Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 3

Examples of discrete random variables

Functions of discrete random variables

Expectation

Variance

- Geometric

We say that X has the Geometric distribution (X is a Geometric r.v.) with parameter $p \in(0,1)$ if X takes value $\{1,2, \ldots\}$ and

$$
P(X=k)=p q^{k-1} \quad \text { for } k=1,2, \ldots
$$

Observe that for $x \in \mathbb{R}$

$$
\begin{aligned}
(1-x) \sum_{k=0}^{n-1} x^{k} & =\sum_{k=0}^{n-1} x^{k}-\sum_{k=1}^{n} x^{k} \\
& =1+x+x^{2}+\cdots x^{n-1}-\left(x+x^{2}+\cdots x^{n}\right)=1-x^{n}
\end{aligned}
$$

Then

$$
\sum_{k=0}^{n-1} x^{k}=\frac{1-x^{n}}{1-x}
$$

and

$$
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} x^{k}=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1-x}=\left\{\begin{array}{cl}
\frac{1}{1-x} & |x|<1 \\
\infty & |x| \geq 1
\end{array}\right.
$$

Hence we have also that the sum of the geometric probabilities is 1

$$
\sum_{k=1}^{\infty} p q^{k-1}=p \sum_{k=0}^{\infty} q^{k}=p \frac{1}{1-q}=\frac{p}{p}=1
$$

Exercise 1.17 Let $p_{1}, p_{2}, \ldots p_{N}$ non negative numbers such that $\sum_{i=1}^{N} p_{i}=1$. Consider $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$ and let \mathcal{F} be the power set of Ω

$$
Q(A)=\sum_{i: \omega_{i} \in A} p_{i}
$$

is a probability measure

$$
\begin{aligned}
& -\varphi(\Omega)=1 . \text { Impact } \varphi(\Omega)=\sum_{1: \omega_{i} G \Omega} P_{1}=\sum_{1=1}^{N} P_{1}=1 \\
& -\varphi(A) \geqslant 0 \forall A G \mathcal{F} . I_{n} \text { fact } \varphi\left(A \mid=\sum_{1: \omega, \in \Omega} P_{i} \geqslant 0\right.
\end{aligned}
$$

sima $p_{i} \geqslant 0 \quad \forall i$

- Let $A=\bigcup_{j \in J} A_{j}$ where $A_{j} \cap A_{j}=\varnothing \quad J \neq j^{\prime}$

$$
\begin{aligned}
& P(A)=P\left(\bigcup_{J \in J} A_{j}\right)=\sum_{i: \omega_{1} \in \bigcup_{\sim, S} A_{J}} P_{i}=\sum_{J \in J} \sum_{i: \omega_{1} \in A_{j}} p_{i} \\
& =\sum_{j \in J} P\left(A_{J}\right)
\end{aligned}
$$

Example 2.18, A coin is tossed n times. $|\Omega|=2^{n}$, sngle outcomes are

$$
\underbrace{T T H T \cdots T T H}_{n \text { coins }}
$$

- Let $h(\omega)$ be the number of heads and $t(\omega)$ be the number of tails, $t(\omega)=n-h(\omega)$. Consider $p \in(0,1)$ and $q=1-p$. Let \mathcal{F} be the power set
- Take

$$
p(\omega)=p^{h(\omega)} q^{t(\omega)}
$$

and

$$
P(A)=\sum_{\omega \in A} p(\omega)
$$

Note that

$$
\begin{aligned}
\sum_{\omega \in \Omega} p(\omega) & =\sum_{k=0}^{n} \sum_{\omega: h(\omega)=k} p(\omega)=\sum_{k=0}^{n} \sum_{\omega: h(\omega)=k} p^{h(\omega)} q^{t(\omega)} \\
& =\sum_{k=0}^{n} \sum_{\omega: h(\omega)=k} p^{k} q^{n-k}=\sum_{k=0}^{n} p^{k} q^{n-k} \sum_{\omega: h(\omega)=k} 1 \\
& =\sum_{k=0}^{n} p^{k} q^{n-k}\binom{n}{k}=1
\end{aligned}
$$

Then P is a probability (by ex.1.17)

Let

$$
X_{i}(\omega)= \begin{cases}1 & \text { if the ith entry in } \omega \text { is } H \\ 0 & \text { if the } i \text { th entry in } \omega \text { is } T\end{cases}
$$

$$
\begin{aligned}
P\left(X_{i}=0\right) & =P\left(\omega \in \Omega: \omega_{i}=T\right)=\sum_{\omega: \omega_{i}=T} p(\omega)=\sum_{\omega: \omega_{i}=T} p^{h(\omega)} q^{t(\omega)} \\
& =\sum_{h=0}^{n-1} \sum_{\omega: h(\omega)=h, \omega_{i}=T} p^{h(\omega)} q^{t(\omega)}=\sum_{h=0}^{n-1} \sum_{\omega: h(\omega)=h, \omega_{i}=T} p^{h} q^{n-h} \\
& =\sum_{h=0}^{n-1} p^{h} q^{n-h} \sum_{\omega: h(\omega)=h, \omega_{i}=T} 1=\sum_{h=0}^{n-1} p^{h} q^{n-h}\binom{n-1}{h} \\
& =\underbrace{\sum_{h=0}^{n-1}\binom{n-1}{h} p^{h} q^{n-1-h}}_{1}=\mathbf{q}
\end{aligned}
$$

Hence, each X_{i} takes the values 0 and 1 and $P\left(X_{i}=0\right)=q$ and $P\left(X_{i}=1\right)=p$, that is

$$
X_{i} \sim \operatorname{Bernoulli}(p) \quad i=1, \ldots n
$$

Example 2.18 (a coin is tossed n tines)

$$
\begin{aligned}
& \Omega=\{H H H \ldots H, T H H \cdots H, \cdots, T T \tau T\} \\
& P(\omega)=p^{h(\omega)}(1-p)^{+(\omega)}
\end{aligned}
$$

$$
w=\left(w_{1} \omega_{2} \cdots \omega_{n}\right)
$$

where ω_{i} can be $H_{a^{1}}$
We have seen that $X_{i}=X_{i}(\omega)= \begin{cases}1 & \text { if } \omega_{1}=H \\ 0 & \text { if } \omega_{1}=T\end{cases}$ is a Bernoulli r.v. with parameter p Consider $S_{m}=X_{1}+X_{2} \cdots+X_{m}$
$S_{n}: \Omega \rightarrow\{0,1 \ldots n\}$
in fact $S_{m}=S_{n}(w)=X_{1}(w)+X_{2}(w)+\cdots \quad X_{1}(w)$

Remember that $P(A)=\sum_{\omega \in A} P(\omega)=\sum_{\omega \in A} p^{n(\omega)}(1-P)^{t(\omega)}$

$$
\begin{aligned}
& P\left(S_{\mu}=k\right)=P\left(\omega \in \Omega: S_{\mu}(\omega)=k\right)=P(\omega \in \Omega: h(\omega)=k)= \\
& =\sum_{\omega: n(\omega)=k} P^{h(\omega)}(1-p)^{t(\omega)}=\sum_{\omega: h(\omega)=k} p^{k}(1-p)^{m-k}=\binom{n}{k} p^{k} q^{m-k}
\end{aligned}
$$

Hence S_{n} is Binomial with parameters m and p

Poisson distribution as a limit of Binomial
Suppose that m is very large, p is very small and $\lambda=n \cdot p$ does not go to zero or to infinity

$$
\begin{aligned}
P\left(S_{m}=k\right) & =\binom{\mu}{k} p^{k} q^{\mu-k}=\frac{\mu!}{(m-k)!k!} p^{k} q^{\mu-k} \\
& \sim \frac{n^{k}}{k!}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{\mu}\right)^{n}\left(1-\frac{k}{n}\right)^{-k} \sim \frac{2^{k}}{k!} e^{-k} \\
& \underbrace{\left(k^{k}\right.} \frac{L^{k!}}{\left(e^{-k} \sim 1,\right.}
\end{aligned}
$$

Example 2.21 Geometric distribution

Consider the following experiment: we toss a coin until the first head turns up and then we stop

$$
\Omega=\{H, T H, T T H, T T T H, \cdots\} \bigcup\{T T T T \cdots\}
$$

Let $\omega=T^{k} H$ be the outcome with k heads and assume that

$$
p(\omega)=q^{k} p \quad p \in(0,1) \quad q=1-p
$$

For the outcome $\omega=T^{\infty}$ without heads we take

$$
p(\omega)= \begin{cases}1 & p=0 \\ 0 & p>0\end{cases}
$$

Note that if $p>0$

$$
\sum_{\omega \in \Omega} p(\omega)=\sum_{k=0}^{\infty} p\left(T^{k} H\right)+p\left(T^{\infty}\right)=\sum_{k=0}^{\infty} p q^{k}+0=p \frac{1}{1-q}=1
$$

If $p=0$ we have also $\sum_{\omega \in \Omega} p(\omega)=0+0+0+\cdots+1=1$

Consider the application

$$
Y: \Omega \rightarrow \mathbb{R}
$$

where

$$
Y(\omega)=Y\left(T^{k} H\right)=k+1
$$

Then

$$
Y \in\{1,2, \ldots\}
$$

and

$$
P(Y=k)=P\left(T^{k-1} H\right)=q^{k-1} p \quad k=1,2, \ldots
$$

Hence Y has geometric distribution with parameter p
Exercise 2.24. Show that if Y is Geometric $p, P(Y>k)=(1-p)^{k}$

Functions of discrete random variables

Let X be a discrete random variable on (Ω, \mathcal{F}, P) and let $g: \mathbb{R} \rightarrow \mathbb{R}$. Then $Y=g(X)$ defined as

$$
Y(\omega)=g(X(\omega))
$$

is a random variable on (Ω, \mathcal{F}, P)
Some examples

- if $g(x)=a x+b$ then $g(X)=a X+b$
- if $g(x)=c x^{2}$ then $g(X)=c X^{2}$
- if $g(x)=\exp (x)$ then $g(X)=\exp (X)$

If $Y=g(X)$ the probability mans function of Y is

$$
P_{y}(y)=\sum_{x \in g^{-1}(y)} P(x=x)
$$

where $g^{-1}(y)=\{x: g(x)=y\}$. Impact

$$
\{y=y\}=\mid g(x)=y\}=\left\{x \in\{x i g(x)=y\}=\left\{x \in g^{-1}(y)\right\}\right.
$$

Then $p_{y}(y)=p(g(x)=y)=p(x \in\{x: g(x)=y\})=$

$$
=\sum_{x: g(x)=y} P(X=x)=\sum_{x \in g^{-1}(y)} P(X=x)
$$

- If $Y=a X+b$ then

$$
P(Y=y)=P(a X+b=y)=P(X=(y-b) / a)
$$

- If $Y=X^{2}$ for $y>0$

$$
P(Y=y)=P\left(X^{2}=y\right)=P(X=-\sqrt{y})+P(X=\sqrt{y})
$$

Moreover for $y=0$

$$
P(Y=0)=P\left(X^{2}=0\right)=P(X=0)
$$

and for $y<0$

$$
P(Y=y)=0
$$

Expectation

Definition. If X is a discrete r.v. the expectation (expected value, mean) of X is denoted with $E(X)$ and defined by

$$
E(X)=\sum_{x \in \operatorname{lm}(X)} x P(X=x)
$$

whenever this sum converges absolutely in that $\sum_{x}|x P(X=x)|<\infty$

Expecation for some important discrete random variables X

- Bernoulli(p), $E(X)=p$
- $\operatorname{Binomial}(\mathrm{n}, \mathrm{p}) E,(X)=n p$
- Poisson $(\lambda), E(X)=\lambda$
- Geometric $(\mathrm{p}), E(X)=1 / p$
- Discrete uniform on $\{0, \ldots n\}, E(X)=n / 2$
$X \sim$ Bernoulli(p)

$$
E(X)=\sum_{x} x P(X=x)=0 \cdot(1-p)+1 \cdot p=p
$$

$X \sim \operatorname{Poisson}(\lambda)$

$$
\begin{aligned}
E(X) & =\sum_{x} x P(X=x)=\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{(x-1)}}{(x-1)!} \\
& =\lambda \sum_{y=0}^{\infty} \frac{e^{-\lambda} \lambda^{y}}{y!}=\lambda
\end{aligned}
$$

THEOREM: If X is a discrete ramolom variable mol $g: R \rightarrow R$ them $E(g(X))=\sum_{x \in I_{m}(x)} g(x) P(X=x)$ wherever this sum converges absolutely.
(In fact $Y=g(X)$ takes the value $g(x)$ when X takes the value x, and this event has probchilety $P(X=x)$

Each value $g(x)[*]$ receives the "weight $P(X=x)$

Proof
Let I the image of X. The image of Y is $g(I)$

$$
\begin{aligned}
& E(Y)=\sum_{y \in g(I)}^{1} g P(Y=y)=\sum_{g \in g(I)} g \cdot \sum_{x=g(x)=y} P(X=x) \\
& =\sum_{g \in-g(I)} \sum_{x: g(x)=y} y \cdot P(X=x)=\sum_{g \in g(I)} \sum_{x: g(x)=y} g(x) P(X=x) \\
& =\sum_{x \in I} g(x) \cdot P(X=x)
\end{aligned}
$$

THEOREM
Let X be a discrete random variables. If $P(X \geqslant 0)=1$ (X takes non negative values) and $E(X)=0$, then $P(X=0)=1$
proof
Infract $0=\sum_{x} x P(X=x)=0 \cdot P(X=0)+\sum_{x>0} x \cdot P(X=x)$
Hence $\sum_{x>0} x P(\dot{X}=x)=0$ which is possible only If $P(X=x)=0 \quad \forall x>0$. There fore $P(X=0)=1$

Exercise
Suppose that X is a discrete random variable with mean $Y=E(X)$. Comsioler $Y=a X+b$. Find $E(Y)$
$Y=g(X)^{\prime}$ where $g=a x+b$

$$
\begin{aligned}
& E(Y)=\sum_{x} g(x) P(X=x)=\sum_{x}(a x+b) P(X=x)= \\
& =\sum_{x} a \times P(X=x)+\sum_{x} b P(X=x)=a \cdot \sum_{x} x P(X=x)+b \sum_{x} P(X=x)= \\
& \quad=a E(X)+b=a y+b
\end{aligned}
$$

Variance

Definition The variance $\operatorname{var}(X)$ of a discrete random variable X is defined by

$$
\operatorname{var}(X)=E\left([X-E(X)]^{2}\right)
$$

Consider $g(x)=(x-\mu)^{2}$ where $\mu=E(X)$ and remember that

$$
E(g(X))=\sum_{x \in \operatorname{lm}(X)} g(x) P(X=x)
$$

Then

$$
\operatorname{var}(X)=\sum_{x \in \operatorname{lm}(X)}(x-\mu)^{2} P(X=x)
$$

Note that $\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}$

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{x}(x-\mu)^{2} P(X=x) \\
& =\sum_{x}\left(x^{2}-2 x \mu+\mu^{2}\right) P(X=x) \\
& =\sum_{x} x^{2} P(X=x)-2 \mu \sum_{x} x P(X=x)+\mu^{2} \sum_{x} P(X=x) \\
& =E\left(X^{2}\right)-2 \mu \mu+\mu^{2}=E\left(X^{2}\right)-\mu^{2}=E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

Comsioles $Y=a X$, them $\operatorname{var}(Y)=a^{2} \operatorname{var}(X)$
Infact $E(Y)=E(a X)=a E(X)$ and

$$
\begin{aligned}
\operatorname{var}(y) & =E\left(y^{2}\right)-E(y)^{2}=E\left(a^{2} x^{2}\right)-(a E(x))^{2} \\
& =a^{2} E\left(x^{2}\right)-a^{2} E(x)^{2}= \\
& =a^{2}\left(E\left(x^{2}\right)-E(x)^{2}\right)=a^{2} \operatorname{var}(x)
\end{aligned}
$$

Exercise: Comsioles $Y=a X+b$, show that $\operatorname{var}(Y)=a^{2} \operatorname{var}(X)$

Variance for some important discrete random variables X

- Bernoulli(p), $\operatorname{var}(X)=p q$
- Binomial $(\mathrm{n}, \mathrm{p},) \operatorname{var}(X)=n p q$
- $\operatorname{Poisson}(\lambda), \operatorname{var}(X)=\lambda$
- Geometric $(p), \operatorname{var}(X)=q / p^{2}$

