & 2.444 & 2.402 & 2.361 & 2.322 & 2.283 & 2.246 & 2.210 & 2.174 & 2.140 & 2.106 & 2.074 & 2.042 & 2.011 & 1.981 & 1.952\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllllll}3.630 & 3.546 & 3.465 & 3.387 & 3.312 & 3.240 & 3.170 & 3.102 & 3.037 & 2.974 & 2.914 & 2.855 & 2.798 & 2.743 & 2.690 & 2.639 & 2.589 & 2.540 & 2.494 & 2.448 & 2.404 & 2.362\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllll}5.242 & 5.076 & 4.917 & 4.767 & 4.623 & 4.486 & 4.355 & 4.231 & 4.111 & 3.998 & 3.889 & 3.784 & 3.685 & 3.589 & 3.498 & 3.410 & 3.326 & 3.245 & 3.167 & 3.092 & 3.020 & 2.951\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}6.002 & 5.786 & 5.582 & 5.389 & 5.206 & 5.033 & 4.868 & 4.712 & 4.564 & 4.423 & 4.288 & 4.160 & 4.039 & 3.922 & 3.812 & 3.706 & 3.605 & 3.508 & 3.416 & 3.327 & 3.242 & 3.161\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}6.733 & 6.463 & 6.210 & 5.971 & 5.747 & 5.535 & 5.335 & 5.146 & 4.968 & 4.799 & 4.639 & 4.487 & 4.344 & 4.207 & 4.078 & 3.954 & 3.837 & 3.726 & 3.619 & 3.518\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}7.435 & 7.108 & 6.802 & 6.515 & 6.247 & 5.995 & 5.759 & 5.537 & 5.328 & 5.132 & 4.946 & 4.772 & 4.607 & 4.451 & 4.303 & 4.163 & 4.031 & 3.905 & 3.786 & 3.673 & 3.566 & 3.463\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}8.111 & 7.722 & 7.360 & 7.024 & 6.710 & 6.418 & 6.145 & 5.889 & 5.650 & 5.426 & 5.216 & 5.019 & 4.833 & 4.659 & 4.494 & 4.339 & 4.192 & 4.054 & 3.923 & 3.799 & 3.682 & 3.571\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll}8.760 & 8.306 & 7.887 & 7.499 & 7.139 & 6.805 & 6.495 & 6.207 & 5.938 & 5.687 & 5.453 & 5.234 & 5.029 & 4.836 & 4.656 & 4.486 & 4.327 & 4.177 & 4.035 & 3.902 & 3.776 & 3.656\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}9.385 & 8.863 & 8.384 & 7.943 & 7.536 & 7.161 & 6.814 & 6.492 & 6.194 & 5.918 & 5.660 & 5.421 & 5.197 & 4.988 & 4.793 & 4.611 & 4.439 & 4.278 & 4.127 & 3.985 & 3.851 & 3.725\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}9.986 & 9.394 & 8.853 & 8.358 & 7.904 & 7.487 & 7.103 & 6.750 & 6.424 & 6.122 & 5.842 & 5.583 & 5.342 & 5.118 & 4.910 & 4.715 & 4.533 & 4.362 & 4.203 & 4.053 & 3.912 & 3.780\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}10.563 & 9.899 & 9.295 & 8.745 & 8.244 & 7.786 & 7.367 & 6.982 & 6.628 & 6.302 & 6.002 & 5.724 & 5.468 & 5.229 & 5.008 & 4.802 & 4.611 & 4.432 & 4.265 & 4.108 & 3.962 & 3.824\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}11.118 & 10.380 & 9.712 & 9.108 & 8.559 & 8.061 & 7.606 & 7.191 & 6.811 & 6.462 & 6.142 & 5.847 & 5.575 & 5.324 & 5.092 & 4.876 & 4.675 & 4.489 & 4.315 & 4.153 & 4.001 & 3.859\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllll}11.652 & 10.838 & 10.106 & 9.447 & 8.851 & 8.313 & 7.824 & 7.379 & 6.974 & 6.604 & 6.265 & 5.954 & 5.668 & 5.405 & 5.162 & 4.938 & 4.730 & 4.536 & 4.357 & 4.189 & 4.033 & 3.887\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllllll}12.166 & 11.274 & 10.477 & 9.763 & 9.122 & 8.544 & 8.022 & 7.549 & 7.120 & 6.729 & 6.373 & 6.047 & 5.749 & 5.475 & 5.222 & 4.990 & 4.775 & 4.576 & 4.391 & 4.219 & 4.059 & 3.910\end{array}$

$14.02912 .82111 .76410 .83610 .017 \quad 9.2928 .6498 .0757 .5627 .1026 .6876 .3125 .9735 .6655 .3845 .1274 .8914 .6754 .4764 .2924 .1213 .963$

