Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 7

Functions of randiom variables

Expectations of continuous random variables

Random vectors and independence

Joint density function

Marginal density functions and independence

Functions of continuous random variables

Let X be a random variable on $(\Omega, \mathcal{F} . P)$ and suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ Let $Y=g(X)$ be the mapping from $\Omega \rightarrow \mathbb{R}$ defined by

$$
Y(\omega)=g(X(\omega))
$$

If g is sufficiently well behaved (such a continuous or a monotone function), then Y is a random variable

- If we know the distribution (or the density) of X it is possible to know the distribution (or the density) of Y ?
- In the discrete case we have seen that

$$
P(Y=y)=\sum_{x: g(x)=y} P(X=x)=\sum_{x \in g^{-1}(y)} P(X=x)
$$

- and in the continuous case?

Example If X is continuous random variable with density function $f_{X}(x)$ and $g(x)=a x+b$ when $a>0$ then $Y=a X+b$ has distribution function given by

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right) \\
& =F_{X}\left(a^{-1}(y-b)\right)
\end{aligned}
$$

By differentiation with respect to y

$$
f_{Y}(y)=f_{X}\left(a^{-1}(y-b)\right) a^{-1} \quad \text { for } y \in \mathbb{R}
$$

For instance if $X \sim N(0,1)$, that is $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$ for $x \in \mathbb{R}$ the density of $Y=a X+b$ is

$$
f_{Y}(y)=a^{-1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(a^{-1}(y-b)\right)^{2}}=\frac{1}{\sqrt{2 \pi a^{2}}} \exp \left(-\frac{1}{2 a^{2}}(y-b)^{2}\right) \quad y \in \mathbb{R}
$$

Theorem If X is a continuous random variable with density function f_{X} and g is a strictly increasing and differentiable function from \mathbb{R} to \mathbb{R}, then $Y=g(X)$ has density function

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y}\left[g^{-1}(y)\right]
$$

where $g^{-1}(y)$ is the inverse function of g Infect

$$
F_{y}(y)=P(y \leqslant y)=P(g(x) \leqslant y)=P\left(x \leqslant g^{-1}(y)\right)=F_{x}\left(g^{-1}(y)\right)
$$

$\prod_{g^{-1}(y)}^{g(x)}$ and $f_{y}(y)=F_{y}^{\prime}(y)=\frac{d}{d y} F_{x}\left(g^{-1}(y)\right)=f_{x}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)$

Example Suppose that $X \sim N(0,1)$. Find the density of $Y=e^{X}$

- The function $g(x)$ is e^{x}
- The inverse of $y=e^{x}$ is $g^{-1}(y)=\log y$
- The derivative of the inverse is $\frac{d}{d y} g^{-1}(y)=\frac{1}{y}$.
- The density of X is $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$ for $x \in \mathbb{R}$,
- Then

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y}\left[g^{-1}(y)\right]=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(\log y)^{2}} \frac{1}{y} \quad y \in \mathbb{R}
$$

If $g(x)$ is strictly decreasing

$$
\begin{aligned}
F_{y}(y) & =P(Y \leqslant y)=P(g(x) \leqslant y)= \\
& =1-F_{x}\left(g^{-1}(y)\right) \\
f_{y}(y) & =\frac{\left.d x>g^{-1}(y)\right)=1-P\left(x \leqslant g^{-1}(y)\right)}{d y}\left(1-F_{x}\left(g^{-1}(y)\right)=-f_{x}\left(g^{-1}(y)\right) \cdot \frac{d}{d y} g^{-1}(y)\right.
\end{aligned}
$$

Example Suppose that $X \sim \operatorname{Unif}(0,1)$. Find the density of $Y=-\log (X)$

There is not a formula for the density of $Y=g(X)$ with general classes of functions $g \ldots$...but specific cases can be easily handled

Example If X has density $f_{X}(x)$ and $g(x)=x^{2}$, then $Y=X^{2}$ has distribution function

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P\left(X^{2} \leq y\right) \\
& = \begin{cases}0 & y<0 \\
P(-\sqrt{y} \leq X \leq \sqrt{y}) & y \geq 0\end{cases} \\
& = \begin{cases}0 & y<0 \\
F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) & y \geq 0\end{cases}
\end{aligned}
$$

The density $f_{Y}(y)=0$ if $y \leq 0$ while for $y>0$

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} F_{y}(y) \\
& =\frac{d}{d y}\left[F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})\right]=\frac{1}{2} f_{X}(\sqrt{y}) \frac{1}{\sqrt{y}}+\frac{1}{2} f_{X}(-\sqrt{y}) \frac{1}{\sqrt{y}} \\
& =\frac{1}{2} \frac{1}{\sqrt{y}}\left[f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right]
\end{aligned}
$$

The chi square χ^{2} random variable
Exercise 5.55 (Book)
$X \sim N_{\text {crab al }}(0,1) \quad f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \xrightarrow[0]{l_{x} l_{1}}$
$y=x^{2}=g(x)$ where $g(x)=x^{2}$

$$
f_{y}(y)=\frac{1}{2} \cdot \frac{1}{\sqrt{y}} \cdot\left[f_{x}(\sqrt{y})+f_{x}(-\sqrt{y})\right]=
$$

$$
=\frac{1}{2} \frac{1}{\sqrt{y}}\left[\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(\sqrt{y})^{2}}+\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(-\sqrt{y})^{2}}\right]
$$

$$
=\frac{1}{2} \frac{1}{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y} \cdot z=\frac{1}{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y}
$$

Expectation of continuous random variables

Definition If X is a continuous random variable with density f_{X} the expectation of X is

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

whenever the integral converges absolutely, in that $\int_{-\infty}^{\infty}\left|x f_{x}(x)\right| d x<\infty$
Example If $X \sim \operatorname{Uniform}(0,1)$

$$
\begin{gathered}
f_{X}(x)= \begin{cases}1 & x \in(0,1) \\
0 & \text { otherwise }\end{cases} \\
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x 1 d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
\end{gathered}
$$

Integral hy parts

$$
(l g)^{\prime}=l^{\prime} g+g^{\prime} l \Rightarrow p g=\int \rho^{\prime} g+\int g^{\prime} l \quad \int l^{\prime} g=\rho g-\int g^{\prime} l
$$

Example (Expomertial ($h 1$)
suppese thet

$$
\begin{aligned}
& P_{x}(x)= \begin{cases}0 & x \leqslant 0 \\
2 e^{-2 x} & x>0\end{cases} \\
& E(x)=\int_{-\infty}^{\infty} x \ell_{x}(x) d x=\int_{0}^{\infty} x 2 e^{-2 x} d x=\left[x \cdot\left(-e^{-2 x}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-2 x}\right) d x \\
& =[0-0]+\int_{0}^{\infty} e^{-2 x} d x=-\left.\frac{1}{2} e^{-2 x}\right|_{0} ^{\infty}=0+\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Theorem If X is a continuous random variable with density function $f_{X}(x)$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

whenever the integral converges absolutely no proof

- If X is a continuous random variable then the expectation of $Y=a X+b$ is

$$
E(Y)=\int_{-\infty}^{\infty}(a x+b) f_{X}(x) d x=a E(X)+b
$$

- The variance of X is given by

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

- The variance of $Y=a X+b$ is $\operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)$

Other important things to remember

- Also for continuous random variable $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$
- If $X \sim N\left(\mu, \sigma^{2}\right) E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
- Some random variables do not have a mean value, see the Cauchy distribution whose density is

$$
f_{x}(x)=\frac{1}{\pi\left(1+x^{2}\right)} \quad x \in \mathbb{R}
$$

Random vectors and independence

Given a probability space (Ω, \mathcal{F}, P) we can define a bivariate random variable (X, Y) which is a mapping from $\Omega \rightarrow R^{2}$

Definition The joint distribution function of (X, Y) is the mapping $F_{X Y}(x, y): \mathbb{R}^{2} \rightarrow[0,1]$ given by

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)
$$

Preporties of the joist chistsilution furuction

$$
\begin{aligned}
& \lim _{x y \rightarrow-\infty} F_{x, y}(x, y)=\lim _{\substack{x \rightarrow-\infty \\
y \rightarrow-\infty}} P(x \leqslant x, y \leqslant y)=0 \\
& \lim _{x \rightarrow \infty} F_{x \rightarrow \infty} F_{x, y}(x, y)=\lim _{\substack{x \rightarrow \infty \\
y \rightarrow \infty}} P(x \leqslant x, y \leqslant y)=P(\underbrace{}_{\text {thenet } \Omega} P(y \leqslant \infty)=1
\end{aligned}
$$

$F_{x, y}(x, y)$ is a mon-incseasing function in each variable

$$
F_{x, y}\left(x_{1}, y_{1}\right) \leqslant F_{x, y}\left(x_{2}, y_{2}\right) \quad x_{1} \leqslant x_{2} \quad y_{1} \leqslant y_{2}
$$

From the joint distribution function we cam chtuin the distsilution function $F_{X}(x)$ and $F_{Y}(y)$.
Infect

$$
F_{x}(x)=P(X \leqslant x)=P(X \leqslant x, Y \leqslant \infty)=F_{X, y}(x, \infty)
$$

or halter

Simile sly

$$
F_{x}(x)=\lim _{y \rightarrow \infty} F_{x, y}(x, y)
$$

$$
F_{y}(y)=\lim _{x \rightarrow \infty} F_{x, 1}(x, y)
$$

$F_{x}(x)$ and $F_{y}(y)$ in this context will he called marginal distributions

Exercise Suppose that (X, Y) is a bivariate random variable with joint distribution function

$$
F_{X Y}(x, y)= \begin{cases}1-e^{-x}-e^{-y}+e^{-(x+y)} & x>0 y>0 \\ 0 & \text { otherwise }\end{cases}
$$

For $x \geq 0$

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{X Y}(x, y)=\lim _{y \rightarrow \infty} 1-e^{-x}-e^{-y}+e^{-x} e^{-y}=1-e^{-x}
$$

For $x<0$

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{X Y}(x, y)=\lim _{y \rightarrow \infty} 0=0
$$

Then $X \sim$ Exponential (λ)

Definition We call X and Y independent if for all $x, y \in \mathbb{R}$ the event $\{X \leq x\}$ and $\{Y \leq y\}$ are independent

This means that X and Y are independent if for $x, y \in \mathbb{R}$

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)=F_{X}(x) F_{Y}(y)
$$

Two random variables are independent if the joint distribution function is the product of the marginal distribution functions

We study families of random variables in very much the same way. Briefly, if X_{1}, X_{2}, \ldots, X_{n} are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, their joint distribution function is the function $F_{\mathbf{X}}$: $\mathbb{R}^{n} \rightarrow[0,1]$ given by

$$
\begin{equation*}
F_{\mathbf{X}}(\mathbf{x})=\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right) \tag{6.9}
\end{equation*}
$$

for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. The variables $X_{1}, X_{2}, \ldots, X_{n}$ are called independent if

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}\right) \cdots \mathbb{P}\left(X_{n} \leq x_{n}\right) \quad \text { for } \mathbf{x} \in \mathbb{R}^{n}
$$

or equivalently if

$$
\begin{equation*}
F_{\mathbf{X}}(\mathbf{x})=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{n}}\left(x_{n}\right) \quad \text { for } \mathbf{x} \in \mathbb{R}^{n} \tag{6.10}
\end{equation*}
$$

Exercise Consider (X, Y) with joint distribution function

$$
\begin{gathered}
F_{X Y}(x, y)= \begin{cases}1-e^{-x}-e^{-y}+e^{-(x+y)} & x>0 y>0 \\
0 & \text { otherwise }\end{cases} \\
F_{X}(x)=\left\{\begin{array}{ll}
0 & 1-e^{-x}-e^{-y}+e^{-x-y} \\
1-e^{-x} & x \leq 0
\end{array} \quad \text { similarly } \quad F_{Y}(y)= \begin{cases}0 & y \leq 0 \\
1-e^{-y} & y>0\end{cases} \right. \\
F_{X}(x) F_{Y}(y)= \begin{cases}0 & x \leq 0, y>0 \\
0 & x>0, y \leq 0 \\
0 & x<0, y<0 \\
\left(1-e^{-x}\right)\left(1-e^{-y}\right)=1-e^{-x}-e^{-y}+e^{-(x+y)} & x>0, y>0\end{cases}
\end{gathered}
$$

X and Y are independent

Joint density function

Definition The pair X, Y of random variables is called jointly continuous if its joint distribution function can be written as

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)=\int_{u=-\infty}^{x} \int_{v=-\infty}^{y} f(u, v) d u d v
$$

for $x, y \in \mathbb{R}$ and some function $f: \mathbb{R}^{2} \rightarrow[0, \infty)$. If this holds, X, Y have joint density function given by $f(u, v)$ often denoted with $f_{X Y}(u, v)$

Note that when the double integral is an utegral of the kind $\int_{a}^{b} \int_{c}^{d} f(u, v) d u d v$ we have that

$$
\int_{a}^{b} \int_{c}^{d} f(u, v) d u d v=\int_{a}^{b}\left[\int_{c}^{d} f(u, v) d v\right] d v=\int_{c}^{d}\left[\int_{a}^{b} f(u, v) d u\right] d v
$$

The double istegral is the volume under the surface $f(u, v)$ on the base vectangh $(a, c)(b, c)(a, d)(b, d)$

We can charge the order of utegration also when $a=-\infty$ and $d=-\infty$. Hence

$$
\begin{aligned}
\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v & =\int_{-\infty}^{x}\left[\int_{-\infty}^{y} f(u, v) d v\right] d u \\
& =\int_{-\infty}^{y}\left[\int_{-\infty}^{x} f(u, v) d v\right] d v
\end{aligned}
$$

Other examples

$$
\int_{0}^{1} \int_{0}^{1} x y d x d y=\frac{1}{4}
$$

Note that

$$
\frac{\partial}{\partial x} \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v=\frac{\partial}{\partial x} \int_{-\infty}^{x}\left[\int_{-\infty}^{y} f(u, v) d v\right] d u
$$

$=\int_{-\infty}^{y} f(x, v) d v$ (that is the function $\int_{-\infty}^{y} f(u, v) d v$ evaluated when $u=x$)
then

$$
\frac{\partial^{2}}{\partial y \partial x} F_{x_{1}-1}(x, y)=\frac{\partial^{2}}{\partial y \partial x} \int_{-\infty}^{*} \int_{-\infty}^{y} f(x, y) d x d y=\frac{\partial}{\partial y} \int_{-\infty}^{y} f(x, v) d v: f(x, y)
$$

Anctler exevcise with douhle utegrels
Find thovalue of the utegral $\iint_{A}\left(x^{2}+\frac{1}{2} x y\right) d x d y$ whers $A={ }_{1}^{2}$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2}\left(x^{2}+\frac{1}{2} x y\right) d y d x= \\
= & \left.\int_{0}^{1} x^{2} y\right|_{0} ^{2}+\left.\frac{1}{2} x \frac{1}{2} y^{2}\right|_{0} ^{2} d x= \\
= & \int_{0}^{1}\left(2 x^{2}+\frac{1}{4} x h\right) d x=\int_{0}^{1} 2 x^{2}+x d x=\frac{2}{3} x^{3}+\left.\frac{1}{2} x^{2}\right|_{0} ^{1}= \\
= & \frac{2}{3}+\frac{1}{2}=\frac{4+3}{6}=\frac{7}{6}
\end{aligned}
$$

Consider a set

$$
T=\{x, y: a \leq x \leq b, \alpha(x) \leq y \leq \beta(x)\}
$$

then

$$
\iint_{(x, y) \in T} f(x, y) d x d y=\int_{a}^{b}\left(\int_{\alpha(x)}^{\beta(x)} f(x, y) d y\right) d x
$$

Consider a set

$$
D=\{x, y: c \leq y \leq d, \gamma(y) \leq x \leq \delta(y)\}
$$

then

$$
\iint_{(x, y) \in D} f(x, y) d x d y=\int_{c}^{d}\left(\int_{\gamma(y)}^{\delta(y)} f(x, y) d x\right) d y
$$

If $T=D$ we can use both the streets

Properties of the joint density function

Suppose that the random variables X and Y are jointly continuous. Then

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)=\int_{u=-\infty}^{x} \int_{y=-\infty}^{y} f_{X Y}(u, v) d u d v
$$

Note that

- $f_{X Y}$ is given by the second order mixed partial derivatives of $F_{X Y}$

$$
f_{X Y}(x, y)= \begin{cases}\frac{\partial^{2}}{\partial y \partial x} F_{X Y}(x, y) & \text { if exists } \\ 0 & \text { otherwise }\end{cases}
$$

- $f_{X Y}$ is non negative $f_{X Y}(x, y) \geq 0$ for $x y \in \mathbb{R}$
- The double integral of $f_{X Y}$ over \mathbb{R}^{2} is 1

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(u, v) d u d v=1
$$

- Similarly to the univariate case

$$
P(x<X \leq x+\delta x, y<Y \leq y+\delta y)=f_{X Y}(x, y) \delta x \delta y
$$

- More generally, if A is a regular subset of R^{2} and X and Y are jointly contintinuous random variables

$$
P((X, Y) \in A))=\iint_{(x, y) \in A} f_{X Y}(u, v) d u d v
$$

Bivariate Uniform random variable

Consider $a>0, b>0$. The function

$$
f(x,-1)=\left\{\begin{array}{lll}
\frac{1}{a b} & \text { if } 0<x<a & \text { and } 0<y<b \\
0 & \text { otlevwine } & \frac{1}{a b}
\end{array}\right.
$$

is a joint de asity function.
Infant $f(x, y) \geqslant 0 \quad \forall x \dot{y}$ and

$$
\begin{aligned}
& \quad \int_{-\infty}^{0} \int_{-\infty}^{\infty} f(x, y) d x d y=\int_{0}^{a}\left(\int_{0}^{b} \frac{1}{a b} d y\right) d x=\left.\frac{1}{a b} \int_{0}^{a} y\right|_{0} ^{b} d x \\
& =\frac{1}{a b} \int_{0}^{a} b d x=\frac{1}{a} \int_{0}^{a} d x=\left.\frac{1}{a} x\right|_{0} ^{a}=\frac{a}{a}=1
\end{aligned}
$$

In general we say that (x, y) is uniform on the set B if

$$
f(x,-1)= \begin{cases}\frac{1}{\operatorname{arcea}(B)} & \text { if } x, y \in B \\ 0 & \text { other wise }\end{cases}
$$

If $B=[0, a] \times[0, b] \frac{5}{T_{a}^{4}} \frac{B}{a}$ we have the density function seen in the previous slide

Note that if $\left(x_{1}-1\right)$ is uniform on B

$$
\begin{aligned}
P((x, y) \in A) & =\iint_{A} f(x, y) d x d y=\iint_{A \cap B} f(x, y) d x d y= \\
& =\frac{1}{\text { area of B }} \cdot \iint_{A \cap B} 1 d x d y=\frac{\operatorname{arca}(A \cap B)}{\operatorname{arcea}(B)}
\end{aligned}
$$

Suppose that B is the set given by $x, y: x^{2}+y^{2} \leqslant 1$

$$
x^{2}+y^{2}=1
$$

A is the set $(x, y): x>0, y>0 \quad x^{2}+y^{2} \leqslant 1$
If (x, y) is uniform on $B \quad P((x, y) \in A)=\frac{1}{h}=\frac{\operatorname{arsea}(A \cap B)}{\text { area } B}$

$$
=\frac{\operatorname{areca}(A)}{\operatorname{arca}(B)}
$$

Exercise 6.26 Suppose that (X, Y) have joint density function

$$
f(x, y)= \begin{cases}e^{-x-y} & x>0 y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find $P(X+Y \leq 1)$ and $P(X>Y)$
$P(x+y \leqslant 1)=P((x, y \mid \in A)$ where $A=\{(x, y): x+y \leqslant 1\}=\{(x, y): y \leqslant 1-x\}$

$$
\begin{aligned}
& =\iint_{A} \mid(x, y) d x d y=\int_{0}^{1}\left(\int_{0}^{1-x} e^{-x-y} d y\left|d x=-e^{-y}\right|_{y=0}=1\right. \\
& =\int_{0}^{1} e^{-x}\left(\int_{0}^{1-x} e^{-y} d y\right) d x=\int_{0}^{1} e^{-x}\left(-\left.\left.e^{-y}\right|_{0} ^{1-x}\right|_{0} ^{1} d x=\int_{0}^{1} e^{-x}\left(1-e^{-1 \cdot x)}\right)=\right. \\
& =\int_{0}^{1} e^{-x}-e^{-x-1 \pm x} d x=\int_{0}^{1}\left(e^{-x}-e^{-1}\right) d x=-\left.e^{-x}\right|_{0} ^{1}-\left.e^{-1} x\right|_{0} ^{1}= \\
& =1-e^{-1}-e^{-1}=1-2 e^{-1}=1-\frac{2}{e}
\end{aligned}
$$

$$
\begin{aligned}
& P(x>y)=P((x, y) \in A) \quad A=\{(x, y): x>y\} \\
& \xrightarrow[x]{y \rightarrow} \\
& P(x>y)=\int_{0}^{\infty}\left(\int_{0}^{x} e^{-x-y} d y\right) d x=\int_{0}^{\infty} e^{-x} \int_{0}^{x} e^{-y} d y d x=\int_{0}^{\infty} e^{-x}\left(-\left.e^{-y}\right|_{0} ^{x}\right) d x \\
& =\int_{0}^{\infty} e^{-x}\left(1-e^{-x}\right) d x=\int_{0}^{\infty} e^{-x} d x-\int_{0}^{\infty} e^{-2 x} d x=1-\frac{1}{2} \cdot \int_{0}^{\infty} 2 e^{-2 x} d x \\
& =1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Marginal density functions and independence
if X, Y is a jointly continuous random variable

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x
$$

In fact

$$
\begin{aligned}
f_{X}(x) & =\frac{d}{d x} F_{X}(x)=\frac{d}{d x} P(X \leq x)=\frac{d}{d x} P(X \leq x, Y \leq \infty) \\
& =\frac{d}{d x} \int_{u=-\infty}^{x} \int_{v=-\infty}^{\infty} f_{X Y}(u, v) d u d v \\
& =\frac{d}{d x} \int_{-\infty}^{x}\left(\int_{-\infty}^{\infty} f_{X Y}(u, v) d v\right) d u \\
& =\int_{-\infty}^{\infty} f_{X Y}(x, v) d v
\end{aligned}
$$

Note that if X and Y are udipender then

$$
F_{x, y}(x, y)=P(x \leqslant x, y \leqslant y)=P(x \leqslant x) \cdot P(y \leqslant y)=F_{x}(x) F_{y}(y)
$$

and

$$
f_{x, y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{x, y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{x}(x) \cdot F_{y}(y)=f_{x}(x) f_{y}(y) \forall x y
$$

Now suppose that $f_{x, y}(x, y)=f_{x}(x) \cdot f_{y}(y) \quad \forall x,-y$. Then

$$
F_{x, y}(x, y)=\int_{u=-\infty}^{x} \int_{v=-\infty}^{y} f_{x}(u) f_{y}(v) d u d v=\int_{v=\infty}^{x} f_{x}(u) \cdot F_{y}(y) d v=F_{x}(x) \cdot F_{y}(y)
$$

X ad Y are udepondent if and only if $f_{x, y}(x, y)=f_{x}(x) \cdot f_{y}(y) \forall x, y$

Theorem. Jointly continuous random variables X and Y are independent if and only if their joint density function may be expressed in the form

$$
f_{x, y}(x, y)=g(k) \cdot h(y) \quad \text { for } x, y \in R
$$

as the product of a fraction of the first vasiabh and a function of the second. (If you want adopt the proof dome in the discrete case)

- Example 6.32 On the whiteboard
- Written exam June 2021. Exercise 3, points a,b and c. On the whiteboard
- Written exam June 2021. Exercise 4, points a, marginal of X. On the whiteboard

