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Distributive property of the intersection: Set intersection is distributive
over set union

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

More generally

A ∩
⋃
i

Bi =
⋃
i

(A ∩ Bi )

This property holds for whatever sets A and B1, B2, . . .



Conditional Probability

If we know that B occurs, A occurs if and only if A ∩ B occurs

Given B the experiment outcomes are those of B, and those of A can be
only A ∩ B

Definition If A,B ∈ F and P(B) > 0 the conditional probability of A
given B is denoted with P(A|B) and defined by

P(A|B) =
P(A ∩ B)

P(B)



Theorem: the conditional probability is a probability measure
If B ∈ F and P(B) > 0, then (Ω,F ,Q) is a probability space, where
Q : F → R is defined by

Q(A) =
P(A ∩ B)

P(B)

Three things to prove...proof in class

• Q(Ω) = 1

• Q(A) ≥ 0

• Q (
⋃
Ai ) =

∑
i Q(Ai )



The proof

• Q(Ω) = P(Ω ∩ B)/P(B) = P(B)/P(B) = 1

• Q(A) = P(A ∩ B)/P(B) ≥ 0

• Let A1,A2.. disjoint events

Q

(⋃
i

Ai

)
=

1

P(B)
P

((⋃
i

Ai

)
∩ B

)
=

1

P(B)
P

(⋃
i

(Ai ∩ B)

)

=
1

P(B)

∑
i

P(Ai ∩ B) =
∑
i

P(Ai |B) =
∑
i

Q(Ai )



Since Q is a probability measure, if A ∈ F and P(B) > 0

Q(Ac) = P(Ac |B) = 1− Q(A) = 1− P(A|B)

Without exploiting the previous theorem we could observe that, since
B = (B ∩ A) ∪ (B ∩ Ac)

P(AC |B) =
P(Ac ∩ B)

P(B)
=

P(B)− P(A ∩ B)

P(B)



Suppose that P(A) > 0 and P(B) > 0. Then

P(A|B) =
P(A ∩ B)

P(B)
and P(B|A) =

P(A ∩ B)

P(A)

and we have that

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

and (ex 1.35)

P(B|A) =
P(A|B)P(B)

P(A)



Ex. 1.34 Show that, if P(B ∩ C ) > 0

P(A ∩ B ∩ C ) = P(A|B,C )P(B|C )P(C )

Note that since P(B ∩ C ) > 0 we can write

P(A ∩ B ∩ C ) = P(A ∩ (B ∩ C )) = P(A|B,C )P(B ∩ C )

Moreover (B ∩ C ) ⊆ C . Then P(B ∩ C ) > 0⇒ P(C ) > 0 and we can
write that

P(B ∩ C ) = P(B|C )P(C )

Then
P(A ∩ B ∩ C ) = P(A|B,C )P(B|C )P(C )



Independent events

Two event are independent if the occurrence of one of them does not
affect the probability that the other occurs. That is if P(A) > 0 and
P(B) > 0 then

P(A|B) = P(A) and P(B|A) = P(B) ∗

Independence can be defined directly in the following way

Definition ** Events A and B of a probability space are called
independent if

P(A ∩ B) = P(A)P(B)

and dependent otherwise

• Since P(A|B) = P(A ∩ B)/P(B), condition * ⇐⇒ definition **

• Definition ** is slightly more general since it allows A and B to
have non zero probabilities



Example: Toss n times a coin, equiprobable events.
|Ω| = 2n, A = “the i-th coin is head”, B = “the j-th coin is head”, i 6= j
|A| = |B| = 2n−1 |A ∩ B| = 2n−2. Then

P(A) =
∑
ω∈A

1

2n
=

1

2n
2n−1 =

1

2
P(B) =

∑
ω∈B

1

2n
=

1

2n
2n−1 =

1

2

P(A ∩ B) =
∑
ω∈B

1

2n
=

1

2n
2n−2 =

1

4

Then A and B are independent since

P(A ∩ B) =
1

4
=

1

2

1

2
= P(A)P(B)



If C =”k heads”, |C | =
(
n
k

)
, |A ∩ C | =

(
n−1
k−1
)

and

P(A ∩ C ) =
1

2n

(
n − 1

k − 1

)
6= 1

2

1

2n

(
n

k

)
= P(A)P(C )

Hence A and C are dependent

Note also that

P(C |A) =
P(C ∩ A)

P(A)
=

(
n−1
k−1
)
/2n

1/2
=

(
n − 1

k − 1

)
1

2n−1

=

(
n − 1

k − 1

)(
1

2

)k−1(
1

2

)n−1−(k−1)



Exercise 1.43 If A and B are independent and disjoint what can be said
about P(A) and P(B)?
We have

0 = P(A ∩ B) = P(A)P(B)

Then at least one has 0 probability

Exercise 1.44 Prove that A and B are independent iff A and Bc are
independent
Suppose A and B independent. Note that (A ∩ B) ∪ (A ∩ Bc) = A

P(A ∩ Bc) = P(A)− P(A ∩ B) = P(A)− P(A)P(B)

= P(A)(1− P(B)) = P(A)P(Bc)

Then A and Bc are independent. Moreover if A and Bc are independent,
also A and (Bc)c = B are independent



• A family A = {Ai i ∈ I} of events is called independent if for all
finite subset J of I

P

(⋂
i∈J

Ai

)
=
∏
j∈J

P(Ai ) ∗

• A is said pairwise independent if * holds whenever |J| = 2

• A1,A2, . . . ,Am are independent iff Ac
1,A

c
2, . . . ,A

c
m are independent

Exercise 1.46 (a) If A1,A2, . . . ,Am are independent and P(A1) = p for
i = 1, . . . ,m find the probability that none of Ai occur

P(none of the Ai occur) = P(Ac
1 ∩ Ac

2 ∩ · · ·Ac
m) =

∏m
i=1 P(Ac

i ) = (1− p)m

Note that

P(at least one of the Ai occurs ) = 1−P(none of the Ai occur) = 1−(1−p)m



Definition A partition of Ω is a collection {Bi : i ∈ I} of disjoint events
such that

Ω =
⋃
i∈I

Bi

If {Bi : i ∈ I} is a partition of Ω

A = A ∩ Ω = A ∩
⋃
i∈I

Bi =
⋃
i∈I

(A ∩ Bi )



Partition Theorem If {B1,B2, . . .} is a partition of Ω and P(Bi ) > 0∀i

P(A) =
∑
i

P(A|Bi )P(Bi )

Proof in class

P(A) = P(A ∩ Ω)...

• Example 1.51 (Modified).

A=”Tomorrow I’ll be late,B=”Tommorow it will rain”.

Suppose that P(B) = 3/5, P(A|B) = 3/5 and P(A|Bc) = 1/5

Then

P(A) = P(B)P(A|B) + P(Bc)P(A|Bc) =
3

5

3

5
+

1

5

2

5
=

11

25



Suppose that the occurring of A represents some evidence and B1,B2, ...
possible states of nature. If we know the conditional probabilities P(A|Bi )
we can obtain easily the conditional probabilities for the states Bi given A

Bayes Theorem If {B1,B2, . . .} is a partition of Ω and P(Bi ) > 0 ∀i ,
then ∀A ∈ F with P(A) > 0

P(Bj |A) =
P(A|Bj)P(Bj)∑
i P(A|Bi )P(Bi )



• Example 1.51.

A disease has incidence 1/105, that is P(D) = 1/105. If you have
the disease and do a diagnostic test, the test is positive P with
probability 9/10,P(P|D) = 9/10, if you do not have the disease
P(P|Dc) = 1/20 (false positive).

You are positive...

P(D|P) =
P(P|D)P(D)

P(P|D)P(D) + P(P|Dc)P(Dc)
=

9
10

1
105

9
10

1
105 + 1

20
105−1
105

≈ 0.0002

• Exercise 1.52 At home



• A sequence A1, A2...of events of F is called increasing if An ⊆ An+1

for n = 1, 2, ...,

• The union

A =
∞⋃
i=1

Ai

of an increasing sequence of events is called the limit of the
sequence

• A ∈ F (in fact is a countable union)

• Theorem: Continuity of probability measures. Let (Ω,F ,P) be a
probability space. If A1,A2... is an increasing sequence of events in
F with limit A

P(A) = lim
n→∞

P(An)



Example 1.55 Consider an infinite set of tosses of a coin.

• Here a single ω is a infinite sequence like

ω = THTHHTHHHHTHT ......

and is it possible to prove that Ω is uncountable (since Ω is one to
one with [0, 1]...)

• Let An be the event that the first n tosses of the coin yield at least
one head. We have An ⊆ An+1 for n = 1, 2, . . ..

• For a finite set like An we can safely take P(An) = 1− (1/2)n

• Note that A = ∪∞i=1Ai is the event that a head will occur sooner or
later.

P(A) = lim
n→∞

P(An) = lim
n→∞

1− (1/2)n = 1

and P(Ac) = 0 where Ac is the event “no head ever appears”



Discrete random variables

• Given a probability spaces we are interested on the values X of a
real valued function acting on Ω

• A discrete random variable X on (Ω,F ,P) is a mapping

X : Ω→ R

such that

(a) the image X (Ω) is a countable subset of R
(b) the set {ω ∈ Ω : X (ω) = x} ∈ F ∀ x ∈ R



If X : Ω→ R, the image of A is the set

X (A) = {X (ω) : ω ∈ A}

• We may call X discrete since X (Ω) takes only countably many
values (condition (a))

• The condition (b) says that the results of X is random since X = x
is a event, that is

X = x occurs ⇐⇒ X−1(x) = {ω ∈ Ω : X (ω) = x} occurs

and the subsets X−1(x) belong to F ∀ x and are therefore assigned
a probability



• The event {ω ∈ Ω : X (ω) = x} will be denoted with (X = x)

• Im X will denote the image of Ω under X

DefinitionThe probability mass function (p.m.f.) of a discrete r.v. is the
function PX : R → [0, 1] defined by

pX (x) = P(X = x)

Properties of the p.m.f.

• pX (x) = 0 if x /∈ ImX

• ∑
x∈R

pX (x) =
∑

x∈Im X

pX (x) = 1

In fact

1 = P(Ω) = P

( ⋃
x∈Im X

{ω ∈ Ω : X (ω) = x}

)
=

∑
x∈Im X

pX (x) =
∑
x∈R

pX (x)





Theorem Let S = {si : i ∈ I} be a countable set of distinct real numbers
and let {πi : i ∈ I} be a collection of real numbers such that

πi ≥ 0 ∀ i ∈ I and
∑
i∈I

πi = 1

There exists a probability space and a discrete random variable X such
that pX (si ) = πi for i ∈ I and pX (s) = 0 for s /∈ S

Proof. Take Ω = S , F the power set of Ω and

P(A) =
∑
i :si∈A

πi

P is a probability measure, see Exercise 1.17 (and example 1.16 that we
did in class)

Take X as the identity function i.e. X : Ω→ R with X (ω) = ω



Examples of discrete random variables

• Bernoulli

We say that X has the Bernoulli distribution (X is a Bernoulli r.v.)
with parameter p if the image of X is {0, 1} and

P(X = 0) = q = 1− p P(X = 1) = p

The p.m.f. of X is then

pX (0) = q, pX (1) = p, pX (x) = 0 if x 6= 0, 1

Note that
p + q = p + (1− p) = 1



• Binomial

We say that X has the Binomial distribution (X is a Binomial r.v.)
with parameters n and p if the image of X is {0, 1, . . . , n} and

P(X = k) =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n q = 1− p

Remember (or learn..) the Binomial theorem that is for x ∈ R

(1 + x)n =
n∑

k=0

(
n

k

)
xk

then

(a + b)n = bn(1 + a/b)n = bn
n∑

k=0

(
n

k

)
(a/b)k =

∑
k=0

(
n

k

)
akbn−k

Hence

1 = (p + q) = (p + q)n =
n∑

k=0

(
n

k

)
pkqn−k



Let X be a Binomial(n, p).

P(X = even) =
1

2
(1 + (q − p)n)

In fact

1 = (p + q)n =
n∑

k=0

(
n

k

)
pkqn−k

(q − p)n =
n∑

k=0

(
n

k

)
qk(−1)n−kpn−k =

n∑
k=0

(
n

n − k

)
qk(−1)n−kpn−k

Summing the two equations on the left we have 1 + (q − p)n on the right
we have two times the sum of the binomial probabilities for k even (since
the odd terms cancel out)



• Poisson

We say that X has the Poisson distribution (X is a Poisson r.v.)
with parameter λ > 0 if X takes value {0, 1, . . .} and

P(X = k) =
1

k!
λke−λ for k = 0, 1, . . .

Remember (or learn..) that for x ∈ R

ex = lim
n→∞

(
1 +

x

n

)n
=
∞∑
k=0

xk

k!

Hence
∞∑
k=0

1

k!
λke−λ = e−λ

∞∑
k=0

1

k!
λk = e−λeλ = 1
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