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Conditional Expectation

Suppose that X is a random variable on (Q, F, P) and B € F with
P(B) > 0. The conditional probability of X = x given B is
P(X(w)=xnNB)

P(B)

P(X = x|B) =

Definition If X is a random variable and P(B) > 0, the conditional
expectation of X given B is denoted with E(X|B) and defined by

E(X|B)= > xP(X=x|B)
x€ Im(X)

whenever this sum converges absolutely



Example. Suppose to toss an unbiased coin 3 three times. Let X be the

total number of heads and B the event the first coin is head. Note that

and
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Theorem If X is a discrete random variable and {By, B,,...} is a
partition of the sample space such that P(B;) > 0

=> E(X|B)P(B

> E(X|B)P(B) = Z(pr _xB> P(B:)

ZZX —xﬁB)P(Bl)
ZZXP(X—xﬁB ZZXP =xN B))
EX:XZ:P(X:xmB,-):Z:xP(X:x)



Example. Suppose to toss an unbiased coin 3 three times. Let X be the
t9ta| number of heads and B the event the first coin is head. In this case
B is the event the first coin is tail and

1 3 3 1 12 3

E(X)=0-2+41-2+2-243.2="=-=15
%) s T8t 8T8 2

Moreover? _
E(X|By=2 and E(X|B)=1
Note that, as expected from the previous theorem,

E(X) = E(X|B)P(B) + E(X|B)P(B) = 2- % +1- % =15

Lverify for exercise that E(X|B) =1



Geometric series again... we know that if [x| <1

00
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k=0

Then taking derivatives ... under the sum
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Then if X ~ Geometric(p), that is P(X = k) =gq
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; (1—q)?




Example 2.44 Suppose to toss a coin repeatedly and to stop when the
first run (sequence) of equal coins finishes

Q= {HT,HHT ,HHHT,--- | TH, TTH, TTTH,---}

e Take P(H*T) = pkq and P(T*H) = q¢“p
e Note that

S Pw) =D pg+d dp=p> p"atq) ¢ p=ptqg=1
k=1 k=1 k=1 k=1

w€eN



Let X be the length of the first run

P(X=1) = P(HT)+ P(TH) = pq+qp =2pq
P(X =2) = P(TTH)+ P(HHT) = p*q+ ¢°p
P(X=k) = P(T'H)+P(H*T)=p"q+q"p

Consider By={the first coin is Head} and B,={the first coin is Tail}

P(Bi)=> pq=p) p*'q=p P(B;)=1-P(B)=gq
k=1 k=1

and
P(X=knNnB k
PIX = k|B = B) = PX=KOBY) _ Pl _
P(B1) p
P(X=knNnB k
PX = k|B = By) = PTX=KOB) _ P _ e,

P(B>) q



Then

Q|+

E(X|B1) ZkP =klB=B1)=)Y kp*"'q=
k

E(X|B) =) kP(X=k|B=B))=> kq*'p=
E(X) = E(X|B1)P(B1)+ E(X|B2)P(B>)
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Bivariate discrete distributions

Let X and Y be discrete random variables on (2, F, P). It is often
necessary to regard the pair (X, Y) as a random variable on R?

Definition If X and Y are discrete random variable on (2, F, P), the
joint probability mass function px y of (X, Y) is the function

pxy R2 — [0, 1]
defined by

pxy(x,y) = Plw € Q: X(w) = x and Y(w) =y)

We use the abbreviation

px.y(x,y) =P(X=x,Y =y)



Properties of the joint probability mass function
e pxy(x,y) =0 unless X € Im(X) and y € Im(Y)
e The summation of the values assumed by the pmf is 1

> > pxvlxy) =1

xelm(X) yelm(Y)

e The marginal probability mass function of X and Y can be
obtained by

px(x) =P(X=x)= > pxr(X=x,Y=y)=> pxy(xy)
py(y)=P(Y=x)= > pxy(X=xY=y)=> pxy(xy)

x€lmX



Exercise 3.8 Two cards are drawn at random from a deck of 52 cards. If
X denotes the number of aces drawn and Y denotes the number of kings
drawn display the joint mass function of (X, Y)

X €{0,1,2}, Y € {0,1,2}

pxy(0,0)

pxy(0,1)

pxv(0,2)

pxy(1,0)

pxy(1,1)

pxy(2,0)
pxv(1,2)

44
P(X_07Y_O)_P(noacesﬂnokingS)—%_ggigi
4\ (44
P(X =0,Y =1) = P(no aces N 1king):(1()52(2)1):45.24~45'12
. () _ 43
P(X=0,Y=2)=P(2k =2 T
(X=0o, ) = P(2 kings ) () ~ 5251
4442
© 52.51

P(X=1,Y =1)=P(1 ace N 1kings )= =

4.3
~ 52.51
pxy(2,1) = pxy(2,2) =0




The joint probability mass function can be displayed in the following form

X 0 1 2
Y
0 44.43 4442 43
51 52.51  52.51

442 442

1 52.51 52.51 0
43

2 52.51 0 0

Note that

(%) 48-47 2256

P(X =0)=P =2, = =
(X =0) = P(no aces) (%3 T 52.51 5251

Similarly
44 .43+ 4-44.2 +4.3 2256
y




Expectation

If X and Y are discrete random variables on (Q, F,P) and g : R> - R
then Z = g(X, Y) is a discrete random variable defined by

Z(w) = g(X(w), Y(w))

The expectation of Z is

where

Theorem We have that

E@X,Y)= > > ¢ X=xY=y)

xe€lm(X) yelm(Y)



Linearity of the mean
E(aX + bY) = aE(X) + bE(Y)

Tofect Elaks %\/) h c.z%/x)%r «)%{'\//’ Plx=x yf“'J
S (ax+by) P(X=x, V- 4 QL,{-C‘\’(F()( X Y%/
; P(Xx)
P(K=x Y= @/
xr/)(x —rng\D[\/‘ﬁj




Independence

Two events A and B are independent if P(AN B) = P(A)P(B)
Definition Two discrete random variables X and Y are independent if
the pair of event {X = x} and {Y = y} are independent for all x,y € R,
that is

PX=x,Y=y)=P(X=x)P(Y=y) Vx,yeR

Random variables that are not independent are dependent



Theorem Discrete random variables X and Y are independent if and
only if there exist functions 7, g : R — R such that the joint probability
mass function satisfies

pxy(x,y) = f(x)g(y) Vx,y €R

Proof, independence = 3f, g
Note that if X and Y are independent

pxy(x,y) = px(x)py(y) Vx,y €R

Then we can take f(x) = px(x) and g(y) = py(y)



Proof, 3f,g = independence

Sufpone Flek Vx\, C»(,-l):{’(z).ﬁr\/) ¥ oxeTao (¥) ye ’Iﬂ(\/}

_ o _ .

Thaa P ()= é, PY/*/(K'%) : z {’w@w. {)(u ;,3 9

Rca) = E 0, (4] - z frergqeq) < 404 2 Loy
Ho\/.go\/.l.\/ o

4272 (,4] = 2 006 0x) - 2. Z ale) {(x) ~ 5 Jix] 3
,(Z_/Px,.,x\[/ ”9’1 f/ ‘ ‘3’3"}(} K{’z ig(\/)

Oy )= 1) -4 = @186 4 =
= . .—_\ - 5 = (]z (% 4 >
ffx} AG) .3_{)/%/ 72130/ (fx 3’3 J)f‘g 4) f{)ﬁ’l)

= Ox &) Py la)



Theorem If X and Y are independent discrete random variables with
expectations E(X) and E(Y) then

E(XY) = E(X)E(Y)
Proof

E(XY) = ZZXyP(X:X,Y:y)
ZZX)/P )P(Y =)
= ZXP =x) Y _yP(Y =y) = E(X)E(Y)

Warning The converse is not true! We can have E(XY) = E(X)E(Y)
even for dependent random variables



Theorem Discrete random variables X and Y are independent if and
only if

E(g(X)h(Y)) = E(g(X))E(h(Y))
for all functions g, h: R — R for which the expectations E(g(X)) and
E(h(Y)) exist. No proof



Example 3.22 Q ={-1,0,1} X(w) =w, Y(w) = |w|. Show that X
and Y are dependent and E(XY) = E(X)E(Y)

Exercise 3.23 Let X and Y be independent discrete random variables.

Prove that
P(X>x,Y >y)=P(X >x)P(Y >y)

forall x,y e R



Sums of random variables

Let X, Y be two random variables. Do we have a formula for the
probability mass function of Z = X + Y7

Note that
Z=z < {X=xNY =z—x for some x}

Then we have
P(Z=z) = PX+Y=2z2)= (U{x_xm/_z—x}>
Z P(X=x,Y=z-x)

x€Im(x)

If X and Y are independent we have

P(Z=2z)= ) PX=x)P(Y=z-x)

x€lm(x)



Exercise 3.29 X ~ Poisson()), Y ~ Poisson(u). show that
Z = (X+Y) ~ Poisson(\ + p)
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Note that for z € {0,...,n+ m}

<n+m) - n <n>< . )
z o Z x)\z—x
x=0
in fact, the ways in which we can select z elements from a set of n+ m

are given by the ways in which we choose x elements from the group of n
and z — x from the group of m for all the possible values x

Pay attention to the limits of the sum since 0 < z — x < m, that is
z—m<x<z

However we may adopt the following convention:(;) isOify<Oory>r



Exercise 3.30 X ~ Binomial(n, p), Y ~ be Binomial(m, p). Show that
Z = (X+Y) ~ Binomial(m + n, p).

Im(Z)={0,...n+ m}

n

PZ=2) = 3 PX=x)P(Y =2
) Z (a7 )o e

= p(1—p)mtn? mi%ﬂ} (Z) (z mX)

x=max {0,z—m}

n+m Z mr+n—z
( z )p(l—p) *



Exercise 3.31 Show by induction that the sum of n independent random

variables, each having the Bernoulli distribution with parameter p, has
the binomial distribution with parameters n and p.

e A Bernoulli(p) is a Binomial (1,p)

e Let Xj, X; two independent Bernoulli(p). Z = X1 + Xz
Im(Z) ={0,1,2}

(1-p3 2z=0
P(Z=z)=4 2p(1—p) z=1
p° z=2
That is Z ~ Binomial(2, p)



e Assume that Y = X; + ...+ X, is Binomial(n, p) and let X = X,,;1
be a Bernoulli(p) independent of Xi,...X, . Take Z=X+Y
Im(Y)=1{0,1,...n+1}

P(Z=2) = Y P(X=x)P(Y=z-x)
=0

(oo, oo

(Z) p(1— p)i-z 4 (Z i 1) b(1L— p)r D
((D * (z ﬁ 1)) p(1—p)i s = <nj 1) p(1 = p)is

(nil) = (") + (,",) since to select z items from n+ 1 we have (?)

groups without the last item plus all the other groups with the last
item which are (Zfl)

x
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