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Abstract

The Synthetic Control Method (SCM) estimates the causal effect of a

policy intervention in a panel data setting with only a few treated units and

control units. The treated outcome in the absence of the intervention is

recovered by a weighted average of the control units. The latter cannot be

affected by the intervention, neither directly nor indirectly. We introduce the

inclusive synthetic control method (iSCM), a novel and intuitive synthetic

control modification that allows including units potentially affected directly

or indirectly by an intervention in the donor pool. Our method is well suited

for applications with multiple treated units where including treated units

in the donor pool substantially improves the pre-intervention fit and/or for

applications where some of the units in the donor pool might be affected by

spillover effects. Our iSCM is very easy to implement, and any synthetic

control type estimation and inference procedure can be used. Finally, as an

illustrative empirical example, we re-estimate the causal effect of German

reunification on GDP per capita allowing for spillover effects from West

Germany to Austria.
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1 Introduction

The synthetic control method (SCM) introduced by Abadie and Gardeazabal

(2003) and further developed in Abadie et al. (2010) and Abadie et al. (2015)

allows estimating the causal effect of a policy intervention in setting where only a

few treated and control units are observed over a long time period. The idea be-

hind this method is to create a linear combination of control units that mimic what

would have happened to the treated units in the absence of the intervention. The

weights given to each control unit are chosen to minimize the distance in the pre-

intervention outcomes of the treated and the synthetic control. The causal effect

of the intervention is estimated as the difference between the observed outcome of

treated and the one of the synthetic control in the post-intervention period.

One of the key assumptions of SCM is that only units that are not affected by

the interventions are included in the control group, often referred to as donor pool.

This might be problematic in at least two scenarios: i) some of the treated units

need to be included in the donor pool for the treated to be in the convex hull of

the control units; ii) some of the control units in the donor pool are affected by the

intervention indirectly. As a motivating example, consider the German reunifica-

tion study of Abadie et al. (2015) and Abadie and L’Hour (2019), as the authors

point out it is possible that German reunification had spillover effects on a neigh-

bor country like Austria. As Austria receives a high weight (42%) in their study,

such a spillover effect, if large, would introduce a large bias. Given that Austria

plays an important role in constructing “synthetic West Germany”, excluding it

from the donor pool is likely to induce violations of the SCM assumptions as it is

less plausible that West Germany is in the convex hull of the other control units.

Our main contribution is to introduce the inclusive synthetic control method

(iSCM), a novel procedure that allows us to eliminate post-intervention effects

from control units and safely include them in the donor pool. Our procedure does

not require to modify the original synthetic control estimator, and all the new

recent methods can be used instead. The main additional assumptions required

are that the number of “potentially affected” units is known and that the standard

SCM assumptions would hold if there were no post-intervention effects for those

units.
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Although iSCM only requires the existence of at least one “pure control” unit,

we expect that the quality of our estimator deteriorates if the number of “poten-

tially affected” units increases. Thus, it is advisable to impose assumptions that

limit this number. This is similar to what is done in the literature on spillover

effects, where it is often assumed that interactions between units are only possible

in the same group but not between different groups (Cerqua and Pellegrini 2017,

Forastiere et al. 2016, Huber and Steinmayr 2019, Vazquez-Bare 2017). This is also

the case for contributions to this literature based on synthetic control. Grossi et al.

(2020) propose to reduce the donor pool to only units not affected by spillovers.

They estimate the effect for the treated unit using a standard SCM with the re-

stricted donor pool and the spillover effects comparing units affected by spillover

and the restricted donor pool. Their method is very effective in applications where

the restricted donor pool is sufficient to construct a “good” synthetic control. How-

ever, in a setting where the units affected by spillover need to be included in the

donor pool, as in the German reunification example, their method would likely

produce biased results. Cao and Dowd (2019) provide a different identification

strategy imposing a linear spillover structure restricting effect heterogeneity. In

contrast, our approach does not impose any assumptions on the spillover effect

heterogeneity. The rest of the paper is organized as follows: Section 2 reviews the

literature; Section 3 introduces our iSCM; Section 4 proposes possible inference

procedures; Section 5 presents the results of empirical applications; and Section 6

concludes.

2 Literature review

SCM is receiving increasing attention in the literature. Athey and Imbens (2017)

argue that SCM is “...the most important innovation in the policy evaluation

literature in the last 15 years”. Several contributions have been made to improve

upon the original method (see Abadie (2020) for a recent review of the literature)

in several dimensions. One strand of the literature focuses on bias reduction due to

imbalance in observed characteristics. Abadie and L’Hour (2019) propose a bias

reduction procedure based on introducing a penalty term that reduces pairwise

matching discrepancies between the characteristics of the treated and each of the
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control units and helps to avoid interpolation bias. Botosaru and Ferman (2019)

discuss implications of not having perfect covariate balance and provide alternative

assumptions under which SCM can still be used. Kellogg et al. (2020) propose a

model averaging method called “matching synthetic control estimator” that is

a convex combination of the synthetic control and matching estimators. Their

procedure gives weight to the synthetic control estimator that are proportional to

the risk of having extrapolation bias.

Another strand of the literature focuses on problems related to have an im-

perfect fit in the pre-treatment period. Ferman and Pinto (2019) analyze the

properties of SCM when the pre-treatment fit is imperfect. Similarly, Ben-Michael

et al. (2020) discuss potential problems with SCM and propose an outcome model

to estimate the bias. They also consider staggered adoption setting (Ben-Michael

et al. 2019). Doudchenko and Imbens (2017) allow a better pre-intervention fit,

proposing a generalization of the synthetic control, relaxing weight-constraints,

i.e., allowing weights to be negative, and their sum to be different to one, and

adding a time-constant intercept.

Finally, several contributions focus on generalizing the method and compare

it to alternative approaches. Gobillon and Magnac (2016) compare linear fac-

tor models and synthetic controls. Xu (2017) proposes a generalization to unify

synthetic control with linear fixed-effects models. Amjad et al. (2018) propose

a procedure based on de-noising the outcomes and imputing the missing values.

Arkhangelsky et al. (2019) propose a new synthetic control as a weighted regres-

sion estimator with time fixed effects. Mellace and Pasquini (2019) show how to

use SCM to estimate how much of the total effect of intervention goes though

observed intermediate outcomes (causal channels). Athey et al. (2020) use matrix

completion techniques to derive a new method that include synthetic control as a

special case. There are contributes that exploit the connection between SCM and

other approaches.

3 The inclusive synthetic control method

Without loss of generality assume we are interested in the effect of an intervention,

implemented at time T , on an outcome Y of one treated unit. We will refer to this
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unit as the “main treated”. We assume to observe J units ordered such that unit

1 is the “main” treated, units 2 to m ≤ J−1 (potentially “affected” hereafter) are

either other treated units that we would like to include in the donor pool or control

units that might be affected by spillover effects from the main treated, and units

m+ 1 through J are “pure” control units that are not affected by the intervention

at all.

We define the potential outcome (see, e.g., Rubin 1974) Y I
1t as the outcome that

the main treated unit would obtain under the intervention at time t. With a little

abuse of notation and depending on the specific application, Y S
jt , j = 2, . . . ,m

represent the potential outcomes at time t in the presence of the intervention

received by either the other treated units or by the units potentially affected by

spillover effects. Finally, we define as Y N
jt , j = 1, . . . , J the potential outcome in

the absence of the intervention. We denote the number of pre-intervention periods

as T0 and we define the following two binary indicators

Djt =

1 if j = 1 and t > T0,

0 otherwise.

Sjt =

1 if j = 2, ...,m and t > T0,

0 otherwise.

These binary indicators are used to select the “main” treated and the units that

are potentially affected by the intervention, respectively, in the post-intervention

period.

Assuming no anticipation effects in the pre-treatment period and that the stan-

dard stable unit treatment value assumption (SUTVA) holds (partially in the case

of spillover effects), we can relate the observed and the potential outcome by the

following observational rule

Yjt = Y N
jt (1−Djt)(1− Sjt) + Y I

jtDjt + Y S
jtSjt.

This implies that in the pre-intervention period, Yjt=Y
N
jt for all units, while
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in the post-intervention period, Yjt=Y
N
jt for the “pure” control units; Y1t=Y

I
1t for

“main” treated and Yjt=Y
S
jt for the other potentially affected units.

Our parameters of interest are the effect of the intervention for the main treated

at time t > T0, denoted by θ1t, and the effects on the other potentially affected

units denoted by γjt, j = 2, . . . ,m, t > T0, defined as

θ1t = Y I
1t − Y N

1t , t > T0

and

γjt = Y S
jt − Y N

jt , j = 2, . . . ,m, t > T0.

To identify these parameters, we need to recover Y N
1t and Y N

jt for j = 2, ...,m

in the post-treatment period. If, hypothetically, one used the standard SCM as

described in Abadie et al. 2010 and included the potentially affected units in the

donor pool, the resulting estimate of the counterfactual potential outcome of the

main treated in the absence of the intervention would be

Ŷ N
1t =

J∑
j=2

w∗jYjt,

where the (J × 1) vector of weights W ∗ = (w∗2, . . . , w
∗
J)′ is chosen to minimize the

distance between the treated and the other units in pre-intervention characteristics.

Thus, the effect on the main treated would be estimated as

θ̂1t = Y1t −
J∑
j=2

w∗jYjt.

As units 2 to m are potentially affected by the intervention, their post intervention

outcomes are given by

Yjt = Y N
jt + γjt, j = 2, . . . ,m.

Our first assumption is that if units 2 tom were not affected by the intervention,

the standard SMC would work, formally
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Assumption 1: There exists a set of weights w∗j , j = 2, . . . , J such that

Y N
1t =

∑J
j=2 w

∗
jY

N
jt .

In other words, Assumption 1 ensures that if units 2 to J were not affected by the

intervention, the potential outcome of the treated unit would be in their convex

hull.

Lemma 1: Under Assumption 1

θ̂1t = θ1t −
m∑
j=2

w∗jγjt (1)

Proof of Lemma 1: Under Assumption 1, using the observational rule, we have

Ŷ N
1t =

J∑
j=2

w∗jYjt

=
J∑

j=m+1

w∗jY
N
jt +

m∑
j=2

w∗j
(
Y N
jt + γjt

)
=

J∑
j=2

w∗jY
N
jt +

m∑
j=2

w∗jγjt

= Y N
1t +

m∑
j=2

w∗jγjt

This immediately implies that

θ̂1t = θ1t −
m∑
j=2

w∗jγjt.

�

Lemma 1 shows how the presence of post interventions effects affects the stan-

dard SCM under assumption 1.

Remark: It is important to notice that for each unit j = 2, . . . ,m if either γjt

or w∗j is zero that unit does not induce “bias” in θ̂1t. This implies that units
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that receive a low estimated weight need to have a large effect to induce bias

in θ̂1t. For this reason, units that receive a low weight using the standard SCM

can be relatively safely treated as pure controls when estimating θ1t in empirical

applications.

Consider a generic potentially affected unit i = 2, . . . ,m. Using a standard

SCM to estimate Y N
it also including the main treated (unit 1) and all other m− 1

affected units in the donor pool would require finding a vector of weights L∗i, such

that

Ŷ N
it =

∑
j 6=i

l∗ij Yjt.

Let J = {1, ..., J}, we assume that for units 2 to m without the effect of the inter-

vention on the main treated and the other potentially affected units the standard

SMC would work, formally

Assumption 2: There exists a set of weights l∗ij , j ∈ J \{i}, such that

Y N
it =

∑
j∈J\{i} l

∗i
j Y

N
jt , ∀ i = 2, . . . ,m.

Lemma 2: Under Assumption 2

γ̂it = γit −
∑

j∈M\{i}

l∗ij γjt − l∗i1 θ1t. (2)

Proof of Lemma 2: Under Assumption 2, we have

Ŷ N
it = Y N

it +
∑

j∈M\{i}

l∗ij γjt + l∗i1 θ1t,

with M = {2, ...,m}. It follows

γ̂it = γit −
∑

j∈M\{i}

l∗ij γjt − l∗i1 θ1t.

�
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Combining the results of Lemma 1 and Lemma 2, we obtain the following

system of equations:

θ̂1t = θ1t −
∑
j∈M

w∗jγjt

γ̂2t = γ2t −
∑

j∈M\{2}

l∗2j γjt − l∗21 θ1t

γ̂3t = γ3t −
∑

j∈M\{3}

l∗3j γjt − l∗31 θ1t

. . .

γ̂mt = γjt −
∑

j∈M\{m}

l∗mj γjt − l∗m1 θ1t

After some simple manipulations we obtain:

θ̂1t = θ1t − w∗2γ2t − w∗3γ3t − . . .− w∗mγmt
γ̂2t = −l∗21 θ1t + γ2t − l∗23 γ3t − . . .− l∗2mγmt
γ̂3t = −l∗31 θ1t − l∗32 γ2t + γ3t − . . .− l∗3mγmt

. . .

γ̂mt = −l∗m1 θ1t − l∗m2 γ2t − l∗m3 γ3t − . . .+ γmt

This is a system of m equations with m unknowns, i.e., the treatment effect on

the main treated and the m− 1 effects on the potentially affected units.

We can write this system in matrix form, denoting by ϑt the (m× 1) vector of

unknown parameters (our effects of interest), by Ω the (m×m) matrix of known

quantities (our estimated weights) that has ones on the main diagonal and by βt

the (m× 1) vector of known quantities (biased estimated effects), as

βt =



θ̂1t

γ̂2t

γ̂3t

...

γ̂mt


Ω =



1 −w∗2 −w∗3 . . . −w∗m
−l∗21 1 −l∗23 . . . −l∗2m
−l∗31 −l∗32 1 . . . −l∗3m

...
...

...
. . .

...

−l∗m1 −l∗m2 −l∗m3 . . . 1


ϑt =



θ1t

γ2t

γ3t

...

γmt


(3)
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We now assume that Ω is invertible, namely

Assumption 3: Ω is non-singular.

It is easy to show that Ω is always invertible, if m ≤ J − 1, except for the

extreme cases where two units give weight 1 to each other and/or every single

weight associated with the pure control units is zero (see Appendix A).

We now state our main result in the following theorem.

Theorem 1: Under Assumption 3, we have

ϑt = Ω−1βt.

Proof of Theorem 1: The result immediately follows from equation 3 using

the fact that Ω is invertible. �

The result in Theorem 1 can be readily used to identify our effects of interest

by simply applying Cramer’s rule:

ϑjt =
det(Ωj,t)

det(Ω)
j = 1, ...,m.

where Ωj,t is the matrix obtained by replacing the j-th column of Ω by the vector

βt.

The expression above makes it very easy to construct estimators of our pa-

rameters of interest that only require very basic linear algebra operations together

with any SCM-type estimator for the weight matrix Ω and the vector βt.

To further illustrate our results, it is useful to consider the special case where,

together with the “main treated unit”, only one additional unit is potentially

affected by the intervention (m = 1).

In this case our system of equations simplifies to:θ̂t = θt − w∗2γt
γ̂t = −l∗1θt + γt
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Therefore, we have

βt =

(
θ̂t

γ̂t

)
, Ω =

(
1 −w∗2
−l∗1 1

)
, ϑt =

(
θt

γt

)
.

To derive expressions for our parameters of interest we need to find det(Ω),

det(Ω1,t) and det(Ω2,t), which are given by

det(Ω) =

∣∣∣∣∣ 1 −w∗2
−l∗1 1

∣∣∣∣∣ = 1− w∗2l∗1,

det(Ω1,t) =

∣∣∣∣∣θ̂t −w∗2γ̂t 1

∣∣∣∣∣ = θ̂t + w∗2γ̂t,

det(Ω2,t) =

∣∣∣∣∣ 1 θ̂t

−l∗1 γ̂t

∣∣∣∣∣ = γ̂t + l∗1θ̂t.

Following Cramer’s rule we obtain

θt =
θ̂t + w∗2γ̂t
1− w∗2l∗1

γt =
γ̂t + l∗1θ̂t
1− w∗2l∗1

In this case, it is easy to see that det(Ω) is always different from zero, except if

w∗2 = l∗1 = 1. Thus, our parameters of interest are always identified unless the

main treated gives weight 1 to the other affected unit which in turns gives weight

1 to the main treated. This would be the case, for example, if there are no “pure

control” units.
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4 Inference

Dealing with only a few units, makes inference for synthetic control based meth-

ods, like ours, complicated. We can, however, easily adapt existing methods to our

setting. The most popular choice is to implement permutation tests. Abadie et al.

(2010) and Abadie et al. (2015) propose placebo tests in time, i.e., reassigning the

intervention artificially before its real implementation and placebo tests in space,

i.e., reassigning the intervention artificially for units in the control group. The lat-

ter approach is often preferred because of possible shocks that might have occurred

in the past affecting units differently. In space placebo tests measure the statis-

tical significance of the effect through the ratio between the root mean squared

prediction errors (RMSPE) in the post-treatment period and in the pre-treatment

period. The RMSPE measures the lack of fit between the observed outcome and

its synthetic control. In our framework the presence of units affected by inter-

vention in the donor pool, requires a small modification in the way we compute

the post-intervention RMSPE. We suggest computing the post-intervention RM-

SPE by subtracting from the outcomes of each affected unit (excluding the one for

which we are estimating the effect) the respective effect estimated with iSCM. For

the main treated units the modified RMSPE ratio becomes

r1 =

(
1

T−T0

∑T
t=T0+1(Y1t − (Ŷ N

1t −
∑m

j=2w
∗
jγjt))

2
)1/2

(
1
T0

∑T0
t=1(Y1t − Ŷ N

1t )2
)1/2

,

while for the other potentially affected units we have

rj =

(
1

T−T0

∑T
t=T0+1(Yjt − (Ŷ N

jt −
∑

j∈M\{i} l
∗i
j γjt − l∗i1 θ1t))

2
)1/2

(
1
T0

∑T0
t=1(Yjt − Ŷ N

jt )2
)1/2

, j = 2, . . . ,m.

This idea can be easily applied to other inference procedures available in the litera-

ture (see, e.g., Cao and Dowd 2019; Chernozhukov et al. 2018; Firpo and Possebom

2018; Gobillon and Magnac 2016; Li 2019).
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5 Empirical example

In this section, we use iSCM to estimate the effect of German reunification on

West Germany’s per capita GDP. In this application, one of the control units

(Austria) in the donor pool is potentially affected indirectly by the treatment
1. As discussed in Abadie et al. (2015) and Abadie and L’Hour (2019), German

reunification could have had negative spillover effects on Austria’s economic growth

because West Germany diverted demand and investment from Austria to East

Germany. This would imply that the big negative effect that they found is likely to

be an upper bound of the true effect. As it is arguably important to include Austria

in the donor pool, our method is very well suited for this empirical application. In

October 1990, less than a year after the fall of the Berlin wall on November 1989,

the German Democratic Republic (“East Germany”) and the Federal Republic

of Germany (“West Germany”) were officially reunified. The differences between

the two economies were large. In 1989 the GDP per capita of West Germany

was about three times higher than that of East Germany (Schinasi et al. 1990).

German reunification, defined as one of the most important historical milestones

of European history after 1945, most likely affected not only the German economy

but also other countries. In particular, Austria has had tight links with Germany

historically, also because the two countries share the same language and, to a great

extent, a common history. In 1938, Austria was annexed by the Third Reich that

benefited from its raw materials and labor to complete the German rearmament.

In 1945, Austria was separated from Germany. However, the economic cooperation

between Austria and West Germany continued during the Cold War.

We use the same specification as in Abadie et al. (2015) to estimate the syn-

thetic for West Germany. In order to find the weights to assign to each covariate,

they split the pre-treatment period in a training period (1971–80) and in a val-

idation period (1981–90). The weights are then selected by minimizing the out-

of-sample error in the validation period. For Austria, we cannot safely use this

procedure. As described in Gehler and Graf (2018), in 1980, right before the sam-

ple split cut-off, Austria provided several loans to East Germany, and in return,

1Given that other European countries receive very little weights the impact of potential
spillover effects on those countries would arguable be negligible as shown by Lemma 1.
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its nationalized industries received large-scale orders. This most likely fostered

Austrian’s exports and contributed to jobs creation in its industries. Thus, the

sample split might catch the effect of this economic shock. This is corroborated by

the fact that using the same specification as in Abadie et al. (2015) also for Aus-

tria leads to a bad pre-treatment fit. For this reason, we decided to follow Abadie

et al. (2010) in choosing the covariates weights for synthetic Austria, which are

selected such that the mean squared prediction error of the outcome variable is

minimized for the entire pre-treatment period. We use country-level panel data

that cover the period 1960-2003, with our post-intervention period starting in

1990. Except for Austria, the “pure control” countries in the donor pool include

15 other OECD countries: Australia, Belgium, Denmark, France, Greece, Italy,

Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, the

United Kingdom, and the United States. The outcome variable is the real per

capita GDP at Purchasing Power Parity (PPP) measured in 2002 USD. The pre-

intervention covariates include: per capita GDP, inflation rate, industry share of

value added, investment rate, schooling, and a measure of trade openness.

Applying iSCM requires the following steps:

1. After constructing Synthetic West Germany using the entire donor pool (in-

cluding Austria), estimate the bias treatment effect θ̂t and the weight as-

signed to Austria ŵA.

2. After constructing Synthetic Austria including West Germany in the donor

pool, estimate the bias spillover effect γ̂t and the weight assigned to West

Germany l̂WG.

3. Estimate the unbiased treatment effect on West Germany as θ̂t+ŵAγ̂t
1−ŵA l̂WG

.

4. Estimate the unbiased spillover effect on Austria as γ̂t+l̂WGθ̂t
1−ŵA l̂WG

.

Step 1 allows us also to judge whether West Germany gives enough weight to

Austria to induce a non-negligible bias. Similarly, after step 2 we can tell whether

Austria gives enough weight to the West Germany to have a large bias in the

estimation of the spillover effect. Table 1 shows the estimated weights of synthetic

West Germany in the second column, synthetic Austria in the third column, and
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synthetic West Germany excluding Austria from the donor pool in the fourth.

We can observe that West Germany gives Austria the highest weight (42%) and

that Austria gives also the the highest weight (33%) to West Germany. When we

exclude Austria from the donor pool, West Germany becomes a weighted average of

the USA, Netherlands, Japan, and Switzerland; however, the pretreament fit is way

worse, as shown in Figures 1 and 2 below. After steps 1 and 2 are implemented, we

can check whether Assumption 3, i.e., the non-singularity of the matrix Ω, holds.

Ω in this example is given by

Ω =

(
1 −0.42

−0.33 1

)

As det(Ω) = 0.86, Assumption 3 holds in this application and we can now proceed

to steps 3 and 4. Specifically, we need to find det(ΩWG,t) and det(ΩA,t) for each

period, where ΩWG,t and ΩA,t are matrices obtained by replacing in Ω the vector

of estimated effects βt in the first column for West Germany and in the second

column for Austria, namely:

ΩWG,t =

(
θ̂t −0.42

γ̂t 1

)
and ΩA,t =

(
1 θ̂t

−0.33 γ̂t

)
.

The treatment and spillover effects for each period are given by
det(ΩWG,t)

det(Ω)
and

det(ΩA,t)

det(Ω)
, respectively. The results are shown in Figure 1, where we can see the per

capita GDP trajectory of West Germany, its synthetic counterpart in the standard

synthetic control version (including spillover effect), in the “restricted” synthetic

control version (excluding Austria from the donor pool), and in the inclusive syn-

thetic control version (not including the spillover effect), in the 1960–2003 period.

We can see that the standard and inclusive synthetic version of West Germany in

the pre-reunification period reproduce almost perfectly West Germany per capita

GDP, while exluding Austria substantially deteriorates the pre-reunification fit.

This confirms the importance of including Austria in the donor pool. Abadie

et al. (2015) find a negative effect of the reunification on West Germany per capita

GDP that was reduced by approximately 7.67% per year on average with respect

to the 1990 baseline level. Our iSCM results are not very different from the one of
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Abadie et al. (2015) and confirm their expectation about the potential direction of

the bias, which implies an even more negative effect of reunification. The difference

between the trends in per capita GDP between iSCM and SCM is generally small,

as better shown in Figure 2 and in Table 2. Our iSCM estimate implies a negative

effect that is up to 1.50% larger than the one estimated with a standard SCM.

Figure 3 and Table 3 show the gap between iSCM Austria and Austria and leads to

similar conclusions. Austria’s per capita GDP in 1997-1998 and 2001 is about 700

USD per year less than it would have been in the absence of reunification. Finally,

Figure 4 shows the ratios between the RMSPEs in the post- and pre-reunification

of West Germany and the donor pool. We can observe that the value for West

Germany is very high and the largest compared to the other countries in the donor

pool.

Table 1: Synthetic control weights for West Germany and Austria

Synthetic Synthetic Restricted Synthetic
Country West Germany Austria West Germany

Weights Weights Weights

West Germany - 0.33 -
Austria 0.42 - -
Australia 0 0 0
Belgium 0 0.12 0
Denmark 0 0 0
France 0 0 0
Greece 0 0 0
Italy 0 0 0
Japan 0.16 0.21 0.22
Netherlands 0.09 0.31 0.30
New Zealand 0 0 0
Norway 0 0.03 0
Portugal 0 0 0
Spain 0 0 0
Switzerland 0.11 0 0.09
UK 0 0 0
USA 0.22 0 0.39
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Figure 1: Trends in per capita GDP: West Germany, synthetic West Germany,
inclusive synthetic West Germany, and restricted synthetic West Germany
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Figure 2: Estimated effects on West Germany
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Figure 3: Estimated effects on Austria
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Table 2: Treatment Effects on West Germany

θSCMt θiSCMt θiSCMt − θSCMt θresSCMt

1990 7.58 -83.21 -90.79 -490.71
1991 268.31 229.89 -38.42 -113.50
1992 87.90 111.03 23.13 -291.56
1993 -642.23 -707.14 -64.91 -1187.41
1994 -1064.13 -1112.46 -48.33 -1656.09
1995 -1216.99 -1293.31 -76.32 -1860.16
1996 -1473.30 -1524.64 -51.34 -2169.88
1997 -1960.38 -2249.24 -288.86 -2970.69
1998 -2020.74 -2232.20 -211.47 -3104.82
1999 -2181.48 -2177.89 3.59 -3194.84
2000 -2645.30 -2638.79 6.51 -3595.01
2001 -2815.12 -3113.22 -298.10 -4109.12
2002 -2951.69 -3155.55 -203.86 -4116.73
2003 -3372.36 -3529.42 -157.06 -4559.62

Table 3: Treatment Effects on Austria

γSCMt γiSCMt γiSCMt − γSCMt

1990 -188.12 -215.83 -27.71
1991 -167.88 -91.33 76.55
1992 18.01 54.98 36.97
1993 81.18 -154.29 -235.47
1994 255.56 -114.88 -370.43
1995 249.23 -181.43 -430.66
1996 385.64 -122.04 -507.69
1997 62.32 -686.65 -748.97
1998 240.62 -502.68 -743.29
1999 733.73 8.52 -725.21
2000 894.16 15.48 -878.68
2001 328.05 -708.61 -1036.66
2002 566.15 -484.60 -1050.76
2003 801.89 -373.36 -1175.25
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6 Conclusion

We introduce iSCM, a modification of the standard SCM, that allows including

units potentially affected by an intervention in the donor pool. Our method is

useful in applications where it is either important to include other treated units in

the donor pool or where some of units are affected indirectly by the intervention

(spillover effects). iSCM requires that the assumptions of the standard SCM would

be valid in the absence of post-intervention effects as well as the presence of at

least one “pure” control unit in the donor pool. A big advantage of iSCM is that it

can be easily implemented using the standard synthetic control algorithm or any

new estimation method available in the literature. Finally, we illustrate how to

use iSCM by estimating the impact of Germany Reunification on GDP per capita,

confirming Abadie et al. (2015) expectations about the potential direction of the

spillover effect from West Germany to Austria. We find small negative spillover

effects to Austria, which would imply an even more negative treatment effect on

West Germany.

Appendix

A Non-singularity

Let ωij a generic element of Ω. We have that

1. ωii = 1, ∀i = 1, . . . ,m (the main diagonal elements are all one by definition).

2. 0 ≤ |ωij| ≤ 1 (the non-diagonal elements include estimated weights).

3. 0 ≤
∑

i ωij ≤ 1. (the sum of the weights in a row cannot be bigger than

one).

4. If |ωij| = 1, j 6= i , then all the non-diagonal elements on the same row are

zero (if one of the weights equals one, all of the others must be zero).

As Ω is a square matrix, it is non-singular if, and only if, its determinant is

different from zero, which can only be the case if none of the three conditions

below are satisfied:
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1. Either one of its rows or one of its columns only contains zeros.

2. Either two of its rows or two of its columns are proportional to each other.

3. Either one of its rows or one of its columns is a linear combination of at least

two others.

The first and the second conditions are immediately ruled out by the fact

that Ω always contains ones on its main diagonal and all its other elements are

smaller than 1 in absolute value. The third conditions can only occur if either

ωij = ωji = −1, j 6= i or if in every single row we have
∑

i ωij = 0.
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