Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 8

Sums of continuous random variables

Changes of variables

Conditional density function

Example 6.33 Suppose that X and Y have joint density function

$$
f(x, y)= \begin{cases}c e^{-x-y} & 0<x<y \\ 0 & \text { otherwise }\end{cases}
$$

Find the value of c and ascertain whether X and Y are independent
To do on the whiteboard

- Exercise 6.35 Let X and Y have joint density function

$$
f(x, y)= \begin{cases}c x & \text { if } 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

1. Find the value of the constant c.

$$
1=\int_{0}^{1}\left(\int_{0}^{x} c x d y\right) d x=c \int_{0}^{1} x^{2} d x=\frac{c}{3} \quad \Rightarrow c=3
$$

2. Find the marginal density of X and Y

$$
\begin{gathered}
f_{X}(x)=\int_{0}^{x} 3 x d y=3 x^{2} \quad x \in(0,1) \\
f_{y}(y)=\int_{y}^{1} 3 x d x=\frac{3}{2}\left(1-y^{2}\right) \quad y \in(0,1)
\end{gathered}
$$

3. Are X and Y independent?

No

Consider thentegral $\int f(x) d x$. We can solve the utegral by setting $x=\varphi(t)$ and calwleting $\int \rho(\varphi(t)) \varphi^{\prime \prime}(t) d t$ and substituting $t=\dot{\varphi}^{1}(x)$ in the solution (with respect to t)

For excumph consider

$$
\int \frac{1}{e^{x}+e^{-x}} d x
$$

we set $x=\log t$. Note that $t=e^{x}$

$$
\int \frac{1}{t+\frac{1}{t}} \frac{1}{t} d t=\int \frac{1}{1+t^{2}} d t=\operatorname{arctg} t+C
$$

Then $\int \frac{1}{e^{x}+e^{-x}} d x=\operatorname{arctg}\left(e^{x}\right)+c$

Infact $\int \rho(\varphi(t)) \varphi^{\prime}(t) d t=F(\varphi(t))$ where $F(x)=\int \rho(x) d x$ then $\left.F(\varphi(t))\right|_{f=U^{-1}(x)}=\Gamma\left(\varphi\left(\varphi^{-1}(x)\right)\right)=\Gamma(x)$

Definite integral

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \varphi^{\prime}(t) d t \\
& \int_{a}^{b} f(-y) d y=\int_{a+k}^{b+k} f(t-k) \quad 1 d t-t-k \quad t=y+x \quad \varphi^{\prime}(t) \quad \int_{-\infty}^{z-x} f(y) d y=\int_{-\infty}^{z} f(t-x) d t
\end{aligned}
$$

Sums of continuous random variables

Suppose that X, Y have joint density function $f_{X Y}(x, y)$. Consider $Z=X+Y$.

$$
\begin{aligned}
P(Z \leq z) & =P(X+Y \leq z)=P(X+Y \in A) \\
& =\iint_{A} f_{X Y}(x, y) d x d y
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq z\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}:-\infty<x<\infty,-\infty<y<z-x\right\}
\end{aligned}
$$

$$
\begin{aligned}
P(Z \leq z) & =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{z-x} f_{X Y}(x, y) d x d y=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{z-x} f(x, y) d y\right) d x \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{z} f_{X Y}(x, t-x) d t\right) d x \\
& =\int_{-\infty}^{z}\left(\int_{-\infty}^{\infty} f_{X Y}(x, t-x) d x\right) d t
\end{aligned}
$$

Then

$$
f_{Z}(z)=\frac{d}{d z} F_{Z}(z)=\frac{d}{d z} P(Z \leq z)=\int_{-\infty}^{\infty} f_{X Y}(x, z-x) d x
$$

Note also that if X andd Y are independent $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$ and

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x \quad \text { convolution formula }
$$

Example 6.40 Let X and Y be independent variables with density
$f_{X}(x)=\left\{\begin{array}{ll}\frac{\lambda^{s}}{\Gamma(s)} e^{-\lambda x} x^{s-1} & x>0 \\ 0 & \text { otherwise }\end{array} \quad f_{Y}(y)= \begin{cases}\frac{\lambda^{t}}{\Gamma(t)} e^{-\lambda y} y^{t-1} & y>0 \\ 0 & \text { otherwise }\end{cases}\right.$
where

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-u} u^{\alpha-1} d u
$$

When $z<0$ the density of $Z=X+Y$ is 0 . When $z>0$

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x=\int_{0}^{z} f_{X}(x) f_{Y}(z-x) d x \\
& =\frac{\lambda^{s+t}}{\Gamma(s) \Gamma(t)} \int_{0}^{z} x^{s-1} e^{-\lambda x}(z-x)^{t-1} e^{-\lambda(z-x)} d x \\
& =\frac{e^{-\lambda z} \lambda^{s+t}}{\Gamma(s) \Gamma(t)} \int_{0}^{z} x^{s-1}(z-x)^{t-1} d x \text { set } y=x / z \\
& =\frac{e^{-\lambda z} \lambda^{s+t}}{\Gamma(s) \Gamma(t)} \int_{0}^{1}(y z)^{s-1}(z-y z)^{t-1} z d y
\end{aligned}
$$

That is

$$
\begin{aligned}
f_{Z}(z) & =\frac{\lambda^{s+t}}{\Gamma(s) \Gamma(t)} \int_{0}^{1} y^{s-1}(1-y)^{t-1} d y e^{-\lambda z} z^{s+t-1} \\
& \propto e^{-\lambda z} z^{s+t-1}
\end{aligned}
$$

This means that $f_{Z}(z)$ is proportional to a Gamma density with parameter $s+t$ and λ which is

$$
\frac{\lambda^{s+t}}{\Gamma(s+t)} e^{-\lambda z} z^{s+t-1}
$$

Hence we conclude that Z is $\operatorname{Gamma}(\mathrm{s}+\mathrm{t}, \lambda)$

Exercise 6.45 If X and Y have joint density function

$$
f(x, y)= \begin{cases}\frac{1}{2}(x+y) e^{-x-y} & \text { if x, } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

find the density of $X+Y$

$$
\begin{aligned}
l_{z}(z) & =\int_{-\infty}^{\infty} l_{x_{1} y}(x, z-x) d x= \\
& =\int_{0}^{\infty} l_{x, y}(x, z-x) d x \sin a x>0 \\
& =\int_{0}^{z} l_{x, y}(x, z-x) d x \quad \sin y>0 \\
& =\int_{0}^{z} \frac{1}{2}(x+z-x) e^{-x-z+x} d x=\frac{1}{2} z^{3-1} e^{-z}=> \\
& =\int_{0}^{z} \frac{1}{2} z e^{-z} d x=\frac{1}{2} z^{2} e^{-z} \quad z>0
\end{aligned}
$$

Example Let X and Y be independent Uniform $(0,1)$ random variables Find the density of $Z=X+Y$
The density of X and Y are

$$
f_{X}(x)=\left\{\begin{array}{ll}
1 & 0<x<1 \\
0 & \text { otherwise }
\end{array} \quad f_{Y}(y)=\left\{\begin{array}{cc}
1 & 0<y<1 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

In calculating

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

note that from the density of $X x$ is such that $0<x<1$ and from the density of Y we have that $0<z-x<1$.

Then

$$
f_{Z}(z)= \begin{cases}\int_{0}^{z} d x=z & 0<z<1 \\ \int_{z-1}^{1} d x=2-z & 1<z<2\end{cases}
$$

Exercise Let X and Y be independent random variables where $X \sim \operatorname{Exponential}(\lambda)$ and $Y \sim \operatorname{Exponential}(\mu)$. Consider $Z=X+Y$

1. Show that

$$
f_{Z}(z)= \begin{cases}\frac{\lambda \mu}{\lambda-\mu}\left(e^{-\mu z}-e^{-\lambda z}\right) & z>0 \\ 0 & \text { otherwise }\end{cases}
$$

2. Find the density of Z when $\mu=\lambda$
3. Find the expected value of Z

Changes of variables

- Consider a jointly continuous random variable X, Y with density $f_{X Y}(x, y)$
- Take two transformation of X and Y

$$
U=u(X, Y) \quad V=v(X, Y)
$$

For example $U=X+Y$ and $V=X-Y$

- That is, suppose to apply to each realization x, y of $X Y$ the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $T(x, y)=(u(x, y), v(x, y))$
- Assume that the transformation T is a bijection between $D \subseteq \mathbb{R}^{2}$ and $S \subseteq \mathbb{R}^{2}$

A bijection T from D to S is a mapping such that
i) $\forall s \in S \exists w \in D: T(w)=s$ (surjective)
ii) if $T\left(w_{1}\right)=T\left(w_{2}\right)$ then $w_{1}=w_{2}$ (injective)

An injective non-surjective function (injection, not a bijection)

A non-injective surjective function (surjection, not a bijection)

An injective surjective function (bijection)
 A non-injective non-surjective
function (also not a bijection)

A bijection $T: D \rightarrow S$ can be inverted, that is we have also a mapping $T^{-1}: S \rightarrow D$ where $T^{-1}(u, v)=(x, y)$ is exactly the point such that $T(x, y)=(u, v)$

Example of a bijection
Consider $(x, y) \in R^{2}$, the mapping $T(x, y)=(x+y, x-y)$ is
a bijection from R^{2} to R^{2}. To find the inverse mopping deserve that In fact $\left\{\begin{array}{l}u=x+y \\ v=x-y\end{array}\left\{\begin{array}{l}u+v-2 x \\ v=x--1\end{array},\left\{\begin{array}{l}x=\frac{1}{2}(u+v) \\ y=x-v\end{array} \quad\left\{\begin{array}{l}x=\frac{1}{2}(u+v) \\ y=\frac{1}{2} u+\frac{1}{2} v-v\end{array}\right.\right.\right.\right.$
them

$$
\begin{aligned}
& x=\frac{1}{2}(u+v) \\
& y=\frac{1}{2}(u-v)
\end{aligned}
$$

Given the inverse mapping T^{-1} will need the Jacobian of T^{-1}, that is the determinant

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x(u, v)}{\partial u} & \frac{\partial x(u, v 1}{\partial v} \\
\frac{\partial y(u, v)}{\partial u} & \frac{\partial y(u, v)}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial s}{\partial v} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}
$$

Examph $T(x,-y)=(x+y, x-y) \quad T^{-1}(u, v)=\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$

$$
J(u, v)=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}
$$

By the theory of multiple integrals if $T(x, y)=(u(x, y), v(x, y))$ is bijective and $J(u, v)$ is the Jacobian of $T^{-1}(u, v)=(x(u, v), y(u, v))$ we have

$$
\iint_{A} g(x, y) d x d y=\iint_{T(A)} g(x(u, v), y(u, v))|J(u, v)| d u d v
$$

Example For each point x, y consider the polar transformation θ, r where

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

The Jacobian is

$$
\begin{gathered}
J=\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial y}{\partial r} \frac{\partial x}{\partial \theta}=r \cos ^{2} \theta+r \sin ^{2} \theta=r \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{2 \pi} r e^{-\frac{1}{2} r^{2}} d r d \theta=1
\end{gathered}
$$

Theorem: Jacobian formula Let X and Y be jointly continuous with joint density $f_{X Y}(x, y)$, and let $D=\left\{(x, y): f_{X Y}(x, y)>0\right\}$. If the mapping T given by

$$
T(x, y)=(u(x, y), v(x, y))
$$

is a bijection from D to the set $S \subseteq \mathbb{R}^{2}$, then the pair

$$
U=u(X, Y), V=v(X, Y)
$$

is jointly continuous with density function

$$
f_{U V}(u, v)= \begin{cases}f_{X Y}(x(u, v), y(u, v))|J(u, v)| & \text { if }(u, v) \in S \\ 0 & \text { otherwise }\end{cases}
$$

Example 6.53 To do on the whiteboard
Example 6. 53 Consider $(x, 4)$ with density $\quad P_{x y}\left(u_{1}-1\right)= \begin{cases}e^{-x-1} & x>0 \\ y>0 \\ 0 & \text { cthruine }\end{cases}$
 u is monetise minuit is $x+y$ 20 >0

The mapping is given by $T(x, y)=(u, v)$ whose $u=x+y \quad v=\frac{x}{x+y}$ Note that $v=\frac{x}{v}$, then $x=v . u$. Mesons $y=u-x=u-v \cdot v=u(1-v)$ The Jacchicen is $\left|\begin{array}{ll}\frac{\partial x}{\partial v} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v}\end{array}\right|=\left|\begin{array}{ll}v & u \\ (1-v) & -v\end{array}\right|=-v u-u(1-v)=-v u-u+u v=-u$

$$
\begin{array}{rlrl}
l_{u v}(u, v) & =l_{x,-1}\left(x=v u, y=u(1-v) J \cdot|v|=e^{-v u-u+u v}|u|\right. & u>0 \\
& =v e^{-v} \quad u>0 \quad 0<v<1 & & 0<v<1
\end{array}
$$

$$
f_{u v}(u, v)=\left\{\begin{array}{lll}
u e^{-u} & u>0 \quad 0<v<1 & U \sim \operatorname{gaman}(2,11 \\
0 & \text { othevise } & V \sim \operatorname{Uni} \operatorname{lov}(0,1 \mid
\end{array}\right.
$$

Let's fird the mavginal dousities

$$
\ell_{u}(u)=\int_{-\infty}^{\infty} \ell_{u v}(u, v) d v=\int_{0}^{l} u e^{-u} d v=u e^{-u} \int_{c}^{l} d v=u e^{-u}
$$

Game $(2,1)$

$$
\begin{aligned}
& f_{v}(v)=\int_{0}^{\infty} l_{u v}\left(u, v \mid d u=\int_{0}^{\infty} u e^{-u} d v=\text { Meam of an exponenlich }(l=1)\right. \\
& \text { dersity }=1
\end{aligned}
$$

Exercise 6.55 To do on the whiteboard
Let X, Y be a jointly continuous random variabe with density

$$
f_{X Y}(x, y)= \begin{cases}\frac{1}{4} e^{-\frac{1}{2}(x+y)} & x>0 y>0 \\ 0 & \text { otherwise }\end{cases}
$$

1. Find the joint density of U, V where

$$
U=\frac{1}{2}(X-Y) \quad V=Y
$$

2. Find the marginal density of U

- Consider $T(x, y)=(u(x, y), v(x, y))$ where $u(x, y)=\frac{1}{2}(x-y)$ and $v(x, y)=y$.
- The inverse transformation is $T^{-1}(u, v)=(x(u, v), y(u, v))$ where $x(u, v)=2 u+v$ and $y(u, v)=v$
- $D=\{(x, y): x>0, y>0\}$. By applying T to the set D we have

$$
S=T(D)=\{(u, v):-\infty<u<\infty, v>0,2 u+v>0\}
$$

- $J(u, v)=2$
- The density of U, V is

$$
f_{U V}(u, v)= \begin{cases}\frac{1}{4} e^{-\frac{1}{2}(2 u+v+v)} 2 & (u, v) \in S \\ 0 & \text { otherwise }\end{cases}
$$

that is

$$
f_{U V}(u, v)= \begin{cases}\frac{1}{2} e^{-(u+v)} & -\infty<u<\infty, v>0, v>-2 u \\ 0 & \text { otherwise }\end{cases}
$$

Let's find the marginal of U
If $u>0$

$$
f_{U}(u)=\int_{0}^{\infty} \frac{1}{2} e^{-u+v} d v=\frac{1}{2} e^{-u}
$$

If $u<0$

$$
f_{U}(u)=\int_{-2 u}^{\infty} \frac{1}{2} e^{-u+v} d v=\frac{1}{2} e^{u}
$$

Then

$$
f_{U}(u)=\frac{1}{2} e^{-|u|} \quad-\infty<u<\infty
$$

Then $\ell_{v} r u l=\frac{1}{2} e^{-}$

U~ Double expontiah

Conditional density function

With continuous variable we cannot calculate

$$
P(Y \leq y \mid X=x)
$$

by the formula

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

since $P(B)=0$
However we have that

$$
\lim _{t \rightarrow 0} P(Y \leq y \mid x \leq X \leq x+t)=\int_{-\infty}^{y} \frac{f_{X Y}(x \cdot v)}{f_{X}(x)} d v
$$

$$
\begin{aligned}
& P\left(y \leqslant y, x \leqslant X \leqslant x_{+}+\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lim _{t \rightarrow 0} \int_{-\infty}^{y} f_{x-1}(x+t, v) d v}{\lim _{t \rightarrow 0} l_{x}(x+t)}=\frac{\int_{-\infty}^{y} f_{x y}(x, v) d v}{\ell_{x}(x)}=\int_{-\infty}^{y} \frac{f_{x y}(x, v)}{\ell_{x}(x)} d v
\end{aligned}
$$

The function $G(y)=\int_{-\infty}^{y} \frac{f_{X Y}(x, v)}{f_{X}(x)} d v$ is a distribution function and $f_{X Y}(x, y) / f_{X}(x)$ is a density

Definition The conditional density of Y given $X=x$ is denoted by $f_{Y \mid X}(y \mid x)$ and defined by

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)} \quad y \in \mathbb{R}
$$

- If $f_{X}(x)>0, f_{X Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)$
- if $f_{Y}(y)>0, f_{X Y}(x, y)=f_{Y}(y) f_{X \mid Y}(x \mid y)$
- If X and Y are independent, that is $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y) \quad f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

Examph Suppose that (X, Y) has joint density

$$
f_{y, y}(x, y)= \begin{cases}\frac{1}{x} & 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

1) Verify that $\iint f_{x, y}(x, y) d x d y=1$

2) Find the marginal density of X ad Y

3) Find the conditional density $f_{x \mid y}(x \mid y)$ and $f_{y \mid x}(y \mid x)$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} \frac{1}{x} d y d x=\left.\int_{0}^{1} \frac{1}{x} \cdot y\right|_{0} ^{x} d x=\int_{0}^{1} \frac{1}{x} \cdot x d x=1 \\
& l_{-y}(y): \int_{y} \frac{1}{x} d x=\left.\log x\right|_{y} ^{1}=-\log _{y \in(0,1)} \quad f_{x}(x)=\int_{0}^{x} \frac{1}{x} d y=\frac{1}{x} \cdot x=\frac{1}{x \in C_{0}} \\
& x \in\left(a^{1}\right) \\
& f_{x \mid y}(x \mid y)=\frac{1 \mid x}{-\log y}=\frac{1}{x \log \frac{1}{y}} \quad x \in(y, 1) \quad \ell_{y \mid x}(y \mid x)=\frac{l_{x, y}(x, y)}{l_{x}(x)}=\frac{1 / x}{1}=\frac{1}{x} \\
& \operatorname{Uinf(a,b)\rightarrow f(x)=\frac {1}{b-a}\quad \text {Unit}(0,x)\quad f(y)=\frac {1}{x-0}=\frac {1}{x},~(x)}
\end{aligned}
$$

- Example 6.59
- Exercise 6.60
- Exercise 6.61

X and Y udepserdit ad exponential with parameter l
Find the joint dearth of $U=X \quad V=x+y$ and dedvee
that the conditional density of X gives $X+Y=a$ is Uniform $(0, a)$
To find the joint density of U, V ohsesue that
d) $V=x+y=U+y$ and y is positive $\Rightarrow V>U$

2) the incise transformation is $X=U \quad Y=V-X=V-v$

$$
(v, v)=T(x, y)=(x, x+y)) \quad(x, y)=T^{-1}(u, v)=(u, v-u)
$$

3) The jacobian is $\left|\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right|=1$

$$
\begin{aligned}
f_{x, y}(x, y) & =2 e^{-\lambda x} \quad 2 e^{-2 y} \quad x>0 \quad y>0 \\
f_{u, v}(u, v) & =2 e^{-2 u} \quad \lambda e^{-\lambda(v-u)}|1| \quad v>0 \\
& =h^{2} e^{-2 v} \quad v>0
\end{aligned}
$$

the morginal of U is $l_{U} c U=2 e^{-k U} \quad(U=x$ which is expontial.) we can cherk $l_{U}(u)=\int_{u}^{\infty} h^{2} e^{-2 v} d v=2^{2}-\left.e^{-2 v} \frac{1}{\lambda}\right|_{v=u} ^{v=\infty}=\alpha e^{-2 v} u>\infty$ the masginal of V is
$f_{V}(v)=\int_{0}^{v} L^{2} e^{-\lambda v} d v=L^{2} e^{-k v} v \quad V \sim \operatorname{Gaman}(2, \lambda)$

$$
\left.\left.l_{U \mid v}(u \mid v)=\frac{l_{u v}(u, v)}{l_{v}(v)}=\frac{2^{2} e^{-2 v}}{2^{2} e^{-2 v} \cdot v}=\frac{1}{v} \quad u \in(0, v) \quad u \right\rvert\, v=a \sim U_{i} \cdot l(0, a)\right]
$$

