
Love in Extrema Ratio

Paolo Pani‡, Andrea Maselli§
Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1,
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Abstract. The tidal deformability of a self-gravitating object leaves an imprint on

the gravitational-wave signal of an inspiral which is paramount to measure the internal

structure of the binary components. We unveil here a surprisingly unnoticed effect:

in the extreme-mass ratio limit the tidal Love number of the central object (i.e. the

quadrupole moment induced by the tidal field of its companion) affects the gravitational

waveform at the leading order in the mass ratio. This effect acts as a magnifying glass

for the tidal deformability of supermassive objects but was so far neglected, probably

because the tidal Love numbers of a black hole (the most natural candidate for a

compact supermassive object) are identically zero. We argue that extreme-mass ratio

inspirals detectable by the future LISA mission might place constraints on the tidal

Love numbers of the central object which are roughly 8 orders of magnitude more

stringent than current ones on neutron stars, potentially probing all models of black

hole mimickers proposed so far.
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“Love all, trust a few, do wrong to none.”

William Shakespeare, All’s Well That Ends Well

Gravitational-wave (GW) measurements of the tidal deformability of neutron

stars [1] – through the so-called tidal Love numbers (TLNs) [2] – provide one of the

most accurate tools to date to probe the microphysics of the neutron-star interior [3, 4].

It has been recently realized that tidal effects in coalescing binaries can also be used to

distinguish black holes (BHs) from other ultracompact objects [5, 6, 7]. A remarkable

result in classical General Relativity is that – owing to the one-way nature of the event

horizon – the TLNs of a BH are identically zero [8, 9, 10, 11, 12, 13], whereas those

of an ultracompact horizonless object are small but finite [14, 15, 6]. Beside posing an

intriguing problem of “naturalness” in Einstein’s theory [15], this precise cancellation

provides also an opportunity to test the BH paradigm: measuring a non-vanishing TLN

with measurements errors small enough to exclude the null case would provide a smoking

gun for the existence of new species of ultracompact massive objects.

The impact of the tidal deformability on the GW signal from a binary coalescence

has been so far studied mostly in the case of comparable masses. This choice is well

motivated for neutron star binaries, but it might be too restrictive in the context of tests

of the nature of dark compact objects, especially because future GW observations are

expected to unveil binaries with mass ratios departing significantly from unity. With this

motivation in mind, here we explore the following question: how much does the tidal

deformability affect an extreme-mass ratio inspiral (EMRI) when the massive central

object has non-vanishing TLN?

Let us consider a non-spinning compact binary, with masses mi (i = 1, 2), total

mass m = m1 +m2, and mass ratio q = m1/m2 ≥ 1. At leading post-Newtonian order,

the correction to the instantaneous GW phase due to the tidal deformability of the

binary components reads [1, 2] (we use G = c = 1 units)

φtidal(f) = −117

8

(1 + q)2

q

Λ

m5
v5 , (1)

where v = (πmf)1/3 is the orbital velocity, f is the GW frequency,

Λ =
1

26
((1 + 12/q)λ1 + (1 + 12q)λ2) , (2)

is the weighted tidal deformability, whereas λi = 2
3
m5
i ki and ki are the tidal deformability

and the (dimensionless) TLN of the i−th object, respectively. These can be defined in

terms of the quadrupole moment Q
(i)
ab of the i-th object induced by the tidal field G

(j)
ab

produced by its companion, namely

Q
(i)
ab = λiG

(j)
ab ∼ λi

mj

r3
, i 6= j (3)

where r ∼ mv−2 is the orbital distance. For a typical neutron star, ki ≈ 1000 and

Λ/m5
i ≈ 600, the exact values depend on the equation of state. As a rule of thumb, the

more compact an object, the smaller its TLN, so much so that a BH has kBH = 0.
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It is enlightening to expand Eq. 1 in the extreme mass-ratio limit. Let us first

consider the standard case in which the central object is a BH, so that k1 = 0. In such

case the first nonvanishing contribution is

φtidal(f) ∼ −9

2
k2v

5 1

q3
+ ... , q � 1 (k1 = 0) (4)

which is proportional to the TLN of the small companion, and is suppressed by a q−3

factor. Therefore, for a typical EMRI with q ≈ 106, the above term is negligibly small.

On the other hand, when k1 6= 0, the tidal phase grows linearly in q,

φtidal(f) ∼ −3

8
k1v

5q + ... , q � 1 (5)

and is proportional to the TLN of the central object. It is remarkable that in this

case the tidal phase enters at the leading order in the mass ratio just like the ordinary

radiation-reaction term,

φN(f) ∼ 3

128
v−5q + ... , q � 1 (6)

although the latter dominates at large binary separation, owing to the different scaling

with the orbital velocity. The tidal phase contribution in Eq. 5 has the same scaling

with q as the spin-induced quadrupolar deformations [16] and, as long as k1 & 1/q, it is

even larger that the first-order correction due to the conservative part of the self force

(i.e., the self-interaction of a test-particle with its own gravitational field [17]), the latter

being suppressed by a factor 1/q relative to Eq. 6.

The above intriguing result case be explained as follows. The GW phase can be

obtained by solving for

d2φ(f)

df 2
=

2π

Ė

dE

df
, (7)

where E is the binding energy of the binary and Ė is the energy flux emitted in GWs.

The TLNs enter both in conservative piece, E(f), and in the dissipative piece, Ė. To

the leading-order in post-Newtonian theory [18]

E(f) = − m1

2(1 + q)
v2

(
1− εc

6q(k1q
3 + k2)

(1 + q)5
v10

)
, (8)

Ė(f) = − 32

5

q2

(1 + q)4
v10

(
1 + εd

4 (q4(3 + q)k1 + (1 + 3q)k2)

(1 + q)5
v10

)
, (9)

where εc and εd are just book-keeping parameters for the correction to the conservative

and dissipative term, respectively. Plugging this into Eq. 7 and solving at the leading

order in the corrections, one finds

φ(f) = φN(f)
(
1− 16εdk1v

10
)
, q � 1 (10)

whereas the correction coming from the conservative term is subleading. It is

straightforward to check that the above equation yields Eq. 5. Thus, the enhancement of

the tidal effect in the waveform is due to the contribution of the TLNs to the energy flux.

When k1 6= 0, this term is not suppressed by any power of 1/q relative to the leading-

order term, as evident from Eq. 9. In turn, this result can be obtained straightforwardly



Love in Extrema Ratio 4

by using Eq. 3 and the quadrupole formula, Ė ∼ ∂3tQ
tot
ij ∂

3
tQ

tot
ij , where Qtot

ij is the total

quadrupole of the binary.

Let us now discuss the phenomenological implications of this enhancement. We

consider an EMRI up to the innermost stable circular orbit (ISCO) of the central object.

The total GW phase accumulated between fmin and fmax ∼ fISCO = 1
6π
√
6m1
� fmin due

to the tidal deformability is simply

φtot
tidal = − k1

96
√

6
q ≈ −0.004k1q . (11)

If for instance q = 107, by requiring a detectability threshold φtot
tidal > 1 rad, we find that

the effect might be measurable even for TLNs as small as k1 ≈ 2× 10−5.

This bound is quite impressive at least for two reasons. First of all, it suggests

that the future LISA mission [19], which is expected to detect few to thousands

EMRIs per year [20], could set constraints on the TLN of the central object which are

approximately 8 orders of magnitude smaller than LIGO’s current measurements on the

tidal deformability of a neutron star [3, 4]. Furthermore, in the most extreme models of

horizonless compact objects [6] – some of which predicting quantum corrections at the

horizon scale – the TLNs are of the order k1 ≈ 10−3, well above the bound estimated

in Eq. 11. Finally, it is easy to show that the relative measurement errors on k1 scale

as q−1/2 in the high signal-to-noise ratio limit. Thus, EMRIs detectable by LISA might

provide the ultimate tests for exotic compact objects.

Besides the aforementioned bounds on BH mimickers, the enhancement of the tidal

phase in an EMRI might be relevant if primordial BHs with masses m2 ≈ 10−4M� exist

in nature. These objects might form an EMRI around a neutron star and pass through

LIGO’s band in less than a year before plunge. In such case the tidal phase would

provide an unparalleled way to constrain the neutron-star equation of state through a

measurement of the TLN at the level given by Eq. 11. Unfortunately, the event rates for

neutron-star capture of primordial BHs seem extremely small in this mass range [21].

Our derivation is based on a low-velocity expansion of the field equations, and

the post-Newtonian series converges poorly in the large-mass ratio limit, at least in

its dissipative sector [22]. Therefore, Eq. 10 cannot be used for a rigorous parameter

estimation, but it should nonetheless provide the correct order of magnitude of the

effect of the tidal deformability of the central object. We conclude that it would be very

important to incorporate the tidal deformability terms consistently in an extreme-mass

ratio expansion of Einstein’s field equation for binary systems beyond post-Newtonian

theory.

All in all, Love might be at play even in extreme encounters.
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