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Roberto DE MARCHIS∗, Antonio GRANDE∗, Stefano PATRI’∗, Daniela SAITTA∗

An Application of Jordan Canonical Form to the

Proof of Cayley-Hamilton Theorem

Abstract. The statement of Cayley-Hamilton theorem is that every square matrix satisfies its own characteristic equation.

Cayley-Hamilton theorem holds both in a vector space over a field and in a module over a commutative ring.

The general proof of Cayley-Hamilton theorem is based on the concepts of minimal polynomial and adjoint matrix of a linear

map (for the details of the general proof, see Lang (2002), page 561, or Liesen and Mehrmann (2011), page 96, or Shurman).

In the case of a diagonalizable matrix A over an algebraically closed field the proof becomes trivial because one can consider

the diagonal form D of A and the relation for the k-th power matrix A
k
= CD

k
C

−1, where C is the matrix for the basis change

to the basis of eigenvectors of A (for the details, see Sernesi (2000) or Lang (1987)).

The aim of this paper is to extend the simple proof for diagonalizable matrices to the case of non-diagonalizable ones over a

generic field. First, we obtain a proof for non-diagonalizable matrices over an algebraically closed field and then, by virtue of the

properties of field extensions, we show that this proof also holds in the case of a generic field.

Keywords: Jordan Canonical Form, Power of a Jordan Matrix

1. Short overview on spectral theory of matrices

The proof of Cayley-Hamilton theorem for non-diagonalizable matrices, as an extension of the diagonalizable

case, is based on Jordan canonical form and the crucial key to this proof is in particular the lemma (1.1) about the

structure of the N -th power matrix of a Jordan block. By virtue of the proof presented in this paper we shall have a

similar proof of Cayley-Hamilton theorem in both cases of diagonalizable and non-diagonalizable matrix, and in this

way we have then obtained a kind of unification of both cases over a field.

Untill the section (2.1.1), we consider an n dimensional vector space VK̄ over an algebraically closed field K̄ and

a square matrix Ā of size n× n whose elements belong to K̄.

In order to begin, we recall some simple results about the spectral theory of matrices in linear algebra. For more

details, see Lang (1987).

1.1 Block diagonal matrices

A square matrix Ā is called a block diagonal matrix if it has the form

Ā =




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak




where every block Ai is a square matrix of any size and every 0 represents a square zero matrix of such an order that

the whole matrix Ā is complete.
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For our aim, the main property of a block diagonal matrix Ā is the expression of its N -th power matrix

�
Ā
�N

=




(A1)
N 0 0 · · · 0

0 (A2)
N 0 · · · 0

0 0 (A3)
N · · · 0

...
...

...
. . .

...

0 0 0 · · · (Ak)
N




.

A block diagonal matrix in which every block Ai is of order 1, is called a diagonal matrix.

1.2 Diagonalizable matrices

We recall that a square matrix Ā of size n× n is called diagonalizable if there exists a basis for VK̄ constitued by

all eigenvectors of Ā.

If a square matrix Ā is diagonalizable, we denote by C the matrix of the basis change to the basis of eigenvectors

to obtain the diagonal matrix

D = C−1ĀC =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λk




where λ1, λ2, . . . , λk denote the eigenvalues which could not be all distinct.

By inverting the relation D = C−1ĀC, we get

Ā = CDC−1 (1.1)

from which the N -th power matrix

�
Ā
�N

=

N times� �� �
(CDC−1)(CDC−1)(CDC−1) · · · (CDC−1) = CDNC−1

follows, where DN is the diagonal matrix

DN =




(λ1)
N 0 0 · · · 0

0 (λ2)
N 0 · · · 0

0 0 (λ3)
N · · · 0

...
...

...
. . .

...

0 0 0 · · · (λk)
N




.

1.3 Non-diagonalizable matrices

A square non-diagonalizable matrix Ā of size n× n is a matrix whose eigenvectors do not span VK̄ .

We recall that a necessary and sufficient condition for a matrix Ā to be non-diagonalizable is that at least one

of its eigenvalues has algebraic multiplicity greater than the geometric dimension (geometric multiplicity) of the

corresponding eigenspace.

In this case we can always find a basis with respect to which the matrix Ā is represented by Jordan canonical form

J = C−1ĀC =




J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jk
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which is a block diagonal matrix. In this case we have

Ā = CJC−1 . (1.2)

If for a fixed eigenvalue λi, the condition ma = mg = m holds, where ma and mg denote the algebraic and the

geometric multiplicity of λi, respectively, then the corresponding block Ji is a diagonal matrix of order m in which

all the diagonal elements are λi and the off-diagonal ones are zero.

If for a fixed eigenvalue λi, the condition ma = m > mg holds, then the corresponding block Ji is a matrix of

order m having the form

Ji =




λi g1 0 0 · · · 0
0 λi g2 0 · · · 0
0 0 λi g3 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · λi gr
0 0 0 0 · · · λi




(1.3)

where the elements g1, g2, . . . , gr can only be 0 or 1.

It is clear that Jordan canonical form of every non-diagonalizable matrix has at least a block of the form (1.3).

If some gj is equal to zero, then the block Ji is decomposable into sub-blocks: if, as an example but without loss

of generality, we consider a case of order 5 with g3 = 0, we have then the block Ji of the form

Ji =




λi 1 0 0 0
0 λi 1 0 0
0 0 λi 0 0
0 0 0 λi 1
0 0 0 0 λi




,

that is

Ji =

�
Ji1 0
0 Ji2

�
,

where

Ji1 =




λi 1 0
0 λi 1
0 0 λi


 e Ji2 =

�
λi 1
0 λi

�
.

In this case we would have the N -th power matrix

(Ji)
N =

�
(Ji1)

N 0
0 (Ji2)

N

�

and it is then clear that we can always consider, without loss of generality, a block Ji as given in (1.3) where every gj
is equal to 1.

In the following lemma, we recall the well-known recursive formula for the N -th power of a Jordan block which

will be crucial for the proof of the theorem in the non-diagonalizable case.

Lemma 1.1 If in the block Ji as given in (1.3) the equality gj = 1 holds for all j = 1, 2, . . . , r, then we have

(Ji)
N =




(λi)
N a1 a2 a3 · · · am−1

0 (λi)
N a1 a2 · · · am−2

0 0 (λi)
N a1 · · · am−3

...
...

...
. . .

...
...

0 0 0 · · · (λi)
N a1

0 0 0 0 · · · (λi)
N




(1.4)

where the elements ah, for h = 1, 2, 3, . . . ,m− 1, are given by

ah =
1

h!

dh

dxh

�
xN

�����
x=λ

=





�
N

h

�
(λi)

N−h, if h ≤ N

0 , if h > N .
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Proof 1.2 By induction we have that for N = 1 the matrix in (1.4) becomes the matrix in (1.3). Now, if we suppose

the equality (1.4) true for N , it follows for N + 1

(Ji)
N+1 =




(λi)
N+1 b1 b2 b3 · · · bm−1

0 (λi)
N+1 b1 b2 · · · bm−2

0 0 (λi)
N+1 b1 · · · bm−3

...
...

...
. . .

...
...

0 0 0 · · · (λi)
N+1 b1

0 0 0 0 · · · (λi)
N+1




where the elements bj , for j = 1, 2, 3, . . . ,m− 1, are given by

bj = aj−1 + λiaj =





�
N + 1

j

�
(λi)

(N+1)−j , if j ≤ N + 1

0 , if j > N + 1 .

Then, since the equality (1.4) is equally true for N +1, we conclude that the (1.4) holds for every N and the proof

is now complete.

2. Cayley-Hamilton theorem

If we denote by 0̃ the zero matrix and by PĀ(x) the characteristic polynomial corresponding to a square matrix Ā

of size n× n

PĀ(x) = (−1)nxn + bn−1x
n−1 + bn−2x

n−2 + · · ·+ b2x
2 + b1x+ b0 ,

the statement of Cayley-Hamilton theorem is:

for all square matrices Ā, we have PĀ(Ā) = 0̃ .

We briefly recall the proof of Cayley-Hamilton theorem in the case of diagonalizable matrix.

By using relation (1.1), we have for the diagonalizable matrix Ā

PĀ(Ā) = (−1)nĀn + bn−1Ā
n−1 + bn−2Ā

n−2 + · · ·+ b2Ā
2 + b1Ā+ b0 =

= (−1)nCDnC−1 + bn−1CDn−1C−1 + bn−2CDn−2C−1 + . . .

· · ·+ b2CD2C−1 + b1CDC−1 + b0 =

= C
�
(−1)nDn + bn−1D

n−1 + bn−2D
n−2 + · · ·+ b2D

2 + b1D + b0

�
C−1

where the matrix

M = (−1)nDn + bn−1D
n−1 + bn−2D

n−2 + · · ·+ b2D
2 + b1D + b0

is given by

M =




PĀ(λ1) 0 0 · · · 0
0 PĀ(λ2) 0 · · · 0
0 0 PĀ(λ3) · · · 0
...

...
...

. . .
...

0 0 0 · · · PĀ(λk)




. (2.1)

Since PĀ(λi) = 0 holds for every eigenvalue (because the eigenvalues satisfy the characteristic equationPĀ(x) =
0), we conclude PĀ(Ā) = 0̃ and the proof is now complete.

We now extend this strategy to non-diagonalizable matrices over an algebraically closed field.
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2.1 Proof for non-diagonalizable matrices

If a matrix Ā over an algebraically closed field is non-diagonalizable, we extend the strategy of the proof of the

diagonalizable case.

Let λ1, λ2, . . . , λk be its distinct eigenvalues with algebraic multiplicities m1,m2, . . . ,mk, respectively, such that

m1 +m2 + · · ·+mk = n .

We notice that necessarily at least an eigenvalue has algebraic multiplicity greater than 1.

The characteristic polynomial is then of the form

PĀ(x) = (−1)n · (x − λ1)
m1 · (x− λ2)

m2 · · · · · (x − λk)
mk

with the obvious property (property of multiple zeros)

dh

dxh
PĀ(x)

����
x=λi

= 0 , ∀ h = 0, 1, 2, 3, . . . ,mi − 1 . (2.2)

In analogy with the diagonalizable case and with the unique difference that the matrix Ā, under an appropriate

basis change, transforms, as known, into a Jordan block diagonal matrix J , we have by virtue of the relation (1.2)

PĀ(Ā) = (−1)nĀn + bn−1Ā
n−1 + bn−2Ā

n−2 + · · ·+ b2Ā
2 + b1Ā+ b0 =

= (−1)nCJnC−1 + bn−1CJn−1C−1 + bn−2CJn−2C−1 + . . .

· · ·+ b2CJ2C−1 + b1CJC−1 + b0 =

= C
�
(−1)nJn + bn−1J

n−1 + bn−2J
n−2 + · · ·+ b2J

2 + b1J + b0

�
C−1 .

Since Jordan matrix J is a diagonal block matrix, it follows that also the matrix

M = (−1)nJn + bn−1J
n−1 + bn−2J

n−2 + · · ·+ b2J
2 + b1J + b0 (2.3)

is a diagonal block matrix containing two kinds of blocks.

The first kind of block inside the matrix M, denoted by M1, is the one corresponding to a diagonal block Ji and

is of the form

M1 =




PĀ(λi) 0 0 · · · 0
0 PĀ(λi) 0 · · · 0
0 0 PĀ(λi) · · · 0
...

...
...

. . .
...

0 0 0 · · · PĀ(λi)




= 0̃

because the eigenvalue λi is a root of the characteristic polynomial.

The second kind of block inside the matrix M, denoted by M2, is the one corresponding to a block Ji as given

in (1.3) and, by virtue of the power matrix (1.4), is of the form

M2 =




PĀ(λi) Q1(λi) Q2(λi) Q3(λi) · · · Qmi−1(λi)
0 PĀ(λi) Q1(λi) Q2(λi) · · · Qmi−2(λi)
0 0 PĀ(λi) Q1(λi) · · · Qmi−3(λi)
...

...
...

. . .
...

...

0 0 0 · · · PĀ(λi) Q1(λi)
0 0 0 0 · · · PĀ(λi)




,

where the elements above the diagonal are given by

Qh(λi) =
1

h!

dh

dxh
PĀ(x)

����
x=λi

, for h = 1, 2, 3, . . . ,mi − 1 .

The matrix M2 is the matrix 0̃ because the eigenvalue λi is a root of the characteristic polynomial and, by virtue

of (2.2), it yields

Qh(λi) = 0 , ∀ h = 1, 2, 3, . . . ,mi − 1 .

Since every block inside M is the matrix 0̃, we have then obtained the proof of Cayley-Hamilton theorem for a

non-diagonalizable matrix over an algebraically closed field.
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2.1.1 Extension to a generic field

Let VK be a vector space over a generic field K and K̄ the algebraic closure1 of K , such that we can extend

the vector space VK to the vector space VK̄ over K̄ (that is VK̄ = V ⊗
K
K̄). If A is an endomorphism of VK , we

can univocally extend A to an endomorphism Ā of VK̄ and both the endomorphisms have the same characteristic

polynomial PA(x) ≡ PĀ(x). From the result P̄
A
(Ā) = 0̃, the result P

A
(A) = 0̃ follows.

3. Conclusions

Since we have used the matrix M in the (2.1) for diagonalizable matrices and, by virtue of the lemma (1.1), the

matrix M in the (2.3) for non-diagonalizable matrices, we conclude that over a field the proofs corresponding to both

cases of diagonalizable and non-diagonalizable matrices are similar and we have then obtained a kind of unification

of the proofs of Cayley-Hamilton theorem over a generic field.
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