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Conditional Expectation

Suppose that X is a random variable on (Ω,F ,P) and B ∈ F with
P(B) > 0. The conditional probability of X = x given B is

P(X = x |B) = P(X (ω) = x ∩ B)

P(B)

Definition If X is a random variable and P(B) > 0, the conditional
expectation of X given B is denoted with E (X |B) and defined by

E (X |B) =
∑

x∈ Im(X )

xP(X = x |B)

whenever this sum converges absolutely



Example. Suppose to toss an unbiased coin 3 three times. Let X be the
total number of heads and B the event the first coin is head. Note that

B = {HHH,HHT ,HTH,HTT} P(B) =
4

8
=

1

2

and

P(X = 0|B) =
P(TTT ∩ B)

P(B)
=

P(∅)
1/2

=
0

1/2
= 0

P(X = 1|B) =
P({HTT ,THT ,TTH} ∩ B)

P(B)
=

P(HTT )

1/2
=

1/8

1/2
=

1

4

P(X = 2|B) =
P({HHT ,HTH,THH} ∩ B)

P(B)
=

P({HHT ,HTH})
1/2

=
2/8

1/2
=

1

2

P(X = 3|B) =
P(HHH ∩ B)

P(B)
=

P(HHH)

1/2
=

1/8

1/2
=

1

4

E (X |B) =
∑

x∈ Im(X )

xP(X = x |B) = 0 · 0 + 1 · 1
4
+ 2 · 1

2
+ 3 · 1

4
=

8

4
= 2



Theorem If X is a discrete random variable and {B1,B2, . . .} is a
partition of the sample space such that P(Bi ) > 0

E (X ) =
∑
i

E (X |Bi )P(Bi )

∑
i

E (X |Bi )P(Bi ) =
∑
i

(∑
x

xP(X = x |Bi )

)
P(Bi )

=
∑
i

∑
x

x
P(X = x ∩ Bi )

P(Bi )
P(Bi )

=
∑
i

∑
x

xP(X = x ∩ Bi ) =
∑
x

∑
i

xP(X = x ∩ Bi )

=
∑
x

x
∑
i

P(X = x ∩ Bi ) =
∑
x

xP(X = x)



Example. Suppose to toss an unbiased coin 3 three times. Let X be the
total number of heads and B the event the first coin is head. In this case
B̄ is the event the first coin is tail and

E (X ) = 0 · 1
8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

12

8
=

3

2
= 1.5

Moreover1

E (X |B) = 2 and E (X |B̄) = 1

Note that, as expected from the previous theorem,

E (X ) = E (X |B)P(B) + E (X |B̄)P(B̄) = 2 · 1
2
+ 1 · 1

2
= 1.5

1verify for exercise that E(X |B̄) = 1



Geometric series again... we know that if |x | < 1

1

1− x
=

∞∑
k=0

xk

Then taking derivatives ... under the sum

1

(1− x)2
=

d

dx

1

1− x
=

d

dx

∞∑
k=0

xk =
∞∑
k=0

d

dx
xk =

∞∑
k=1

kxk−1

Then if X ∼ Geometric(p), that is P(X = k) = qk−1p for k = 1, 2, . . .

E (X ) =
∞∑
k=1

kqk−1p =
p

(1− q)2
=

p

p2
=

1

p



Example 2.44 Suppose to toss a coin repeatedly and to stop when the
first run (sequence) of equal coins finishes

Ω = {HT ,HHT ,HHHT , · · · ,TH,TTH,TTTH, · · · }

• Take P(HkT ) = pkq and P(T kH) = qkp

• Note that∑
ω∈Ω

P(ω) =
∞∑
k=1

pkq+
∞∑
k=1

qkp = p
∞∑
k=1

pk−1q+q
∞∑
k=1

qk−1p = p+q = 1



Let X be the length of the first run

P(X = 1) = P(HT ) + P(TH) = pq + qp = 2pq

P(X = 2) = P(TTH) + P(HHT ) = p2q + q2p

...

P(X = k) = P(T kH) + P(HkT ) = pkq + qkp

Consider B1={the first coin is Head} and B2={the first coin is Tail}

P(B1) =
∞∑
k=1

pkq = p
∞∑
k=1

pk−1q = p P(B2) = 1− P(B1) = q

and

P(X = k|B = B1) =
P(X = k ∩ B1)

P(B1)
=

pkq

p
= pk−1q

P(X = k |B = B2) =
P(X = k ∩ B2)

P(B2)
=

qkp

q
= qk−1p



Then

E (X |B1) =
∑
k

kP(X = k |B = B1) =
∑
k

kpk−1q =
1

q

E (X |B2) =
∑
k

kP(X = k |B = B2) =
∑
k

kqk−1p =
1

p

E (X ) = E (X |B1)P(B1) + E (X |B2)P(B2)

=
1

q
p +

1

p
q =

p2 + q2

qp
=

(p + q)2 − 2pq

pq
=

1

pq
− 2



Bivariate discrete distributions

Let X and Y be discrete random variables on (Ω,F ,P). It is often
necessary to regard the pair (X ,Y ) as a random variable on R2

Definition If X and Y are discrete random variable on (Ω,F ,P), the
joint probability mass function pX ,Y of (X ,Y ) is the function

pXY : R2 → [0, 1]

defined by

pXY (x , y) = P(ω ∈ Ω : X (ω) = x and Y (ω) = y)

We use the abbreviation

pX ,Y (x , y) = P(X = x ,Y = y)



Properties of the joint probability mass function

• pXY (x , y) = 0 unless X ∈ Im(X) and y ∈ Im(Y)

• The summation of the values assumed by the pmf is 1∑
x∈Im(X )

∑
y∈Im(Y )

pXY (x , y) = 1

• The marginal probability mass function of X and Y can be
obtained by

pX (x) = P(X = x) =
∑

y∈ImY

pXY (X = x ,Y = y) =
∑
y

pX ,Y (x , y)

pY (y) = P(Y = x) =
∑

x∈ImX

pXY (X = x ,Y = y) =
∑
x

pX ,Y (x , y)



Exercise 3.8 Two cards are drawn at random from a deck of 52 cards. If
X denotes the number of aces drawn and Y denotes the number of kings
drawn display the joint mass function of (X ,Y )

X ∈ {0, 1, 2}, Y ∈ {0, 1, 2}

pXY (0, 0) = P(X = 0,Y = 0) = P(no aces ∩ no kings ) =

(44
2

)(52
2

) =
44 · 43
52 · 51

pXY (0, 1) = P(X = 0,Y = 1) = P(no aces ∩ 1 king ) =

(4
1

)(44
1

)(52
2

) =
4 · 44 · 2
52 · 51

pXY (0, 2) = P(X = 0,Y = 2) = P( 2 kings ) =

(4
2

)(52
2

) =
4 · 3

52 · 51

pXY (1, 0) = · · · =
4 · 44 · 2
52 · 51

pXY (1, 1) = P(X = 1,Y = 1) = P(1 ace ∩ 1 kings ) =

(4
1

)(4
1

)(52
2

) =
4 · 4 · 2
52 · 51

pXY (2, 0) = · · · =
4 · 3

52 · 51
pXY (1, 2) = pXY (2, 1) = pXY (2, 2) = 0



The joint probability mass function can be displayed in the following form

X 0 1 2
Y

0 44·43
52·51

4·44·2
52·51

4·3
52·51

1 4·44·2
52·51

4·4·2
52·51 0

2 4·3
52·51 0 0

Note that

P(X = 0) = P(no aces) =

(
48
2

)(
52
2

) =
48 · 47
52 · 51

=
2256

52 · 51

Similarly

P(X = 0) =
∑
y

pXY (0, y) =
44 · 43 + 4 · 44 · 2 + 4 · 3

52 · 51
=

2256

52 · 51



Expectation

If X and Y are discrete random variables on (Ω,F ,P) and g : R2 → R
then Z = g(X ,Y ) is a discrete random variable defined by

Z (ω) = g(X (ω),Y (ω))

.
The expectation of Z is

E (Z ) = E (g(X ,Y )) =
∑
z

zP(Z = z)

where
P(Z = z) = P(ω ∈ Ω : g(X (ω),Y (ω)) = z)

Theorem We have that

E (g(X ,Y )) =
∑

x∈Im(X )

∑
y∈Im(Y )

g(x , y)P(X = x ,Y = y)



Linearity of the mean

E (aX + bY ) = aE (X ) + bE (Y )



Independence

Two events A and B are independent if P(A ∩ B) = P(A)P(B)

Definition Two discrete random variables X and Y are independent if
the pair of event {X = x} and {Y = y} are independent for all x , y ∈ R,
that is

P(X = x ,Y = y) = P(X = x)P(Y = y) ∀x , y ∈ R

Random variables that are not independent are dependent



Theorem Discrete random variables X and Y are independent if and
only if there exist functions f , g : R → R such that the joint probability
mass function satisfies

pXY (x , y) = f (x)g(y) ∀x , y ∈ R

Proof, independence ⇒ ∃ f , g

Note that if X and Y are independent

pXY (x , y) = pX (x)pY (y) ∀x , y ∈ R

Then we can take f (x) = pX (x) and g(y) = pY (y)



Proof, ∃ f , g ⇒ independence



Theorem If X and Y are independent discrete random variables with
expectations E (X ) and E (Y ) then

E (XY ) = E (X )E (Y )

Proof

E (XY ) =
∑
x

∑
y

x y P(X = x ,Y = y)

=
∑
x

∑
y

x y P(X = x)P(Y = y)

=
∑
x

x P(X = x)
∑
y

y P(Y = y) = E (X )E (Y )

Warning The converse is not true! We can have E (XY ) = E (X )E (Y )
even for dependent random variables



Theorem Discrete random variables X and Y are independent if and
only if

E (g(X )h(Y )) = E (g(X ))E (h(Y ))

for all functions g , h : R → R for which the expectations E (g(X )) and
E (h(Y )) exist. No proof



Example 3.22 Ω = {−1, 0, 1} X (ω) = ω, Y (ω) = |ω|. Show that X
and Y are dependent and E (XY ) = E (X )E (Y )

Exercise 3.23 Let X and Y be independent discrete random variables.
Prove that

P(X > x ,Y > y) = P(X > x)P(Y > y)

for all x , y ∈ R



Sums of random variables

Let X ,Y be two random variables. Do we have a formula for the
probability mass function of Z = X + Y ?

Note that

Z = z ⇐⇒ {X = x ∩ Y = z − x for some x}

Then we have

P(Z = z) = P(X + Y = z) = P

(⋃
x

{X = x ∩ Y = z − x}

)
=

∑
x∈Im(x)

P(X = x ,Y = z − x)

If X and Y are independent we have

P(Z = z) =
∑

x∈Im(x)

P(X = x)P(Y = z − x)



Exercise 3.29 X ∼ Poisson(λ), Y ∼ Poisson(µ). show that
Z = (X + Y ) ∼ Poisson(λ+ µ)

P(Z = z) =
∞∑
x=0

P(X = x)P(Y = z − x)

=
z∑

x=0

e−λλx

x!

e−µµz−x

(z − x)!
= e−(λ+µ) 1

z!

z∑
x=0

z!

x!(z − x)!
λxµz−x

=
e−(λ+µ)(λ+ µ)z

z!

z∑
x=0

(z
x

) (
λ

λ+ µ

)x ( µ

λ+ µ

)z−x

︸ ︷︷ ︸
=1

=
e−(λ+µ)(λ+ µ)z

z!



Note that for z ∈ {0, . . . , n +m}(
n +m

z

)
=

n∑
x=0

(
n

x

)(
m

z − x

)
in fact, the ways in which we can select z elements from a set of n +m
are given by the ways in which we choose x elements from the group of n
and z − x from the group of m for all the possible values x

Pay attention to the limits of the sum since 0 ≤ z − x ≤ m, that is

z −m ≤ x ≤ z

However we may adopt the following convention:
(
r
y

)
is 0 if y < 0 or y > r



Exercise 3.30 X ∼ Binomial(n, p), Y ∼ be Binomial(m, p). Show that
Z = (X + Y ) ∼ Binomial(m + n, p).

Im(Z ) = {0, . . . n +m}

P(Z = z) =
n∑

x=0

P(X = x)P(Y = z − x)

=
n∑

x=0

(
n

x

)
px(1− p)n−x

(
m

z − x

)
pz−x(1− p)m−(z−x)

= pz(1− p)m+n−z

min {n,z}∑
x=max {0,z−m}

(
n

x

)(
m

z − x

)

=

(
n +m

z

)
pz(1− p)m+n−z



Exercise 3.31 Show by induction that the sum of n independent random
variables, each having the Bernoulli distribution with parameter p, has
the binomial distribution with parameters n and p.

• A Bernoulli(p) is a Binomial (1,p)

• Let X1,X2 two independent Bernoulli(p). Z = X1 + X2

Im(Z ) = {0, 1, 2}

P(Z = z) =

 (1− p)2 z = 0
2p(1− p) z = 1
p2 z = 2

That is Z ∼ Binomial(2, p)



• Assume that Y = X1 + . . .+ Xn is Binomial(n, p) and let X = Xn+1

be a Bernoulli(p) independent of X1, . . .Xn . Take Z = X + Y
Im(Y ) = {0, 1, . . . n + 1}

P(Z = z) =
1∑

x=0

P(X = x)P(Y = z − x)

= (1− p)

(
n

z

)
pz(1− p)n−z + p

(
n

z − 1

)
pz−1(1− p)n−(z−1)

=

(
n

z

)
pz(1− p)n+1−z +

(
n

z − 1

)
pz(1− p)n−(z−1)

=

((
n

z

)
+

(
n

z − 1

))
pz(1− p)n+1−z =

(
n + 1

z

)
pz(1− p)n+1−z

(
n+1
z

)
=
(
n
z

)
+
(

n
z−1

)
since to select z items from n + 1 we have

(
n
z

)
groups without the last item plus all the other groups with the last
item which are

(
n

z−1

)
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