Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 2

Algebra of sets: other properties

Conditional Probability

Independent events

The partition theorem

Continuity of probability

Discrete random variables

Examples of discrete random variables

Distributive property of the intersection: Set intersection is distributive over set union

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

More generally

$$
A \cap \bigcup_{i} B_{i}=\bigcup_{i}\left(A \cap B_{i}\right)
$$

This property holds for whatever sets A and B_{1}, B_{2}, \ldots

Conditional Probability

If we know that B occurs, A occurs if and only if $A \cap B$ occurs

Given B the experiment outcomes are those of B, and those of A can be only $A \cap B$

Definition If $A, B \in \mathcal{F}$ and $P(B)>0$ the conditional probability of A given B is denoted with $P(A \mid B)$ and defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Theorem: the conditional probability is a probability measure If $B \in \mathcal{F}$ and $P(B)>0$, then (Ω, \mathcal{F}, Q) is a probability space, where $Q: \mathcal{F} \rightarrow R$ is defined by

$$
Q(A)=\frac{P(A \cap B)}{P(B)}
$$

Three things to prove...proof in class

- $Q(\Omega)=1$
- $Q(A) \geq 0$
- $Q\left(\cup A_{i}\right)=\sum_{i} Q\left(A_{i}\right)$

The proof

- $Q(\Omega)=P(\Omega \cap B) / P(B)=P(B) / P(B)=1$
- $Q(A)=P(A \cap B) / P(B) \geq 0$
- Let A_{1}, A_{2}.. disjoint events

$$
\begin{aligned}
Q\left(\bigcup_{i} A_{i}\right) & =\frac{1}{P(B)} P\left(\left(\bigcup_{i} A_{i}\right) \cap B\right)=\frac{1}{P(B)} P\left(\bigcup_{i}\left(A_{i} \cap B\right)\right) \\
& =\frac{1}{P(B)} \sum_{i} P\left(A_{i} \cap B\right)=\sum_{i} P\left(A_{i} \mid B\right)=\sum_{i} Q\left(A_{i}\right)
\end{aligned}
$$

Since Q is a probability measure, if $A \in \mathcal{F}$ and $P(B)>0$

$$
Q\left(A^{c}\right)=P\left(A^{c} \mid B\right)=1-Q(A)=1-P(A \mid B)
$$

Without exploiting the previous theorem we could observe that, since $B=(B \cap A) \cup\left(B \cap A^{c}\right)$

$$
P\left(A^{C} \mid B\right)=\frac{P\left(A^{c} \cap B\right)}{P(B)}=\frac{P(B)-P(A \cap B)}{P(B)}
$$

Suppose that $P(A)>0$ and $P(B)>0$. Then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { and } \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

and we have that

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

and (ex 1.35)

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Ex. 1.34 Show that, if $P(B \cap C)>0$

$$
P(A \cap B \cap C)=P(A \mid B, C) P(B \mid C) P(C)
$$

Note that since $P(B \cap C)>0$ we can write

$$
P(A \cap B \cap C)=P(A \cap(B \cap C))=P(A \mid B, C) P(B \cap C)
$$

Moreover $(B \cap C) \subseteq C$. Then $P(B \cap C)>0 \Rightarrow P(C)>0$ and we can write that

$$
P(B \cap C)=P(B \mid C) P(C)
$$

Then

$$
P(A \cap B \cap C)=P(A \mid B, C) P(B \mid C) P(C)
$$

Independent events

Two event are independent if the occurrence of one of them does not affect the probability that the other occurs. That is if $P(A)>0$ and $P(B)>0$ then

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B) \quad *
$$

Independence can be defined directly in the following way
Definition ** Events A and B of a probability space are called independent if

$$
P(A \cap B)=P(A) P(B)
$$

and dependent otherwise

- Since $P(A \mid B)=P(A \cap B) / P(B)$, condition ${ }^{*} \Longleftrightarrow$ definition ${ }^{* *}$
- Definition ${ }^{* *}$ is slightly more general since it allows A and B to have non zero probabilities

Example: Toss n times a coin, equiprobable events.
$|\Omega|=2^{n}, A=$ "the i-th coin is head", $B=$ "the j-th coin is head", $i \neq j$ $|A|=|B|=2^{n-1}|A \cap B|=2^{n-2}$. Then

$$
\begin{gathered}
P(A)=\sum_{\omega \in A} \frac{1}{2^{n}}=\frac{1}{2^{n}} 2^{n-1}=\frac{1}{2} \quad P(B)=\sum_{\omega \in B} \frac{1}{2^{n}}=\frac{1}{2^{n}} 2^{n-1}=\frac{1}{2} \\
P(A \cap B)=\sum_{\omega \in B} \frac{1}{2^{n}}=\frac{1}{2^{n}} 2^{n-2}=\frac{1}{4}
\end{gathered}
$$

Then A and B are independent since

$$
P(A \cap B)=\frac{1}{4}=\frac{1}{2} \frac{1}{2}=P(A) P(B)
$$

If $C=$ "k heads", $|C|=\binom{n}{k},|A \cap C|=\binom{n-1}{k-1}$ and

$$
P(A \cap C)=\frac{1}{2^{n}}\binom{n-1}{k-1} \neq \frac{1}{2} \frac{1}{2^{n}}\binom{n}{k}=P(A) P(C)
$$

Hence A and C are dependent
Note also that

$$
\begin{aligned}
P(C \mid A) & =\frac{P(C \cap A)}{P(A)}=\frac{\binom{n-1}{k-1} / 2^{n}}{1 / 2}=\binom{n-1}{k-1} \frac{1}{2^{n-1}} \\
& =\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{k-1}\left(\frac{1}{2}\right)^{n-1-(k-1)}
\end{aligned}
$$

Exercise 1.43 If A and B are independent and disjoint what can be said about $P(A)$ and $P(B)$?
We have

$$
0=P(A \cap B)=P(A) P(B)
$$

Then at least one has 0 probability

Exercise 1.44 Prove that A and B are independent iff A and B^{c} are independent
Suppose A and B independent. Note that $(A \cap B) \cup\left(A \cap B^{c}\right)=A$

$$
\begin{aligned}
P\left(A \cap B^{c}\right) & =P(A)-P(A \cap B)=P(A)-P(A) P(B) \\
& =P(A)(1-P(B))=P(A) P\left(B^{c}\right)
\end{aligned}
$$

Then A and B^{c} are independent. Moreover if A and B^{c} are independent, also A and $\left(B^{c}\right)^{c}=B$ are independent

- A family $\mathcal{A}=\left\{A_{i} i \in I\right\}$ of events is called independent if for all finite subset J of I

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{j \in J} P\left(A_{i}\right) *
$$

- \mathcal{A} is said pairwise independent if * holds whenever $|J|=2$
- $A_{1}, A_{2}, \ldots, A_{m}$ are independent iff $A_{1}^{c}, A_{2}^{c}, \ldots, A_{m}^{c}$ are independent

Exercise 1.46 (a) If $A_{1}, A_{2}, \ldots, A_{m}$ are independent and $P\left(A_{1}\right)=p$ for $i=1, \ldots, m$ find the probability that none of A_{i} occur
$P\left(\right.$ none of the A_{i} occur $)=P\left(A_{1}^{c} \cap A_{2}^{c} \cap \cdots A_{m}^{c}\right)=\prod_{i=1}^{m} P\left(A_{i}^{c}\right)=(1-p)^{m}$
Note that
$P\left(\right.$ at least one of the A_{i} occurs $)=1-P\left(\right.$ none of the A_{i} occur $)=1-(1-p)^{m}$

Definition A partition of Ω is a collection $\left\{B_{i}: i \in I\right\}$ of disjoint events such that

$$
\Omega=\bigcup_{i \in I} B_{i}
$$

If $\left\{B_{i}: i \in I\right\}$ is a partition of Ω

$$
A=A \cap \Omega=A \cap \bigcup_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \cap B_{i}\right)
$$

Partition Theorem If $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of Ω and $P\left(B_{i}\right)>0 \forall i$

$$
P(A)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Proof in class

$$
P(A)=P(A \cap \Omega) \ldots
$$

- Example 1.51 (Modified).
$A=$ "Tomorrow I'll be late, $\mathrm{B}=$ " Tommorow it will rain".
Suppose that $P(B)=3 / 5, P(A \mid B)=3 / 5$ and $P\left(A \mid B^{c}\right)=1 / 5$
Then

$$
P(A)=P(B) P(A \mid B)+P\left(B^{c}\right) P\left(A \mid B^{c}\right)=\frac{3}{5} \frac{3}{5}+\frac{1}{5} \frac{2}{5}=\frac{11}{25}
$$

Suppose that the occurring of A represents some evidence and B_{1}, B_{2}, \ldots possible states of nature. If we know the conditional probabilities $P\left(A \mid B_{i}\right)$ we can obtain easily the conditional probabilities for the states B_{i} given A

Bayes Theorem If $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of Ω and $P\left(B_{i}\right)>0 \forall i$, then $\forall A \in \mathcal{F}$ with $P(A)>0$

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

- Example 1.51.

A disease has incidence $1 / 10^{5}$, that is $P(D)=1 / 10^{5}$. If you have the disease and do a diagnostic test, the test is positive P with probability $9 / 10, P(P \mid D)=9 / 10$, if you do not have the disease $P\left(P \mid D^{c}\right)=1 / 20$ (false positive).
You are positive...

$$
P(D \mid P)=\frac{P(P \mid D) P(D)}{P(P \mid D) P(D)+P\left(P \mid D^{c}\right) P\left(D^{c}\right)}=\frac{\frac{9}{10} \frac{1}{10^{5}}}{\frac{9}{10} \frac{1}{10^{5}}+\frac{1}{20} \frac{10^{5}-1}{10^{5}}} \approx 0.0002
$$

- Exercise 1.52 At home
- A sequence $A_{1}, A_{2} \ldots$ of events of \mathcal{F} is called increasing if $A_{n} \subseteq A_{n+1}$ for $n=1,2, \ldots$,
- The union

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

of an increasing sequence of events is called the limit of the sequence

- $A \in \mathcal{F}$ (in fact is a countable union)
- Theorem: Continuity of probability measures. Let (Ω, \mathcal{F}, P) be a probability space. If $A_{1}, A_{2} \ldots$ is an increasing sequence of events in \mathcal{F} with limit A

$$
P(A)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

Example 1.55 Consider an infinite set of tosses of a coin.

- Here a single ω is a infinite sequence like

$$
\omega=T H T H H T H H H H T H T \ldots . .
$$

and is it possible to prove that Ω is uncountable (since Ω is one to one with $[0,1] \ldots$)

- Let A_{n} be the event that the first n tosses of the coin yield at least one head. We have $A_{n} \subseteq A_{n+1}$ for $n=1,2, \ldots$
- For a finite set like A_{n} we can safely take $P\left(A_{n}\right)=1-(1 / 2)^{n}$
- Note that $A=\cup_{i=1}^{\infty} A_{i}$ is the event that a head will occur sooner or later.

$$
P(A)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=\lim _{n \rightarrow \infty} 1-(1 / 2)^{n}=1
$$

and $P\left(A^{c}\right)=0$ where A^{c} is the event "no head ever appears"

Discrete random variables

- Given a probability spaces we are interested on the values X of a real valued function acting on Ω
- A discrete random variable X on (Ω, \mathcal{F}, P) is a mapping

$$
X: \Omega \rightarrow R
$$

such that
(a) the image $X(\Omega)$ is a countable subset of R
(b) the set $\{\omega \in \Omega: X(\omega)=x\} \in \mathcal{F} \forall x \in R$

If $X: \Omega \rightarrow R$, the image of A is the set

$$
X(A)=\{X(\omega): \omega \in A\}
$$

- We may call X discrete since $X(\Omega)$ takes only countably many values (condition (a))
- The condition (b) says that the results of X is random since $X=x$ is a event, that is

$$
X=x \text { occurs } \Longleftrightarrow X^{-1}(x)=\{\omega \in \Omega: X(\omega)=x\} \text { occurs }
$$

and the subsets $X^{-1}(x)$ belong to $\mathcal{F} \forall x$ and are therefore assigned a probability

- The event $\{\omega \in \Omega: X(\omega)=x\}$ will be denoted with $(X=x)$
- Im X will denote the image of Ω under X

DefinitionThe probability mass function (p.m.f.) of a discrete r.v. is the function $P_{X}: R \rightarrow[0,1]$ defined by

$$
p_{X}(x)=P(X=x)
$$

Properties of the p.m.f.

- $p_{X}(x)=0$ if $x \notin \operatorname{Im} X$

$$
\sum_{x \in R} p_{X}(x)=\sum_{x \in \operatorname{Im} X} p_{X}(x)=1
$$

In fact

$$
\begin{aligned}
1 & =P(\Omega)=P\left(\bigcup_{x \in \operatorname{lm} X}\{\omega \in \Omega: X(\omega)=x\}\right) \\
& =\sum_{x \in \operatorname{lm} X} p_{X}(x)=\sum_{x \in R} p_{X}(x)
\end{aligned}
$$

$\Omega=\bigcup_{x \in I_{u}(x)}\{\omega: x(\omega)=x\}$ $\{\omega: x(\omega)=x\}$ other wise this point w would lie such that $X(\omega)=x$ ad $X(\omega)=x^{\text {b }}$

Theorem Let $S=\left\{s_{i}: i \in I\right\}$ be a countable set of distinct real numbers and let $\left\{\pi_{i}: i \in I\right\}$ be a collection of real numbers such that

$$
\pi_{i} \geq 0 \forall i \in I \quad \text { and } \quad \sum_{i \in I} \pi_{i}=1
$$

There exists a probability space and a discrete random variable X such that $p_{X}\left(s_{i}\right)=\pi_{i}$ for $i \in I$ and $p_{X}(s)=0$ for $s \notin S$

Proof. Take $\Omega=S, \mathcal{F}$ the power set of Ω and

$$
P(A)=\sum_{i: s_{i} \in A} \pi_{i}
$$

P is a probability measure, see Exercise 1.17 (and example 1.16 that we did in class)

Take X as the identity function i.e. $X: \Omega \rightarrow R$ with $X(\omega)=\omega$

Examples of discrete random variables

- Bernoulli

We say that X has the Bernoulli distribution (X is a Bernoulli r.v.) with parameter p if the image of X is $\{0,1\}$ and

$$
P(X=0)=q=1-p \quad P(X=1)=p
$$

The p.m.f. of X is then

$$
p_{X}(0)=q, \quad p_{X}(1)=p, \quad p_{X}(x)=0 \text { if } x \neq 0,1
$$

Note that

$$
p+q=p+(1-p)=1
$$

- Binomial

We say that X has the Binomial distribution (X is a Binomial r.v.) with parameters n and p if the image of X is $\{0,1, \ldots, n\}$ and

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k} \quad \text { for } k=0,1, \ldots, n \quad \mathrm{q}=1-p
$$

Remember (or learn..) the Binomial theorem that is for $x \in \mathbb{R}$

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

then

$$
(a+b)^{n}=b^{n}(1+a / b)^{n}=b^{n} \sum_{k=0}^{n}\binom{n}{k}(a / b)^{k}=\sum_{k=0}\binom{n}{k} a^{k} b^{n-k}
$$

Hence

$$
1=(p+q)=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}
$$

Let X be a $\operatorname{Binomial}(n, p)$.

$$
P(X=\text { even })=\frac{1}{2}\left(1+(q-p)^{n}\right)
$$

In fact

$$
\begin{aligned}
& 1=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \\
&(q-p)^{n}= \\
& \sum_{k=0}^{n}\binom{n}{k} q^{k}(-1)^{n-k} p^{n-k}=\sum_{k=0}^{n}\binom{n}{n-k} q^{k}(-1)^{n-k} p^{n-k}
\end{aligned}
$$

Summing the two equations on the left we have $1+(q-p)^{n}$ on the right we have two times the sum of the binomial probabilities for k even (since the odd terms cancel out)

- Poisson

We say that X has the Poisson distribution (X is a Poisson r.v.) with parameter $\lambda>0$ if X takes value $\{0,1, \ldots\}$ and

$$
P(X=k)=\frac{1}{k!} \lambda^{k} e^{-\lambda} \quad \text { for } k=0,1, \ldots
$$

Remember (or learn..) that for $x \in \mathbb{R}$

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Hence

$$
\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^{k} e^{-\lambda}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{1}{k!} \lambda^{k}=e^{-\lambda} e^{\lambda}=1
$$

