Chapter 12- Exercises

Annual cash inflows that will arise from two competing investment projects are given below: The discount rate is 8%.

Year	Investment A	Investment B
1	\$ 4,000	\$ 16,000
2	8,000	12,000
3	12,000	8,000
4	<u>16,000</u>	<u>4,000</u>
	<u>\$ 40,000</u>	<u>\$ 40,000</u>

Required:

Compute the present value of the cash inflows for each investment.

Requirement : Compute the present value of the cash inflows for each investment.

	Amount of (Cash Flows	8%	Present Value	e of Cash Flows		
Year	Investment A	Investment B	<u>Factor</u>	Investment A	Investment B		
1	\$4,000	\$16,000	0.926	\$3,704	\$14,816		
2	\$8,000	\$12,000	0.857	6,856	10,284		
3	\$12,000	\$8,000	0.794	9,528	6,352		
4	\$16,000	\$4,000	0.735	_11,760	_2,940		
				\$31,848	\$34,392		

Conrad has just retired. His company's retirement program has two options as to how retirement benefits can be received. Under the first option, Conrad would receive a lump sum of \$200,000 immediately as his full retirement benefit. Under the second option, he would receive \$16,000 each year for 20 years plus a lump-sum payment of \$65,000 at the end of the 20-year period.

Required:

If he can invest money at 7%, which option would you recommend that he accept? Use present value analysis.

Requirement : If he can invest money at 7%, which option would you recommend that he accept? Use present value analysis.

Annual annuity: $$16,000 \times 10.594$	\$169,504
Lump-sum payment: $$65,000 \times 0.258$	<u> 16,770</u>
Total present value	<u>\$186,274</u>

Total	present	value:	\$200	,000,	×	1.000
-------	---------	--------	-------	-------	---	-------

In three years, when she is discharged from the Marines, Renita wants to buy a \$12,000 power boat.

Required:

What lump-sum amount must Renita invest now to have the \$12,000 at the end of three years if she can invest money at:

- 1. Eight percent?
- 2. Twelve percent?

Requirement: What lump-sum amount must Renita invest now to have the \$12,000 at the end of three years if she can invest money at:

- 1. Eight percent?
- 2. Twelve percent?

 $PV = $12,000 \times 0.794 = $9,528$

 $PV = $12,000 \times 0.712 = $8,544$

Allen's Attractions, Inc., is considering the purchase of new video games to place in its stores. The games would cost a total of \$480,000, have an three-year useful life, and have a total salvage value of \$4,000. The company estimates that annual revenues and expenses associated with the games would be as follows:

Revenues		\$400,000
Less operating expenses:		
Insurance	\$40,000	
Depreciation	160,000	
Maintenance	110,000	<u>\$310,000</u>
Net operating income		<u>\$90,000</u>

Required:

- What is the payback period for the new video games? Assume that Allen's Attractions, Inc., will not purchase new games unless they provide a payback period of two years or less. Would the company purchase the new games?
- 2. What is the simple rate of return promised by the games? If the company requires a simple rate of return of at least 7%, will the games be purchased?

Requirement 1: What is the payback period for the new video games? Assume that Allen's Attractions, Inc., will not purchase new games unless they provide a payback period of two years or less. Would the company purchase the new games?

Net operating income	\$90,000
Add: noncash deduction for depreciation	<u>160,000</u>
Annual net cash inflow	<u>\$250,000</u>
Payback period = $\frac{\text{Investment required}}{\text{Annual net cash inflow}} = \frac{\$480,000}{\$250,000} = 1.92 \text{ y}$	years Yes

Requirement 2: What is the simple rate of return promised by the games? If the company requires a simple rate of return of at least 7%, will the games be purchased?

Annual incrementalSimple rate of return =
$$\frac{\text{net income}}{\text{Initial investment}}$$
= $\frac{\$90,000}{\$480,000}$ =18.8%Yes

Stephani Anthony is a divisional manager for Bradlen Company. Her annual pay raises are largely determined by her division's return on investment (ROI), which has been above 18% each of the last three years. Stephani is considering a capital budgeting project that would require a \$6,000,000 investment in equipment with a useful life of four years and no salvage value. Bradlen Company's discount rate is 12%. The project would provide net operating income each year for five years as follows:

Sales		\$6,500,000
Variable expenses		3,200,000
Contribution margin		3,300,000
Fixed expenses:		
Advertising, salaries, and other fixed out-of-pocket costs	\$1,300,000	
Depreciation	1,500,000	
Total fixed expenses		2,800,000
Net operating income		<u>\$ 500,000</u>

Required:

- 1. Compute the project's net present value.
- 2. Compute the project's simple rate of return.
- 3. Would the company want Stephani to pursue this investment opportunity? Would Stephani be inclined to pursue this investment opportunity?

Requirement 1: Compute the project's net present value.

	Now	Years 1-4
Purchase of equipment	\$(6,000,000)	
Sales		\$6,500,000
Variable expenses		(3,200,000)
Out-of-pocket costs		<u>(1,300,000)</u>
Total cash flows (a)	\$(6,000,000)	\$2,000,000
Discount factor (12%) (b)	1.000	3.037
Present value (a)×(b)	\$(6,000,000)	\$6,074,000
Net present value	\$74,000	

Requirement 2: Compute the project's simple rate of return.

Requirement 3: Would the company want Stephani to pursue this investment opportunity? Would Stephani be inclined to pursue this investment opportunity?

Company - Yes

Stephani – Probably not

EXHIBIT 12B-1 Present Value of \$1; $\frac{1}{(1+r)^n}$

1	Periods	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	21%	22%	23%	24%	25%
Г	1	0.962	0.952	0.943	0.935	0.926	0.917	0.909	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	0.826	0.820	0.813	0.806	0.800
L	2	0.925	0.907	0.890	0.873	0.857	0.842	0.826	0.812	0.797	0.783	0.769	0.756	0.743	0.731	0.718	0.706	0.694	0.683	0.672	0.661	0.650	0.640
L	3	0.889	0.864	0.840	0.816	0.794	0.772	0.751	0.731	0.712	0.693	0.675	0.658	0.641	0.624	0.609	0.593	0.579	0.564	0.551	0.537	0.524	0.512
L	4	0.855	0.823	0.792	0.763	0.735	0.708	0.683	0.659	0.636	0.613	0.592	0.572	0.552	0.534	0.516	0.499	0.482	0.467	0.451	0.437	0.423	0.410
L	5	0.822	0.784	0.747	0.713	0.681	0.650	0.621	0.593	0.567	0.543	0.519	0.497	0.476	0.456	0.437	0.419	0.402	0.386	0.370	0.355	0.341	0.328
L																							
L	6	0.790	0.746	0.705	0.666	0.630	0.596	0.564	0.535	0.507	0.480	0.456	0.432	0.410	0.390	0.370	0.352	0.335	0.319	0.303	0.289	0.275	0.262
L	7	0.760	0.711	0.665	0.623	0.583	0.547	0.513	0.482	0.452	0.425	0.400	0.376	0.354	0.333	0.314	0.296	0.279	0.263	0.249	0.235	0.222	0.210
L	8	0.731	0.677	0.627	0.582	0.540	0.502	0.467	0.434	0.404	0.376	0.351	0.327	0.305	0.285	0.266	0.249	0.233	0.218	0.204	0.191	0.179	0.168
L	9	0.703	0.645	0.592	0.544	0.500	0.460	0.424	0.391	0.361	0.333	0.308	0.284	0.263	0.243	0.225	0.209	0.194	0.180	0.167	0.155	0.144	0.134
L	10	0.676	0.614	0.558	0.508	0.463	0.422	0.386	0.352	0.322	0.295	0.270	0.247	0.227	0.208	0.191	0.176	0.162	0.149	0.137	0.126	0.116	0.107
L																							
L	11	0.650	0.585	0.527	0.475	0.429	0.388	0.350	0.317	0.287	0.261	0.237	0.215	0.195	0.178	0.162	0.148	0.135	0.123	0.112	0.103	0.094	0.086
L	12	0.625	0.557	0.497	0.444	0.397	0.356	0.319	0.286	0.257	0.231	0.208	0.187	0.168	0.152	0.137	0.124	0.112	0.102	0.092	0.083	0.076	0.069
L	13	0.601	0.530	0.469	0.415	0.368	0.326	0.290	0.258	0.229	0.204	0.182	0.163	0.145	0.130	0.116	0.104	0.093	0.084	0.075	0.068	0.061	0.055
L	14	0.577	0.505	0.442	0.388	0.340	0.299	0.263	0.232	0.205	0.181	0.160	0.141	0.125	0.111	0.099	0.088	0.078	0.069	0.062	0.055	0.049	0.044
L	15	0.555	0.481	0.41/	0.362	0.315	0.275	0.239	0.209	0.183	0.160	0.140	0.123	0.108	0.095	0.084	0.074	0.065	0.057	0.051	0.045	0.040	0.035
L	16	0 5 2 4	0 450	0.204	0 220	0 202	0.252	0.210	0 100	0.162	0 1 4 1	0 1 2 2	0 107	0.002	0.001	0.071	0.062	0.054	0.047	0.042	0.026	0.022	0.020
L	10	0.534	0.456	0.394	0.339	0.292	0.252	0.218	0.100	0.103	0.141	0.123	0.107	0.093	0.060	0.071	0.062	0.054	0.047	0.042	0.030	0.032	0.028
L	12	0.515	0.430	0.371	0.317	0.270	0.231	0.190	0.170	0.140	0.125	0.100	0.095	0.060	0.069	0.051	0.052	0.045	0.039	0.034	0.030	0.020	0.023
L	10	0.494	0.410	0.330	0.290	0.250	0.212	0.164	0.155	0.130	0.008	0.095	0.070	0.060	0.059	0.031	0.044	0.030	0.032	0.028	0.024	0.021	0.014
L	20	0.475	0.350	0.331	0.258	0.252	0.178	0.149	0.130	0.110	0.030	0.003	0.061	0.051	0.043	0.043	0.031	0.026	0.027	0.023	0.016	0.014	0.012
L	20	0.400	0.077	0.512	0.200	0.210	0.170	0.145	0.124	0.104	0.007	0.075	0.001	0.001	0.040	0.007	0.001	0.020	0.022	0.015	0.010	0.014	0.012
L	21	0.439	0.359	0.294	0.242	0.199	0.164	0.135	0.112	0.093	0.077	0.064	0.053	0.044	0.037	0.031	0.026	0.022	0.018	0.015	0.013	0.011	0.009
L	22	0.422	0.342	0.278	0.226	0.184	0.150	0.123	0.101	0.083	0.068	0.056	0.046	0.038	0.032	0.026	0.022	0.018	0.015	0.013	0.011	0.009	0.007
L	23	0.406	0.326	0.262	0.211	0.170	0.138	0.112	0.091	0.074	0.060	0.049	0.040	0.033	0.027	0.022	0.018	0.015	0.012	0.010	0.009	0.007	0.006
L	24	0.390	0.310	0.247	0.197	0.158	0.126	0.102	0.082	0.066	0.053	0.043	0.035	0.028	0.023	0.019	0.015	0.013	0.010	0.008	0.007	0.006	0.005
L	25	0.375	0.295	0.233	0.184	0.146	0.116	0.092	0.074	0.059	0.047	0.038	0.030	0.024	0.020	0.016	0.013	0.010	0.009	0.007	0.006	0.005	0.004
L																							
L	26	0.361	0.281	0.220	0.172	0.135	0.106	0.084	0.066	0.053	0.042	0.033	0.026	0.021	0.017	0.014	0.011	0.009	0.007	0.006	0.005	0.004	0.003
L	27	0.347	0.268	0.207	0.161	0.125	0.098	0.076	0.060	0.047	0.037	0.029	0.023	0.018	0.014	0.011	0.009	0.007	0.006	0.005	0.004	0.003	0.002
	28	0.333	0.255	0.196	0.150	0.116	0.090	0.069	0.054	0.042	0.033	0.026	0.020	0.016	0.012	0.010	0.008	0.006	0.005	0.004	0.003	0.002	0.002
	29	0.321	0.243	0.185	0.141	0.107	0.082	0.063	0.048	0.037	0.029	0.022	0.017	0.014	0.011	0.008	0.006	0.005	0.004	0.003	0.002	0.002	0.002
	30	0.308	0.231	0.174	0.131	0.099	0.075	0.057	0.044	0.033	0.026	0.020	0.015	0.012	0.009	0.007	0.005	0.004	0.003	0.003	0.002	0.002	0.001

40 0.208 0.142 0.097 0.067 0.046 0.032 0.022 0.015 0.011 0.008 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

EXHIBIT 12B-2 Present Value of an Annuity of \$1 in Arrears; $\frac{1}{r} \left[1 - \frac{1}{(1+r)^n} \right]$

Periods	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	21%	22%	23%	24%	25%
1	0.962	0.952	0.943	0.935	0.926	0.917	0.909	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	0.826	0.820	0.813	0.806	0.800
2	1.886	1.859	1.833	1.808	1.783	1.759	1.736	1.713	1.690	1.668	1.647	1.626	1.605	1.585	1.566	1.547	1.528	1.509	1.492	1.474	1.457	1.440
3	2.775	2.723	2.673	2.624	2.577	2.531	2.487	2.444	2.402	2.361	2.322	2.283	2.246	2.210	2.174	2.140	2.106	2.074	2.042	2.011	1.981	1.952
4	3.630	3.546	3.465	3.387	3.312	3.240	3.170	3.102	3.037	2.974	2.914	2.855	2.798	2.743	2.690	2.639	2.589	2.540	2.494	2.448	2.404	2.362
5	4.452	4.329	4.212	4.100	3.993	3.890	3.791	3.696	3.605	3.517	3.433	3.352	3.274	3.199	3.127	3.058	2.991	2.926	2.864	2.803	2.745	2.689
6	5.242	5.076	4.917	4.767	4.623	4.486	4.355	4.231	4.111	3.998	3.889	3.784	3.685	3.589	3.498	3.410	3.326	3.245	3.167	3.092	3.020	2.951
7	6.002	5.786	5.582	5.389	5.206	5.033	4.868	4.712	4.564	4.423	4.288	4.160	4.039	3.922	3.812	3.706	3.605	3.508	3.416	3.327	3.242	3.161
8	6./33	6.463	6.210	5.971	5.747	5.535	5.335	5.146	4.968	4.799	4.639	4.487	4.344	4.207	4.078	3.954	3.837	3.726	3.619	3.518	3.421	3.329
10	7.435	7.108	7.260	0.515	6.710	5.995	5./59	5.537	5.328	5.132	4.946	4.//2	4.607	4.451	4.303	4.103	4.031	3.905	3./80	3.0/3	3.500	3.403
10	0.111	1.122	7.500	7.024	0.710	0.410	0.145	5.009	5.050	5.420	5.210	5.019	4.033	4.059	4.494	4.559	4.192	4.054	3.923	5.799	3.002	5.571
11	8,760	8.306	7.887	7,499	7.139	6.805	6.495	6.207	5.938	5.687	5.453	5.234	5.029	4.836	4.656	4,486	4.327	4,177	4.035	3.902	3.776	3.656
12	9.385	8.863	8.384	7.943	7.536	7.161	6.814	6.492	6.194	5.918	5.660	5.421	5.197	4.988	4.793	4.611	4.439	4.278	4.127	3.985	3.851	3.725
13	9.986	9.394	8.853	8.358	7.904	7.487	7.103	6.750	6.424	6.122	5.842	5.583	5.342	5.118	4.910	4.715	4.533	4.362	4.203	4.053	3.912	3.780
14	10.563	9.899	9.295	8.745	8.244	7.786	7.367	6.982	6.628	6.302	6.002	5.724	5.468	5.229	5.008	4.802	4.611	4.432	4.265	4.108	3.962	3.824
15	11.118	10.380	9.712	9.108	8.559	8.061	7.606	7.191	6.811	6.462	6.142	5.847	5.575	5.324	5.092	4.876	4.675	4.489	4.315	4.153	4.001	3.859
16	11.652	10.838	10.106	9.447	8.851	8.313	7.824	7.379	6.974	6.604	6.265	5.954	5.668	5.405	5.162	4.938	4.730	4.536	4.357	4.189	4.033	3.887
17	12.166	11.274	10.477	9.763	9.122	8.544	8.022	7.549	7.120	6.729	6.373	6.047	5.749	5.475	5.222	4.990	4.775	4.576	4.391	4.219	4.059	3.910
18	12.659	11.690	10.828	10.059	9.372	8.756	8.201	7.702	7.250	6.840	6.467	6.128	5.818	5.534	5.273	5.033	4.812	4.608	4.419	4.243	4.080	3.928
19	13.134	12.085	11.158	10.336	9.604	8.950	8.365	7.839	7.366	6.938	6.550	6.198	5.8//	5.584	5.316	5.070	4.843	4.635	4.442	4.263	4.097	3.942
20	13.590	12.462	11.470	10.594	9.818	9.129	8.514	7.963	7.469	7.025	6.623	6.259	5.929	5.628	5.353	5.101	4.870	4.657	4.460	4.279	4.110	3.954
21	14 0 2 9	12 821	11 764	10 836	10.017	9 292	8 6 4 9	8 0 7 5	7 562	7 102	6 687	6312	5 973	5 6 6 5	5 384	5 127	4 891	4 675	4 4 7 6	4 292	4 121	3 963
22	14.451	13.163	12.042	11.061	10.201	9.442	8.772	8.176	7.645	7.170	6.743	6.359	6.011	5.696	5.410	5.149	4.909	4.690	4.488	4.302	4.130	3.970
23	14.857	13.489	12.303	11.272	10.371	9.580	8.883	8.266	7.718	7.230	6.792	6.399	6.044	5.723	5.432	5.167	4.925	4.703	4.499	4.311	4.137	3.976
24	15.247	13.799	12.550	11.469	10.529	9.707	8.985	8.348	7.784	7.283	6.835	6.434	6.073	5.746	5.451	5.182	4.937	4.713	4.507	4.318	4.143	3.981
25	15.622	14.094	12.783	11.654	10.675	9.823	9.077	8.422	7.843	7.330	6.873	6.464	6.097	5.766	5.467	5.195	4.948	4.721	4.514	4.323	4.147	3.985
26	15.983	14.375	13.003	11.826	10.810	9.929	9.161	8.488	7.896	7.372	6.906	6.491	6.118	5.783	5.480	5.206	4.956	4.728	4.520	4.328	4.151	3.988
27	16.330	14.643	13.211	11.987	10.935	10.027	9.237	8.548	7.943	7.409	6.935	6.514	6.136	5.798	5.492	5.215	4.964	4.734	4.524	4.332	4.154	3.990
28	16.663	14.898	13.406	12.137	11.051	10.116	9.307	8.602	7.984	7.441	6.961	6.534	6.152	5.810	5.502	5.223	4.970	4.739	4.528	4.335	4.157	3.992
29	16.984	15.141	13.591	12.278	11.158	10.198	9.370	8.650	8.022	7.470	6.983	6.551	6.166	5.820	5.510	5.229	4.975	4.743	4.531	4.337	4.159	3.994
30	17.292	15.372	13.765	12.409	11.258	10.274	9.427	8.694	8.055	7.496	7.003	6.566	6.177	5.829	5.517	5.235	4.979	4.746	4.534	4.339	4.160	3.995

40 19.793 17.159 15.046 13.332 11.925 10.757 9.779 8.951 8.244 7.634 7.105 6.642 6.233 5.871 5.548 5.258 4.997 4.760 4.544 4.347 4.166 3.999