

Educational plan of Joint Postgraduate International Master in "CO2 Geological Storage"

(The programme below covers all the topic of the course. Module 5-8 will be held at Zagreb University)

Module	description	teacher	CFU	Type of teaching activity (lessons, exercises, etc.)	Type of exames) See below
Module 0 online	Introduction to geology	Bruno Saftic S. Bigi	3	lesson	
Module 1 - Introduction to CO2 geological storage - Social aspect	This is an introductory module about all the topic that will be considered in the master and deals with all the aspect of the CO_2 storage, the role of GCS and its potentiality to solve the climate change problems, the basic knowledge about the social impact of this technology.	Prof. S. Bigi Prof. S. Vercelli	3	Lectures	
Module 2 - CO2 Capture and transport. Present day industrial utilization of CO2	 The module covers the other technologies that are linked to the geological storage of CO₂, ie transport and capture. The different industrial capture processes will be illustrated, assessing their advantages and disadvantages, as well as the best field of application (cements, hydrocarbons, etc.). Some examples of processes currently used in industry will be illustrated. The expected learning outcomes can be summarized as: Define the different process to capture co2 from Industrial waste Distinguish the advantages and disadvantages of each of these technologies Know the present day distribution of these technologies at global level. 	Dott. A. Pettinau (Sotacarbo)	3	Lectures	

		D C C D' '	2	T /
Module 3 -	The module introduces to the basis of seismic interpretation,	Prof. S. Bigi	3	Lectures,
Introduction to	focused on the site characterization and potential evaluation	Prof. A. Conti		Practical exercises
exploration	of reservoir suitable for CO2 storage. The module presents			
geophysics	the main aspect of acquisition, elaboration and interpretation			
	of seismic data, and, during the exercise, the interpretation of			
	data using dedicated software for the reconstruction of the			
	geological model in 2 and 3D.			
	The expected learning outcomes can be summarized as:			
	• Define different type of traps based on seismic			
	interpretation			
	• Provide basic knowledge about acquisition and processing			
	of seismic reflection data,			
	• Develop appropriate skills to support data interpretation;			
	• Acquire methodologies for the development 3D geological			
	models.			
Module 4 - CO ₂	The module will give an overview of the types of storage	Prof. S. E.	3	Lectures
geological storage	reservoirs from a geochemical-mineralogical point of view,	Beaubien		
options - geology	the related trapping mechanisms and their potential CO ₂			
and geochemistry	storage volumes. It will discuss the physical properties of			
	CO2 under storage conditions which influence storage, and it			
	will describe the geochemical processes that influence long-			
	term isolation of CO2 in the reservoir.			
	The expected learning outcomes can be summarized as			
	follow:			
	• Understanding of the basic concepts of CO2 storage			
	reservoir types, storage mechanisms, and CO2 properties at			
	storage depth.			
	• Understanding of the geochemical processes that			
	control gas-water-rock interaction, as related to mobility and			
	isolation.			
	130141011.	1		

	 Develop appropriate skills to support data interpretation; Acquire methodologies to understand geochemical models. 				
Module 5 - Introduction to reservoir engineering	 The module will give the students basic knowledge of multiphase flow mechanisms and parameters that can help in characterization of flow in porous rock. There will be explained the main principles of PVT description of fluids (brine, gas, oil), with emphasis on phase behaviour related to systems with large CO₂ content. Attention will be put on calculations related to injection (both miscible and immiscible) and on main principles of reservoir data surveillance. The expected learning outcomes are: Choose the adequate equation to calculate flow permeability based on laboratory or well inflow data. Implement published correlations to put together all required parameters for volumetric calculations in the underground. Predict pressure vs. recovery changes by material balance (MBE). Prepare the dataset for fluid injection model. Assess if there are issues regarding injectivity and fracturing pressure Understand how Buckley-Leverett theory can be implemented to various cases of fluid injection. 	Prof. D. Vulin (Zagheb University)	3	Lectures, computer exercises	

	 Analyse production data and predict future recoveries. Implement the production decline curve analysis (DCA) and PVT data to predict CO2 emissions. Demonstrate an integrated set of analyses for recovery, injection, and storage of fluids in a formation and justify interpreted measurement results. 				
Module 6 - Storage site selection and capacity estimates	 The module should introduce different approach when estimating CO₂ storage potential during basin assessment and CO₂ storage capacity of a certain storage object following site screening and based on site characterization. Course focuses on explanation of different issues arising when assessing potential for CO₂ storage or storage capacity of different types of storage objects (deep saline aquifers, depleted hydrocarbon reservoirs, coal seams, salt caverns). Also, procedures of detailed characterization of reservoir rocks and cap rocks are described. The expected learning outcomes can be summarized as follow: Define different levels of assessment of CO₂ storage potential of a certain area Define the deep saline aquifer and elaborate methods to estimate its properties important from the aspect of geological storage of CO₂ Elaborate factors influencing possibility of geological storage in hydrocarbon reservoirs (type of trap, reservoir properties, pressure properties, seal efficiency, saturation) Explain influence of coal structure and adsorption trapping on geological storage of CO₂ in coal seams Explain the specificities of CO₂ geological storage in salt caverns 	Bruno Saftic (Zagheb University)	3	lectures	

	• Define criteria for assessing basin suitability for CO2 geological storage and to explain procedure of prospective storage site screening				
	 Explain how different reservoir rock characteristics influence the rock's potential to store CO₂ and to describe how to assess them (lithology, heterogeneity, porosity, permeability) Explain how different characteristics of cap-rocks influence the reservoir's potential to store CO₂ and to describe how to 				
Module 7 - Numerical modelling of CO2 storage	 assess them (lithology and integrity of a cap-rocks). This module introduces the students to numerical modelling, including an outline of how models are constructed followed by a focus on flow simulation. The course reinforces theory learnt in the module 5- Reservoir Engineering, which is essential to ensure that students can learn how to set up simulations and how to interpret results. The basic theory of flow simulation is presented, followed by a number of challenges (such as upscaling and dealing with uncertainty in reservoir properties). Finally, a review of more advanced processes, such as coupled modelling is presented. Expected learning outcomes are: Explain how numerical modelling can be used to forecast CO2 storage capacity and outline the processes which can be simulated using numerical modelling of CO2 storage. Describe the types of data required for building a static model, and outline the workflow for static modelling of a storage formation. 	Gillian Pickup Heriot Watt University Edinburgh, Scotland.	3	lectures computer exercises	

			<u>.</u>		
	• Review the factors which determine the behaviour of CO2				
	in a storage formation – density, viscosity, solubility, relative				
	permeability and capillary pressure.				
	• Outline steps required to set up a simulation of CO2				
	injection and storage.				
	• Derive the equations for flow simulation in a 1D, single-				
	phase compressible system and explain how the equations				
	may be extended to two-phase flow. Describe methods of				
	solving the flow equations.				
	• Review the procedures of history-matching and				
	quantification of uncertainty.				
	• Discuss the issues involved in choosing a grid size (grid				
	refinement) and in upscaling data for use in a grid cell.				
	• Outline some more advanced modelling techniques – e.g.				
	coupled flow simulation.				
	• Set up and run simple simulations of CO2 injection to				
	investigate migration, pressure build-up, dissolution and				
	pore-scale trapping.				
	• Perform simulations to study the effects of geological				
	structure and heterogeneity on CO2 storage.				
Module 8 - EOR	The module will give the students insight to the mechanisms	D. VULIN	3	lectures computer	
with CO2	and evaluation methods for Enhanced Oil Recovery (EOR)	(Zagheb		exercises	
	and for enhancing the processes related to exploitation of	University)			
	underground resources in general. The emphasis will be put				
	on processes that involve CO ₂ injection or CO ₂ emissions				
	mitigation. Each student should come up with one project				
	related to CO2 injection into underground.				

	Learning outcomes are:				
	• Perform immiscible injection process analysis by				
	implementing Buckley-Leverett equation, as the part of EOR				
	process				
	• List the most used EOR methods and warn about				
	limitations and advantages of each method.				
	• Understand the data upscaling process to prepare dataset				
	for EOR evaluation				
	• Perform feasibility analysis of a given EOR case.				
	• Describe the PVT tests required for CO2-EOR. Describe				
	the special PVT phase diagram for ternary system CO2-				
	H2O-NaCl				
	• Predict minimum miscibility pressure (CO2 and oil) and				
	solubility (CO2 and brine)				
	• Match the given laboratory data with PVT simulation				
	software, and prepare (export) matched equation of state for				
	further analysis (simulation)				
	• Perform simulation test to determine dispersion model and				
	performance of CO2 injection to the underground				
Module 9 - Storage	The module will introduce risk assessment for CO ₂	Niels Poulsen	2	lectures	
Risks	geological storage to prevent any CO ₂ leakage. The course	GEUS,			
	focuses on risk assessment is an iterative process that must be made in each phase of a storage project, from selection,	Denmark			
	characterization and baseline study to site closure, post				
	closure and final transfer of responsibility from operator to				
	state. This assessment is the basis for designing a good				
	monitoring plan and an effective plan for prevention and				
	correction in case of leakage. The risk assessment and				
	monitoring plan are updated when necessary, in particular in				

	 case of any abnormal behaviour or at closure and post closure phases. Attention will also be on the obligation to assess the risks and remediations associated with the CCS technology. The request learning outcomes are: Define and introduction to risk research Hazard identification and risk characterisation Potential pathways for CO2 leakage Environmental impacts Risk assessment methodologies Risk mitigation and remediation measures 				
Module 10 - Geophysical monitoring	 The module introduces the principles of the main geophysical techniques applied to CO₂ storage. Course focuses on explanation of electrical, electromagnetic and seismic geophysical methods for assessing potential and limits of geological formations for CO₂ storage and their storage capacity, and for monitoring the CO₂ storage process. The expected learning outcomes can be summarized as follow: Explain the theoretical principles of geoelectrical and seismic methods applied to CO₂ storage; Explain potential and limits of the geophysical reconstruction for CO₂ storage, in terms of resolution, depth of investigation and diagnostic capability; Explain the inversion process and its application for characterization and monitoring of CO₂ geological storage; Select the piecewise geophysical method to be applied for the particular case study related to CO₂ storage; Design a geophysical campaign and define properly field acquisition parameters; 	Prof. M. De Donna	5	Lectures, exercise, fieldwork	

Γ			1		
	• Process correctly geophysical data acquired in field by using specific software;				
	• Link geophysical to petro-physical parameters of rocks and				
	soils (lithology, heterogeneity, porosity, permeability);				
	• Define criteria for monitoring the CO ₂ storage process.				
Module 11 -	This module will introduce a wide range of regional and	Prof. S.	3	Lectures, exercise,	
Geochemical	detailed geochemical techniques used to monitor CCS sites	Beaubien	-	fieldwork	
monitoring	to ensure carbon credit auditing, to find and quantify	Deadoleii			
8	potential leaks, and to determine effectiveness of any				
	remediation action taken. Lessons will describe the technical				
	background and operation of each method, their advantages				
	and disadvantages in terms of sensitivity, scale and				
	resolution, and costs. Field exercises at the end of this				
	module will give the students hands-on experience with a				
	sub-set of the described methods.				
	The expected learning outcomes can be summarized as				
	follow:				
	· Knowledge of what geochemical monitoring methods are				
	available and how they work				
	• Ability to choose the most appropriate methods based on a				
	given site's characteristics and the specific monitoring goals				
	of the project				
	• Develop appropriate skills to support data interpretation.				
Module 12 -	The module is an introductory course to drilling and wells.	To be defined	2	Lectures	
Drilling and wells	The topics covered will include drilling equipment, well			exercises	
	control, well-testing, completions, and permeability				
	enhancement. The module will be a mixture of descriptive				
	material and also practical skills in conducting simple design				
	calculations.				
	The expected learning outcomes can be summarized as				
	follow:				

Pag 9

	 Describe basic drilling equipment, particularly drilling-rig components and mud circuit. Explain use of various drilling mud additives. Conduct basic design calculations to determine mud weights and casings needed for a given well based on simple models for defining fracture and formation pressure, swab and surge allowances, and circulation allowance. Describe nature of kicks and basic principles of kick control. Conduct basic calculations for determination of kill mud weight. Explain the principles of core drilling. Describe some applications of horizontal wells. Explain basic principles of well-testing. Describe the process of completion and different completion types. Describe methods of permeability enhancement. 				
Module 13 - Economic and Regulatory aspects of CCS technology	The course provides an insight into the very basics of geological, regulatory, economic, and social aspects of the carbon capture and storage technology (CCS). CCS is considered as an important tool in decreasing global carbon dioxide emissions, thus capable of reducing the humankind's impact on the climate change. The success individual CCS projects is derived from suitable geological conditions, favourable regulatory framework that would contribute to their economic viability, and public support on the nation as well as local level.	Prof. Alla Shogenova Tallinn University, Estonia	1	Lectures	

		1			1
Module 14 - CCUS	The module will introduce different utilisation options of	Alla	3	Lectures	
and cross-cutting	captured CO ₂ , including CO ₂ use for enhanced recovery of	Shogenova,			
issues	resources (geothermal energy, coal-bed methane, shale gas,	Tallinn			
	water), CO ₂ mineral carbonation (using natural rocks and	University,			
	waste materials) and CO ₂ use for hydrocarbon productions.	Estonia			
	The concept of Bio-CCS and negative emissions will be				
	introduced, including direct and indirect GHG emissions,				
	Bio-CCS technologies, their challenges and advantages and				
	operating Bio-CCS projects. The module will also deal with:				
	CO2 mineral carbonation; Comparison of CO2 Geological				
	storage and mineral carbonation technologies; CO2 Storage				
	in basalts; synergy of CGS with geothermal energy recovery;				
	energy storage and water recovery; advantages of synergy of				
	CGS with renewable energy recovery; the role of cement				
	industry in producing CO2 emissions. Expected learning				
	outcomes:				
	• Awareness about different options of CO2 use				
	• Explain bio-CCS technology, negative emissions, direct				
	and indirect emissions, advantages and challenges				
	Explain mineral carbonation options routes				
	• Explain chemical composition of rocks and determine the				
	rock samples suitable for CO2 mineral carbonation,				
	• Describe processes, parameters and advantages of in-situ				
	mineral carbonation in basalts				
	• Define technological options for CO2 use for enhanced				
	recovery of geothermal energy.				

	Explain the capture methods most of all suitable to capture CO2 in the cement industry		
traineership 1	group work (5 groups of 2 students) This week will be organized with active student work, which will be divided into groups and will have to conduct a small research independently. The starting database will be the same for all groups. The result will be a geological interpretation and the evaluation of the storage potential of the proposed area.	5	
traineership 2	Total assessment and thesis work and side assignment for the project work. The students will be evaluated based on the scores obtained during the course and will be assigned the side for the internship according to the score, keeping in mind the interests of the student and the activities offered by the different institutions.		Project work, with final report and presentation to be discussed with the scientific commission / council.
Final exams	The final exam consists of a presentation and defence of the result obtained from the activities done during traineeship 2.		
Other activities			Not provided