Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 4

Conditional expectation

Bivariate discrete distributions

Expectation in the multivariate case

Independence

Sums of random variables

Conditional Expectation

Suppose that X is a random variable on (Ω, \mathcal{F}, P) and $B \in \mathcal{F}$ with $P(B)>0$. The conditional probability of $X=x$ given B is

$$
P(X=x \mid B)=\frac{P(X(\omega)=x \cap B)}{P(B)}
$$

Definition If X is a random variable and $P(B)>0$, the conditional expectation of X given B is denoted with $E(X \mid B)$ and defined by

$$
E(X \mid B)=\sum_{x \in \operatorname{lm}(X)} x P(X=x \mid B)
$$

whenever this sum converges absolutely

Example. Suppose to toss an unbiased coin 3 three times. Let X be the total number of heads and B the event the first coin is head. Note that

$$
B=\{H H H, H H T, H T H, H T T\} \quad P(B)=\frac{4}{8}=\frac{1}{2}
$$

and

$$
\begin{aligned}
& P(X=0 \mid B)=\frac{P(T T T \cap B)}{P(B)}=\frac{P(\emptyset)}{1 / 2}=\frac{0}{1 / 2}=0 \\
& P(X=1 \mid B)=\frac{P(\{H T T, T H T, T T H\} \cap B)}{P(B)}=\frac{P(H T T)}{1 / 2}=\frac{1 / 8}{1 / 2}=\frac{1}{4} \\
& P(X=2 \mid B)=\frac{P(\{H H T, H T H, T H H\} \cap B)}{P(B)}=\frac{P(\{H H T, H T H\})}{1 / 2}=\frac{2 / 8}{1 / 2}=\frac{1}{2} \\
& P(X=3 \mid B)=\frac{P(H H H \cap B)}{P(B)}=\frac{P(H H H)}{1 / 2}=\frac{1 / 8}{1 / 2}=\frac{1}{4} \\
& E(X \mid B)=\sum_{x \in \operatorname{lm}(X)} x P(X=x \mid B)=0 \cdot 0+1 \cdot \frac{1}{4}+2 \cdot \frac{1}{2}+3 \cdot \frac{1}{4}=\frac{8}{4}=2
\end{aligned}
$$

Theorem If X is a discrete random variable and $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of the sample space such that $P\left(B_{i}\right)>0$

$$
\begin{aligned}
& E(X)=\sum_{i} E\left(X \mid B_{i}\right) P\left(B_{i}\right) \\
& \sum_{i} E\left(X \mid B_{i}\right) P\left(B_{i}\right)= \sum_{i}\left(\sum_{x} x P\left(X=x \mid B_{i}\right)\right) P\left(B_{i}\right) \\
&= \sum_{i} \sum_{x} x \frac{P\left(X=x \cap B_{i}\right)}{P\left(B_{i}\right)} P\left(B_{i}\right) \\
&= \sum_{i} \sum_{x} x P\left(X=x \cap B_{i}\right)=\sum_{x} \sum_{i} x P\left(X=x \cap B_{i}\right) \\
&= \sum_{x} x \sum_{i} P\left(X=x \cap B_{i}\right)=\sum_{x} x P(X=x)
\end{aligned}
$$

Example. Suppose to toss an unbiased coin 3 three times. Let X be the total number of heads and B the event the first coin is head. In this case \bar{B} is the event the first coin is tail and

$$
E(X)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{12}{8}=\frac{3}{2}=1.5
$$

Moreover ${ }^{1}$

$$
E(X \mid B)=2 \quad \text { and } \quad E(X \mid \bar{B})=1
$$

Note that, as expected from the previous theorem,

$$
E(X)=E(X \mid B) P(B)+E(X \mid \bar{B}) P(\bar{B})=2 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=1.5
$$

${ }^{1}$ verify for exercise that $E(X \mid \bar{B})=1$

Geometric series again... we know that if $|x|<1$

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

Then taking derivatives ... under the sum

$$
\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}=\frac{d}{d x} \sum_{k=0}^{\infty} x^{k}=\sum_{k=0}^{\infty} \frac{d}{d x} x^{k}=\sum_{k=1}^{\infty} k x^{k-1}
$$

Then if $X \sim$ Geometric (p), that is $P(X=k)=q^{k-1} p$ for $k=1,2, \ldots$

$$
E(X)=\sum_{k=1}^{\infty} k q^{k-1} p=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

Example 2.44 Suppose to toss a coin repeatedly and to stop when the first run (sequence) of equal coins finishes

$$
\Omega=\{H T, H H T, H H H T, \cdots, T H, T T H, T T T H, \cdots\}
$$

- Take $P\left(H^{k} T\right)=p^{k} q$ and $P\left(T^{k} H\right)=q^{k} p$
- Note that

$$
\sum_{\omega \in \Omega} P(\omega)=\sum_{k=1}^{\infty} p^{k} q+\sum_{k=1}^{\infty} q^{k} p=p \sum_{k=1}^{\infty} p^{k-1} q+q \sum_{k=1}^{\infty} q^{k-1} p=p+q=1
$$

Let X be the length of the first run

$$
\begin{aligned}
P(X=1) & =P(H T)+P(T H)=p q+q p=2 p q \\
P(X=2) & =P(T T H)+P(H H T)=p^{2} q+q^{2} p \\
& \vdots \\
P(X=k) & =P\left(T^{k} H\right)+P\left(H^{k} T\right)=p^{k} q+q^{k} p
\end{aligned}
$$

Consider $B_{1}=\{$ the first coin is Head $\}$ and $B_{2}=\{$ the first coin is Tail $\}$

$$
P\left(B_{1}\right)=\sum_{k=1}^{\infty} p^{k} q=p \sum_{k=1}^{\infty} p^{k-1} q=p \quad P\left(B_{2}\right)=1-P\left(B_{1}\right)=q
$$

and

$$
\begin{aligned}
& P\left(X=k \mid B=B_{1}\right)=\frac{P\left(X=k \cap B_{1}\right)}{P\left(B_{1}\right)}=\frac{p^{k} q}{p}=p^{k-1} q \\
& P\left(X=k \mid B=B_{2}\right)=\frac{P\left(X=k \cap B_{2}\right)}{P\left(B_{2}\right)}=\frac{q^{k} p}{q}=q^{k-1} p
\end{aligned}
$$

Then

$$
\begin{gathered}
E\left(X \mid B_{1}\right)=\sum_{k} k P\left(X=k \mid B=B_{1}\right)=\sum_{k} k p^{k-1} q=\frac{1}{q} \\
E\left(X \mid B_{2}\right)=\sum_{k} k P\left(X=k \mid B=B_{2}\right)=\sum_{k} k q^{k-1} p=\frac{1}{p} \\
E(X)=E\left(X \mid B_{1}\right) P\left(B_{1}\right)+E\left(X \mid B_{2}\right) P\left(B_{2}\right) \\
=\frac{1}{q} p+\frac{1}{p} q=\frac{p^{2}+q^{2}}{q p}=\frac{(p+q)^{2}-2 p q}{p q}=\frac{1}{p q}-2
\end{gathered}
$$

Bivariate discrete distributions

Let X and Y be discrete random variables on (Ω, \mathcal{F}, P). It is often necessary to regard the pair (X, Y) as a random variable on \mathbb{R}^{2}

Definition If X and Y are discrete random variable on (Ω, \mathcal{F}, P), the joint probability mass function $p_{X, Y}$ of (X, Y) is the function

$$
p_{X Y}: \mathbb{R}^{2} \rightarrow[0,1]
$$

defined by

$$
p_{X Y}(x, y)=P(\omega \in \Omega: X(\omega)=x \text { and } Y(\omega)=y)
$$

We use the abbreviation

$$
p_{X, Y}(x, y)=P(X=x, Y=y)
$$

Properties of the joint probability mass function

- $p_{X Y}(x, y)=0$ unless $X \in \operatorname{Im}(X)$ and $y \in \operatorname{Im}(Y)$
- The summation of the values assumed by the pmf is 1

$$
\sum_{x \in \operatorname{Im}(X)} \sum_{y \in \operatorname{Im}(Y)} p_{X Y}(x, y)=1
$$

- The marginal probability mass function of X and Y can be obtained by

$$
\begin{aligned}
& p_{X}(x)=P(X=x)=\sum_{y \in \operatorname{lm} Y} p_{X Y}(X=x, Y=y)=\sum_{y} p_{X, Y}(x, y) \\
& p_{Y}(y)=P(Y=x)=\sum_{x \in \operatorname{Im} X} p_{X Y}(X=x, Y=y)=\sum_{x} p_{X, Y}(x, y)
\end{aligned}
$$

Exercise 3.8 Two cards are drawn at random from a deck of 52 cards. If X denotes the number of aces drawn and Y denotes the number of kings drawn display the joint mass function of (X, Y)
$X \in\{0,1,2\}, Y \in\{0,1,2\}$

$$
\begin{aligned}
& p_{X Y}(0,0)=P(X=0, Y=0)=P(\text { no aces } \cap \text { no kings })=\frac{\binom{44}{2}}{\binom{52}{2}}=\frac{44 \cdot 43}{52 \cdot 51} \\
& p_{X Y}(0,1)=P(X=0, Y=1)=P(\text { no aces } \cap 1 \text { king })=\frac{\binom{4}{1}\binom{44}{1}}{\binom{52}{2}}=\frac{4 \cdot 44 \cdot 2}{52 \cdot 51} \\
& p_{X Y}(0,2)=P(X=0, Y=2)=P(2 \text { kings })=\frac{\binom{4}{2}}{\binom{52}{2}}=\frac{4 \cdot 3}{52 \cdot 51} \\
& p_{X Y}(1,0)=\cdots=\frac{4 \cdot 44 \cdot 2}{52 \cdot 51} \\
& p_{X Y}(1,1)=P(X=1, Y=1)=P(1 \text { ace } \cap 1 \text { kings })=\frac{\binom{4}{1}\binom{4}{1}}{\binom{52}{2}}=\frac{4 \cdot 4 \cdot 2}{52 \cdot 51} \\
& p_{X Y}(2,0)=\cdots=\frac{4 \cdot 3}{52 \cdot 51} \\
& p_{X Y}(1,2)=p_{X Y}(2,1)=p_{X Y}(2,2)=0
\end{aligned}
$$

The joint probability mass function can be displayed in the following form

X	0	1	2
Y			
0		$\frac{44 \cdot 43}{52 \cdot 51}$	$\frac{4 \cdot 44 \cdot 2}{52 \cdot 51}$
1		$\frac{4 \cdot 3}{52 \cdot 51}$	
2		$\frac{4.4 \cdot 2}{52 \cdot 51}$	$\frac{4.42}{52 \cdot 51}$
$52 \cdot 51$	0	0	

Note that

$$
P(X=0)=P(\text { no aces })=\frac{\binom{48}{2}}{\binom{52}{2}}=\frac{48 \cdot 47}{52 \cdot 51}=\frac{2256}{52 \cdot 51}
$$

Similarly

$$
P(X=0)=\sum_{y} p_{X Y}(0, y)=\frac{44 \cdot 43+4 \cdot 44 \cdot 2+4 \cdot 3}{52 \cdot 51}=\frac{2256}{52 \cdot 51}
$$

Expectation

If X and Y are discrete random variables on (Ω, \mathcal{F}, P) and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ then $Z=g(X, Y)$ is a discrete random variable defined by

$$
Z(\omega)=g(X(\omega), Y(\omega))
$$

The expectation of Z is

$$
E(Z)=E(g(X, Y))=\sum_{z} z P(Z=z)
$$

where

$$
P(Z=z)=P(\omega \in \Omega: g(X(\omega), Y(\omega))=z)
$$

Theorem We have that

$$
E(g(X, Y))=\sum_{x \in \operatorname{lm}(X)} \sum_{y \in \operatorname{lm}(Y)} g(x, y) P(X=x, Y=y)
$$

Linearity of the mean

$$
\begin{gathered}
E(a X+b Y)=a E(X)+b E(Y) \\
\text { Infact } \left.E(a X+b Y)=\sum_{x \in I_{x}(x)}-\sum_{y \in I_{n}(y)} g(x, y) \cdot P(X=x, Y=y)\right) \\
=\sum_{x} \sum_{y}(a x+b y) \cdot P(X=x, Y=y)=\sum_{x} \cdot \sum_{y} a x P(X=x, Y=y)+ \\
+\sum_{x} \sum_{y} b y \cdot P(X=x, Y=y)=\sum_{x} a x \cdot \sum_{y} P(X=x, Y=y)+ \\
+\sum_{y} b y \cdot \sum_{x} P(X=x, Y=y)=x(Y=y)=\sum_{x} a x \cdot P(X=x)+\sum_{y} b y P(Y=y)
\end{gathered}
$$

Independence

Two events A and B are independent if $P(A \cap B)=P(A) P(B)$
Definition Two discrete random variables X and Y are independent if the pair of event $\{X=x\}$ and $\{Y=y\}$ are independent for all $x, y \in \mathbb{R}$, that is

$$
P(X=x, Y=y)=P(X=x) P(Y=y) \quad \forall x, y \in \mathbb{R}
$$

Random variables that are not independent are dependent

Theorem Discrete random variables X and Y are independent if and only if there exist functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that the joint probability mass function satisfies

$$
p_{X Y}(x, y)=f(x) g(y) \quad \forall x, y \in \mathbb{R}
$$

Proof, independence $\Rightarrow \exists f, g$
Note that if X and Y are independent

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y) \quad \forall x, y \in \mathbb{R}
$$

Then we can take $f(x)=p_{X}(x)$ and $g(y)=p_{Y}(y)$

Proof, $\exists f, g \Rightarrow$ independence

Suppose that $p_{x, y}(x,-1)=f(x) \cdot g(y) \quad \forall x \in I_{m}(x) \quad \forall y<I_{a}(y)$
Then

$$
\begin{aligned}
& P_{x}(x)=\sum_{y} p_{x, y}(x, y)=\sum_{y} f(x) \cdot g(y)=f(x) \cdot \sum_{y} g(y) \\
& P_{y}(y)=\sum_{x} p_{x,-1}(x, y)=\sum_{x} f(x) \cdot g(y)=g(y) \cdot \sum_{x} f(x)
\end{aligned}
$$

Move over

$$
1=\sum_{x y} p_{x, y}(x, y)=\sum_{x y} g(y) \cdot f(x)=\sum_{x} \sum_{y} g(y) f(x)=\sum_{x} f(x) \cdot \sum_{y} g(y)
$$

Them

$$
\begin{aligned}
P_{x_{1}, y}(x, y) & =f(x) \cdot g(y)=f(x) g(y) \underline{1}= \\
& =f(x) \cdot g(y) \cdot \sum_{x} f(x) \cdot \sum_{y} g(y)=\left(f(x) \cdot \sum_{y} g(y)\right) \cdot\left(g(y) \sum_{x} f(x)\right) \\
& =P_{x}(x) P_{y}(y)
\end{aligned}
$$

Theorem If X and Y are independent discrete random variables with expectations $E(X)$ and $E(Y)$ then

$$
E(X Y)=E(X) E(Y)
$$

Proof

$$
\begin{aligned}
E(X Y) & =\sum_{x} \sum_{y} x y P(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x y P(X=x) P(Y=y) \\
& =\sum_{x} x P(X=x) \sum_{y} y P(Y=y)=E(X) E(Y)
\end{aligned}
$$

Warning The converse is not true! We can have $E(X Y)=E(X) E(Y)$ even for dependent random variables

Theorem Discrete random variables X and Y are independent if and only if

$$
E(g(X) h(Y))=E(g(X)) E(h(Y))
$$

for all functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ for which the expectations $E(g(X))$ and $E(h(Y))$ exist. No proof

Example $3.22 \Omega=\{-1,0,1\} X(\omega)=\omega, Y(\omega)=|\omega|$. Show that X and Y are dependent and $E(X Y)=E(X) E(Y)$

Exercise 3.23 Let X and Y be independent discrete random variables. Prove that

$$
P(X>x, Y>y)=P(X>x) P(Y>y)
$$

for all $x, y \in \mathbb{R}$

Sums of random variables

Let X, Y be two random variables. Do we have a formula for the probability mass function of $Z=X+Y$?

Note that

$$
Z=z \Longleftrightarrow\{X=x \cap Y=z-x \text { for some } x\}
$$

Then we have

$$
\begin{aligned}
P(Z=z) & =P(X+Y=z)=P\left(\bigcup_{x}\{X=x \cap Y=z-x\}\right) \\
& =\sum_{x \in \operatorname{Im}(x)} P(X=x, Y=z-x)
\end{aligned}
$$

If X and Y are independent we have

$$
P(Z=z)=\sum_{x \in \operatorname{lm}(x)} P(X=x) P(Y=z-x)
$$

Exercise $3.29 X \sim \operatorname{Poisson}(\lambda), Y \sim \operatorname{Poisson}(\mu)$. show that $Z=(X+Y) \sim$ Poisson $(\lambda+\mu)$

$$
\begin{aligned}
P(Z=z) & =\sum_{x=0}^{\infty} P(X=x) P(Y=z-x) \\
& =\sum_{x=0}^{z} \frac{e^{-\lambda} \lambda^{x}}{x!} \frac{e^{-\mu} \mu^{z-x}}{(z-x)!}=e^{-(\lambda+\mu)} \frac{1}{z!} \sum_{x=0}^{z} \frac{z!}{x!(z-x)!} \lambda^{x} \mu^{z-x} \\
& =\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{z}}{z!} \underbrace{\sum_{x=0}^{z}\binom{z}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(\frac{\mu}{\lambda+\mu}\right)^{z-x}}_{=1} \\
& =\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{z}}{z!}
\end{aligned}
$$

Note that for $z \in\{0, \ldots, n+m\}$

$$
\binom{n+m}{z}=\sum_{x=0}^{n}\binom{n}{x}\binom{m}{z-x}
$$

in fact, the ways in which we can select z elements from a set of $n+m$ are given by the ways in which we choose x elements from the group of n and $z-x$ from the group of m for all the possible values x

Pay attention to the limits of the sum since $0 \leq z-x \leq m$, that is

$$
z-m \leq x \leq z
$$

However we may adopt the following convention: $\binom{r}{y}$ is 0 if $y<0$ or $y>r$

Exercise $3.30 X \sim \operatorname{Binomial}(n, p), Y \sim \operatorname{be} \operatorname{Binomial}(m, p)$. Show that $Z=(X+Y) \sim \operatorname{Binomial}(m+n, p)$.

$$
\operatorname{Im}(Z)=\{0, \ldots n+m\}
$$

$$
\begin{aligned}
P(Z=z) & =\sum_{x=0}^{n} P(X=x) P(Y=z-x) \\
& =\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{z-x} p^{z-x}(1-p)^{m-(z-x)} \\
& =p^{z}(1-p)^{m+n-z} \sum_{x=\max \{0, z-m\}}^{\min \{n, z\}}\binom{n}{x}\binom{m}{z-x} \\
& =\binom{n+m}{z} p^{z}(1-p)^{m+n-z}
\end{aligned}
$$

Exercise 3.31 Show by induction that the sum of n independent random variables, each having the Bernoulli distribution with parameter p, has the binomial distribution with parameters n and p.

- A Bernoulli(p) is a Binomial $(1, \mathrm{p})$
- Let X_{1}, X_{2} two independent $\operatorname{Bernoulli}(p) . Z=X_{1}+X_{2}$ $\operatorname{Im}(Z)=\{0,1,2\}$

$$
P(Z=z)= \begin{cases}(1-p)^{2} & z=0 \\ 2 p(1-p) & z=1 \\ p^{2} & z=2\end{cases}
$$

That is $Z \sim \operatorname{Binomial}(2, p)$

- Assume that $Y=X_{1}+\ldots+X_{n}$ is $\operatorname{Binomial}(n, p)$ and let $X=X_{n+1}$ be a $\operatorname{Bernoulli}(p)$ independent of $X_{1}, \ldots X_{n}$. Take $Z=X+Y$ $\operatorname{Im}(Y)=\{0,1, \ldots n+1\}$

$$
\begin{aligned}
P(Z=z) & =\sum_{x=0}^{1} P(X=x) P(Y=z-x) \\
& =(1-p)\binom{n}{z} p^{z}(1-p)^{n-z}+p\binom{n}{z-1} p^{z-1}(1-p)^{n-(z-1)} \\
& =\binom{n}{z} p^{z}(1-p)^{n+1-z}+\binom{n}{z-1} p^{z}(1-p)^{n-(z-1)} \\
& =\left(\binom{n}{z}+\binom{n}{z-1}\right) p^{z}(1-p)^{n+1-z}=\binom{n+1}{z} p^{z}(1-p)^{n+1-z}
\end{aligned}
$$

$\binom{n+1}{z}=\binom{n}{z}+\binom{n}{z-1}$ since to select z items from $n+1$ we have $\binom{n}{z}$ groups without the last item plus all the other groups with the last item which are $\binom{n}{z-1}$

