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• Example 6.59. Find the conditional densities when the joint is

f (x , y) =

{
2e−(x+y) 0 < x < y <∞
0 otherwise

The marginal density of X is

fX (x) = 2e−x
∫ ∞
x

e−y dy = 2e−2x x > 0

that is, X ∼ Exp(2). The marginal density of Y is

fY (y) = 2e−y
∫ y

0

e−x dx = 2e−y (1− e−y ) y > 0

The conditional densities are

fY |X (x |y) = e−(y−x) y > x and fX |Y (x |y) =
e−x

1− e−y
0 < x < y



• Exercise 6.60. Let X ,Y be jointly continuous with density

f (x , y) =

{
e−y 0 < x < y <∞
0 otherwise

Find the conditional densities.

The marginal densities are

fX (x) =

∫ ∞
x

e−ydy = e−x x > 0

fY (y) =

∫ y

0

e−ydx = ye−y y > 0

The conditional densities are

fY |X (x |y) = e−(y−x) y > x and fX |Y (x |y) =
1

y
0 < x < y



• Exercise 6.61





Expectations of continuous random variables

Let X and Y be jointly continuous random variables on (Ω,F ,P), and
let g : R2 → R. Consider the random variable Z = g(X ,Y ).

Theorem We have that

E (g(X ,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fXY (x , y) dx dy

whenever this integral converges absolutely. no proof

As consequence we have that also for a jointly continuous random
variable X ,Y

E (aX + bY ) = aE (X ) + bE (Y )

In fact..(on the whiteboard)



Note that also for a jointly continuous random variable X ,Y , with X and
Y independent we have

E (XY ) = E (X )E (Y )

In fact..(on the white-board)

As for discrete case, the converse is not true

E (XY ) = E (X )E (Y ) 6⇒ independence

Theorem Jointly continuous random variables X and Y are independent
if and only if

E (g(X )h(Y )) = E (g(X ))E (h(Y ))

for all functions g , h : R→ R for which the expectation exists. (no proof)



Definition The conditional expectation of Y given X = x , written
E (Y |X = x), is the mean of the conditional density function

E (Y |X = x) =

∫ ∞
−∞

y fY |X (y |x) dy =

∫ ∞
−∞

y
fXY (x , y)

fX (x)
dy

for any value x for which fX (x) > 0





Theorem If X and Y are jointly continuous random variables, then

E (Y ) =

∫
E (Y |X = x)fX (x) dx

where the integral is over all the values x such that fX (x) > 0



Bivariate normal distribution

The random variable X ,Y with density

fXY (x , y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
x , y ∈ R

where −1 < ρ < 1 is called standard bivariate Normal



• Marginally, X and Y are standard Normal

• The conditional density of Y given X = x is Normal with mean ρx
and variance 1− ρ2

• X and Y are independent if and only if ρ = 0



Exercise Let X and Y be independent random variables with densities

fX (x) =

{
4e−4x x > 0

0 otherwise
fY (y) =

{
ey y < 0

0 otherwise

Find the density of W ,Z where W = 4X − Y and Z = 4X + Y









Exam exercise, January 2021 You choose a point (X ,Y ) where X is
Uniform(0,1) and the density of Y |X = x is

fY |X (y |x) =

{
ky if y ∈ (0, x)
0 otherwise

A. Find the marginal density of Y

B. Find the covariance of (X ,Y )

C. Find the distribution of Z = X + Y or alternatively that of
W = Y /X



1 =

∫ x

0

ky dy = k
y2

2

∣∣∣∣x
1

=
k

2
x2

Hence k = 2/x2,

fXY (x , y) =

{
2 y/x2 0 < y < x < 1
0 otherwise

and

fY (y) =

∫ 1

y

2 y

x2
dx = − 2 y

1

x

∣∣∣∣1
y

= 2(1− y) y ∈ (0, 1)



E (Y |X = x) =

∫
yfY |X (y |x)dy =

∫ x

0

y
2

x2
y dy =

2x

3

E (Y ) = E (E (Y |X )) = E (2X/3)) =
2

3
E (X ) =

2

3

1

2
=

1

3

E (XY ) = E (E (XY |X )) = E (X (2X/3)) = (2/3)E (X 2) =
2

3

1

3
=

2

9

Cov(X ,Y ) = E (XY )− E (X )E (Y ) =
2

9
− 1

2

1

3
=

1

18



Consider W . Since Y < X , the image of W is (0,1). For w ∈ (0, 1)

FW (w) = P(W ≤ w) = P(Y /X ≤ w) = P(Y ≤ wX )

=

∫ 1

0

[∫ wx

0

fXY (x , y)dy

]
dx =

∫ 1

0

2

x2

[∫ wx

0

y dy

]
dx

=

∫ 1

0

2

x2
w2x2

2
dx = w2

The density of W is then

fW (w) = 2w w ∈ (0, 1)



Moments
For any random variable X , the kth moment of X is the number E (X k),
whenever this expectation exists

Example If X has the exponential distribution with parameter λ

E (X k) =

∫ ∞
0

xk λ e−λxdx(by parts)

=
[
−xke−λx

]x=∞
x=0

+

∫ ∞
0

kxk−1e−λx dx

= 0 +
k

λ

∫ ∞
0

xk−1λe−λx dx =
k

λ
E (X k−1)

and

E (X 0) = 1,E (X 1) =
1

λ
,E (X 2) =

2

λ

1

λ
,E (X 3) =

3

λ

2

λ

1

λ
, · · ·

that is, the exponential distribution has moments of all orders, since

E (X k) =
k!

λk



There are also distributions that do not have moments

Example If X has the Cauchy distribution

E (X k) =

∫ ∞
−∞

xk

π(1 + x2)
dx

for values of k for which this integral converges absolutely.

Note that when x →∞ the integrand function is of the order of xα with
α = k − 2 but∫ ∞

1

xαdx =

{
(α + 1)−1xα+1

∣∣x=∞
x=1

α 6= 1

log x |x=∞x=1 α = −1

Hence the above integral is convergent only if α < −1, that is with
α = k − 2 if k < 1



There are also distributions with only the first p moments

Example If X has density

f (x) =
c

1 + |x |m
x ∈ R

where m ≥ 2 and c = (
∫∞
−∞

dx
1+|x|m )−1 then X has only the moments of

order k with k < m − 1, that is ≤ k ≤ m − 2



• Given the distribution function FX of the random variable X, we
may calculate its moments whenever they exist

• It is interesting to ask whether or not the converse is true: given the
sequence E (X ),E (X 2),.... of (finite) moments of X , is it possible
to reconstruct the distribution of X ?

• The general answer to this question is no, but is yes if we have some
extra information about the moment sequence.

Theorem Suppose that all moments e E (X ),E (X 2),.... of the random
variable X exist, and the the series

∞∑
k=0

1

k!
tkE (X k)

is absolutely convergent for some t > 0. The the sequence of moments
uniquely determines the distribution of X



Example Consider X with density

f (x) =
1

x
√

2π
e−

1
2 (log x)

2

for x > 0

that is X has the lognormal distribution

• X has finite moments of all orders...

• but the series
∑∞

k=0
1
k! t

kE (X k) is not absolutely convergent

• In fact it is possible to find another density with the same moments
of X



Variance and covariance

• The variance of X is var(X ) = E ([X − µ]2) and it is a measure of
dispersion about E (X ) = µ

• Note that var(X ) = 0 if and only if P(X = µ) = 1

• var(X ) = E (X 2)− µ2

• var(aX + b) = a2var(X )

• var(X + Y ) = Var(X ) + 2E (([X − E (X )][Y − E (Y )]) + Var(Y )



• The covariance of X and Y is

cov(X ,Y ) = E (([X − E (X )][Y − E (Y )])

• cov(X ,Y ) = E (XY )− E (X )E (Y )

• Then var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y )

• If X and Y are independent cov(X ,Y ) = 0 (but the converse is not
true...we can have E (XY ) = E (X )E (Y ) so that the covariance is 0
for dependent variables also)



• The correlation coefficient is of the random variables X and Y is
the quantity ρ(X ,Y ) given by

ρ(X ,Y ) =
cov(X ,Y )√
Var(X )Var(Y )

• The correlation coefficient is invariant for linear transformation

ρ(a + bX , c + dY ) = ρ(X ,Y )

• −1 ≤ ρ(X ,Y ) ≤ 1









Moment generating functions

Definition The moment generating function of the random variable X is
the function MX defined by

MX (t) = E (etX ),

for all t ∈ R for which this expectation exists

The moment generating function of X is then

MX (t) = E (etX ) =

{∑
x e

txP(X = x) if X is discrete∫∞
−∞ etx fX (x)dx if X is continuous

whenever this sum or integral converges absolutely. In some cases, the
existence of MX (t) can pose a problem for non-zero values of t.



Example If X has the normal distribution with mean 0 and variance 1,
then

MX (t) =

∫ ∞
−∞

etx
1√
2π

e−
1
2 x

2

dx

=

∫ ∞
−∞

1√
2π

e−
1
2 (x

2−2tx)dx

=

∫ ∞
−∞

1√
2π

e−
1
2 (x

2−2tx+t2)dx e
1
2 t

2

= e
1
2 t

2

for all t ∈ R

Example If X has the Cauchy distribution

MX (t) =

{
1 t = 0

∞ t 6= 0

so that MX (t) exists only at t = 0







• It turns out to be important only that MX (t) exists in some
neighbourhood (−δ, δ) of the origin

• Hence we shall generally use moment generating functions subject
to the assumption of existence in a neighbourhood of the origin.

• Observing that

ex = 1 + x +
1

2
x2 +

1

3!
x3 + · · · =

∞∑
k=0

1

k!
xk

we have (by rigorously interchanging the expectation and the series)

E (etX ) = E

(
1 + t X +

1

2
t2X 2 +

1

3!
t3X 3 + · · ·

)
=

∞∑
k=0

tk

k!
E (X k)

MX (t) is the exponential generating function of the moments of X



Theorem If MX (t) exists in some neighbourhood (−δ, δ) of the
origin, then for k = 1, 2, ...

E (X k) = M
(k)
X (0) =

dk

dtk
MX (t)|t=0

the kth derivative of MX (t) evaluated at t = 0.

In fact, by observing that dk

dtk
etx = xketx and considering a

continuous random variable

dk

dtk
MX (t) =

dk

dtk

∫ ∞
−∞

etx fx(x)dx

=

∫ ∞
−∞

dk

dtk
etx fX (x)dx

=

∫ ∞
−∞

xketx fX (x)dx = E (X ketX )

If t = 0 we have M
(k)
X (0) = E (X k)



Properties of the moment generating function

• If Y = aX + b

MY (t) = MaX+b(t) = etbMX (at)

• If X and Y are independent

MX+Y (t) = MX (t)MY (t)

• For the sum S = X1 + X2 + · · ·+ Xn of n independent

MS(t) = MX1(t)MX2(t) · · ·MXn(t)



Theorem: Uniqueness theorem for moment generating
function
If the moment generating function MX satisfies

MX (t) = E (etX ) <∞ − δ < t < δ

for some δ > 0, there is a unique distribution with moment
generating function MX .
Furthemore, under this condition, we have E (X k) <∞ for
k = 1, 2, . . . and

MX (t) =
∞∑
k=0

tk

k!
E (X k) − δ < t < δ



Theorem: Markov’s inequality For any non negative random
variable X

P(X ≥ t) ≤ E (X )

t

Consider the indicator random variable IA : Ω→ R where

IA =

{
1 if X (ω) ≥ t

0 otherwise

Note that

• if X < t then t · IA = 0 and X ≥ t · IA
• if X ≥ t then t · IA = t and X ≥ t · IA
• Hence X ≥ t · IA
• E(t · IA) = t · E(IA) = t · P(X ≥ t)

• If the random U − V is a non negative random variable (that is U ≥ V )
E(U − V ) = E(U)− E(V ) ≥ 0 ⇒ E(U) ≥ E(V )

• Then E(X ) ≥ t · P(X ≥ t), that is P(X ≥ t) ≤ E(X )
t



Theorem: Jensesn’s inequality Let X be arandom variable
taking values on (a, b) and let g : (a, b)→ R be a convex function.
Suppose that both E (X ) and E (g(X )) exist. Then

E (g(X )) ≥ g(E (X )

no proof

Examples with convex functions g

• g(x) = x2, E (X 2) ≥ E (X )2

• g(x) = − log(x), E (−log(X )) ≥ − log(E (X )), that is
E (logX ) ≤ log E (X )


	Expectations of continuous random variables
	Bivariate normal distribution
	Moments
	Variance and covariance
	Moment generating functions
	Two inequalities

