Stochastic Processes

Andrea Tancredi Sapienza University of Rome

Week 9

Expectations of continuous random variables

Bivariate normal distribution

Moments

Variance and covariance

Moment generating functions

Two inequalities

• Example 6.59. Find the conditional densities when the joint is

$$f(x,y) = \begin{cases} 2e^{-(x+y)} & 0 < x < y < \infty \\ 0 & otherwise \end{cases}$$

The marginal density of X is

$$f_X(x) = 2e^{-x} \int_{x}^{\infty} e^{-y} dy = 2e^{-2x} \quad x > 0$$

that is, $X \sim Exp(2)$. The marginal density of Y is

$$f_Y(y) = 2e^{-y} \int_0^y e^{-x} dx = 2e^{-y} (1 - e^{-y}) \quad y > 0$$

The conditional densities are

$$f_{Y|X}(x|y) = e^{-(y-x)}$$
 $y > x$ and $f_{X|Y}(x|y) = \frac{e^{-x}}{1 - e^{-y}}$ $0 < x < y$

• Exercise 6.60. Let X, Y be jointly continuous with density

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & otherwise \end{cases}$$

Find the conditional densities.

The marginal densities are

$$f_X(x) = \int_x^{\infty} e^{-y} dy = e^{-x} \quad x > 0$$

 $f_Y(y) = \int_0^y e^{-y} dx = y e^{-y} \quad y > 0$

The conditional densities are

$$f_{Y|X}(x|y) = e^{-(y-x)}$$
 $y > x$ and $f_{X|Y}(x|y) = \frac{1}{y}$ $0 < x < y$

• Exercise 6.61

Exercise 6.61

Play (x, y) = | 2eth 2eth xoo goo ofherwise X and I had pendent and exponential with parameter & Find the joint dean, by of UEX VEX+y and deduce that the conditional density of X gives X+Y=a is Uniform (0,a)
To find the joint density of U,V observe that Y T= a) V=X+Y = U+Y and Y is positive => V7U 2) the invoce transformation is X=U Y=V-X=V-U $\langle v_i v_j \rangle_{\mathbb{T}} = \langle \langle x_i, v_j \rangle_{\mathbb{T}} = \langle \langle x_i, v_j \rangle_{\mathbb{T}} = \langle \langle v_i, v_j \rangle_{\mathbb{T}} = \langle \langle v_i, v_j \rangle_{\mathbb{T}} = \langle \langle v_j, v_j \rangle_{\mathbb{T}} = \langle \langle v_$ 3) The Jacobian in 1 = 1

$$\begin{cases} \chi_{,Y}(x,y) = \lambda e^{\lambda x} & \lambda e^{\lambda y} & \text{x=0 y=0} \\ \psi_{,V}(y,y) = \lambda e^{\lambda y} & \lambda e^{\lambda y} & \text{y=0} \end{cases}$$

$$= \lambda^{2} e^{\lambda x} \quad \text{x=0}$$

$$= \lambda^{2} e^{\lambda x} \quad \text{x=0}$$

$$\text{the morginal of } U \text{ in } \int_{U} |u| = \lambda e^{\lambda x} \quad (U = x \text{ which in exponsion})$$

$$\text{we can check } \int_{U} |u| = \int_{0}^{\infty} \lambda^{2} e^{\lambda x} dx = \lambda^{2} - e^{\lambda x} \int_{0}^{1/2} e^{\lambda x} dx = \lambda^{2} - e^{\lambda x} \int$$

Expectations of continuous random variables

Let X and Y be jointly continuous random variables on (Ω, \mathcal{F}, P) , and let $g : \mathbb{R}^2 \to \mathbb{R}$. Consider the random variable Z = g(X, Y).

Theorem We have that

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \, dx \, dy$$

whenever this integral converges absolutely. no proof

As consequence we have that also for a jointly continuous random variable X,Y

$$E(aX + bY) = aE(X) + bE(Y)$$

In fact..(on the whiteboard)

Note that also for a jointly continuous random variable X, Y, with X and Y independent we have

$$E(XY) = E(X)E(Y)$$

In fact..(on the white-board)

As for discrete case, the converse is not true

$$E(XY) = E(X)E(Y) \Rightarrow independence$$

Theorem Jointly continuous random variables X and Y are independent if and only if

$$E(g(X)h(Y)) = E(g(X))E(h(Y))$$

for all functions $g,h:\mathbb{R} \to \mathbb{R}$ for which the expectation exists. (no proof)

Definition The conditional expectation of Y given X = x, written E(Y|X=x), is the mean of the conditional density function

$$E(Y|X=x) = \int_{-\infty}^{\infty} y \, f_{Y|X}(y|x) \, dy = \int_{-\infty}^{\infty} y \, \frac{f_{XY}(x,y)}{f_X(x)} \, dy$$

for any value x for which $f_X(x) > 0$

Exercise 6.72
$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}$$

$$E(X | Y=y) \qquad \text{the desily of } X | Y=y$$

$$\begin{cases}
x_{xy}(x|y) = \begin{cases}
1/x_{xy}(x,y) \\
1/x_{xy}(x) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x|y) = \begin{cases}
1/x_{xy}(x,y) \\
1/x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x|y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
x_{xy}(x,y) = \begin{cases}
0 & \text{otherwise}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$E(X|Y=y) = \int x. \int_{X|Y} cx(y) dx - \int_{0}^{x} x \cdot \frac{1}{2} dx = \frac{1}{5} \cdot \int_{0}^{3} x dx = \frac{1}{5} \cdot \int$$

Theorem If X and Y are jointly continuous random variables, then

$$E(Y) = \int E(Y|X=x) f_X(x) dx$$

where the integral is over all the values x such that $f_X(x) > 0$

$$E(Y) = \int y \int_{Y} (u_{x}) dv_{y} = \int y \int_{X} \int_{X} (x_{1}y_{1}) dx dy = \int y \int_{X} (x_{1}) \int_{X} (x_{2}) dx dy$$

$$= \int \left(\int y \int_{Y} \int_{X} (u_{2}) x_{1} dy \right) \int_{X} (x_{1}) dx = \int y (x_{1}) \int_{X} (x_{1}) dx$$
where $g(x_{1}) = E(Y | X = x_{1})$ that is
$$E(Y) = \int E(Y | X = x_{1}) \int_{X} (x_{1}) dx$$
considering the variable $E(Y | X)$ we can say that
$$E(Y) = E(E(Y | X))$$

Bivariate normal distribution

The random variable X, Y with density

$$f_{XY}(x,y) = \frac{1}{2\pi\sqrt{1-
ho^2}} \exp\left(-\frac{1}{2(1-
ho^2)}(x^2 - 2
ho xy + y^2)\right) \quad x,y \in \mathbb{R}$$

where $-1 < \rho < 1$ is called standard bivariate Normal

х1

- \bullet Marginally, X and Y are standard Normal
- Marginally, A and T are standard Norma
- The conditional density of Y given X = x is Normal with mean ρx
- and variance $1ho^2$
- ullet X and Y are independent if and only if ho=0

Exercise Let X and Y be independent random variables with densities

$$f_X(x) = \begin{cases} 4e^{-4x} & x > 0 \\ 0 & otherwise \end{cases}$$
 $f_Y(y) = \begin{cases} e^y & y < 0 \\ 0 & otherwise \end{cases}$

Find the density of W, Z where W = 4X - Y and Z = 4X + Y

Jacobian
$$\begin{vmatrix} \frac{\partial x}{\partial \omega} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial \omega} & \frac{\partial y}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{1}{8} & \frac{1}{8} \\ -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} \end{vmatrix} = \begin{vmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{vmatrix} = \frac{1}{8}$$

$$| \int_{W_1^2} (\omega, \xi) = 4 \frac{1}{8}$$

$$| \int_{W_2^2} (\omega, \xi) = 4 \frac{1}{8}$$

$$\int_{W_{12}} (\omega, \xi) = 4 e^{-\frac{1}{4} \left\{ (\omega + \xi) - \frac{1}{2} \left((\omega + \xi) - \frac{$$

fw(ω) = 1 & Jw dole = 1 & w = 1 & w = ω = ω & double exercise Ja fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Il 2>0

la fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Il 2>0

la fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Il 2>0

la fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Il 2>0

la fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Il 2>0

la fact W= 4x -7~ Exp(1) + Exp(1) ~ Gamma (2,1) }

Ex 6 from exam october 2020

$$|x| = |x| =$$

Py (y) = 1 = 2 (2x+3y) dx = 2 (2 1 x2) + 3yx) = 2 (1+3y) = 2 + 5 g

 $\mathbb{P}\left(\left(\mathsf{X} > 0.8 \right) : \int_{0.8}^{4} \, \int_{\mathsf{X}} (\mathsf{X}) \, d\mathsf{X} : \ \frac{3}{5} \, \mathsf{X} \int_{0.8}^{4} + \, \frac{l_1}{5} \, \frac{1}{2} \, \mathsf{X}^2 \right)_{0.8}^{4} = \ \frac{3}{5} + \frac{l_1}{100} - \frac{3}{5} \, \frac{p}{10} - \frac{l_2}{100} \left| \frac{p}{10} \right|^{\frac{2}{5}} \cdot \frac{26\ell}{1000} : \ \frac{1}{1000} \left| \frac{p}{1000} \right|^{\frac{2}{5}} \cdot \frac{26\ell}{1000} = \frac{1}{5} \cdot \frac{p}{1000} = \frac{1}{5} \cdot \frac{p}{10$

Ex 6 From exam october 2020

$$\int_{Y|X} (u_{3}|X) : \frac{\int_{X,Y} (x_{7}|Y)}{\int_{X} (u_{1})} : \frac{\frac{1}{5} (2x+3u_{3})}{\frac{2}{5} u_{1}^{2} x}$$

$$\int_{X|Y} (x_{1}|Y) = \frac{\int_{X,Y} (x_{7}|X)}{\int_{Y} (u_{7})} : \frac{\frac{2}{5} (2x+3u_{3})}{\frac{2}{5} u_{1}^{2} x}$$

$$f(X) > 0.8 | Y = 0.3 = \int_{0.8} \int_{X} (x_{1}(x_{1}|Y)) dx = \int_{0.8} \frac{2}{5} (2x+\frac{3}{5}u_{3}) dx \cdot \frac{1}{5} \int_{0.8} \frac{2}{5} (2x+\frac{3}{5}u_{3})$$

 $=\frac{20.54}{28.400}=\frac{54}{20.5}=$

 $=\frac{?0}{38}\left(1-\frac{64}{100}+\frac{3}{10}-\frac{72}{100}\right)=\frac{?0}{20}\frac{100-64+90-72}{100}$

Exam exercise, January 2021 You choose a point (X, Y) where X is Uniform(0,1) and the density of Y|X=x is

$$f_{Y|X}(y|x) = \begin{cases} ky & \text{if } y \in (0,x) \\ 0 & \text{otherwise} \end{cases}$$

- A. Find the marginal density of Y
- B. Find the covariance of (X, Y)
- C. Find the distribution of Z = X + Y or alternatively that of W = Y/X

Hence
$$k = 2/x^2$$
,
$$f_{XY}(x, y) = \begin{cases} 2y/x^2 & 0 < y < x < 1 \\ 0 & otherwise \end{cases}$$

 $1 = \int_0^x ky \, dy = k \left. \frac{y^2}{2} \right|_1^x = \frac{k}{2} x^2$

 $f_Y(y) = \int_{y}^{1} \frac{2y}{x^2} dx = -2y \frac{1}{x} \Big|_{y=0}^{1} = 2(1-y) \quad y \in (0,1)$

and

$$E(Y|X = x) = \int y f_{Y|X}(y|x) dy = \int_0^x y \frac{2}{x^2} y \, dy = \frac{2x}{3}$$
$$E(Y) = E(E(Y|X)) = E(2X/3)) = \frac{2}{3} E(X) = \frac{2}{3} \frac{1}{2} = \frac{1}{3}$$

 $Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{2}{9} - \frac{1}{2}\frac{1}{3} = \frac{1}{18}$

$$E(XY) = E(E(XY|X)) = E(X(2X/3)) = (2/3)E(X^2) = \frac{2}{3}\frac{1}{3} = \frac{2}{9}$$

Consider W. Since Y < X, the image of W is (0,1). For $w \in (0,1)$

$$F_W(w) = P(W \le w) = P(Y/X \le w) = P(Y \le wX)$$

 $=\int_{0}^{1}\frac{2}{x^{2}}\frac{w^{2}x^{2}}{2}dx=w^{2}$

The density of W is then

$$F_{W}(w) = P(W \le w) = P(Y/X \le w) = P(Y \le wX)$$
$$= \int_{0}^{1} \left[\int_{0}^{wx} f_{XY}(x, y) dy \right] dx = \int_{0}^{1} \frac{2}{x^{2}} \left[\int_{0}^{wx} y dy \right] dx$$

 $f_W(w) = 2w \quad w \in (0,1)$

$$F_W(w) = P(W \le w) = P(Y/X \le w) = P(Y \le wX)$$

Moments

For any random variable X, the kth moment of X is the number $E(X^k)$, whenever this expectation exists

Example If X has the exponential distribution with parameter λ

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \lambda e^{-\lambda x} dx (by \ parts)$$

$$= \left[-x^{k} e^{-\lambda x} \right]_{x=0}^{x=\infty} + \int_{0}^{\infty} kx^{k-1} e^{-\lambda x} dx$$

$$= 0 + \frac{k}{\lambda} \int_{0}^{\infty} x^{k-1} \lambda e^{-\lambda x} dx = \frac{k}{\lambda} E(X^{k-1})$$

and

$$E(X^{0}) = 1, E(X^{1}) = \frac{1}{\lambda}, E(X^{2}) = \frac{2}{\lambda} \frac{1}{\lambda}, E(X^{3}) = \frac{3}{\lambda} \frac{2}{\lambda} \frac{1}{\lambda}, \cdots$$

that is, the exponential distribution has moments of all orders, since

$$E(X^k) = \frac{k!}{\lambda^k}$$

There are also distributions that do not have moments

Example If X has the Cauchy distribution

$$E(X^k) = \int_{-\infty}^{\infty} \frac{x^k}{\pi(1+x^2)} dx$$

for values of k for which this integral converges absolutely.

Note that when $x \to \infty$ the integrand function is of the order of x^{α} with $\alpha = k-2$ but

$$\int_{1}^{\infty} x^{\alpha} dx = \begin{cases} (\alpha + 1)^{-1} x^{\alpha + 1} \Big|_{x=1}^{x=\infty} & \alpha \neq 1 \\ \log x \Big|_{y=1}^{x=\infty} & \alpha = -1 \end{cases}$$

Hence the above integral is convergent only if $\alpha < -1$, that is with $\alpha = k - 2$ if k < 1

There are also distributions with only the first p moments

Example If X has density

$$f(x) = \frac{c}{1 + |x|^m} \quad x \in \mathbb{R}$$

where $m\geq 2$ and $c=(\int_{-\infty}^{\infty}\frac{dx}{1+|x|^m})^{-1}$ then X has only the moments of order k with k< m-1, that is $\leq k\leq m-2$

- Given the distribution function F_X of the random variable X, we may calculate its moments whenever they exist
- It is interesting to ask whether or not the converse is true: given the sequence $E(X), E(X^2),...$ of (finite) moments of X, is it possible to reconstruct the distribution of X?
- The general answer to this question is no, but is yes if we have some extra information about the moment sequence.

Theorem Suppose that all moments e E(X), $E(X^2)$,.... of the random variable X exist, and the the series

$$\sum_{k=0}^{\infty} \frac{1}{k!} t^k E(X^k)$$

is absolutely convergent for some t>0. The the sequence of moments uniquely determines the distribution of X

Example Consider X with density

$$f(x) = \frac{1}{x\sqrt{2\pi}}e^{-\frac{1}{2}(\log x)^2}$$
 for $x > 0$

that is X has the lognormal distribution

- X has finite moments of all orders...
- but the series $\sum_{k=0}^{\infty} \frac{1}{k!} t^k E(X^k)$ is not absolutely convergent
- In fact it is possible to find another density with the same moments of X

Variance and covariance

- The variance of X is $var(X) = E([X \mu]^2)$ and it is a measure of dispersion about $E(X) = \mu$
- Note that var(X) = 0 if and only if $P(X = \mu) = 1$
- $var(X) = E(X^2) \mu^2$
- $var(aX + b) = a^2 var(X)$
- var(X + Y) = Var(X) + 2E(([X E(X)][Y E(Y)]) + Var(Y)

• The covariance of X and Y is

$$cov(X, Y) = E(([X - E(X)][Y - E(Y)])$$

- cov(X, Y) = E(XY) E(X)E(Y)
- Then var(X + Y) = var(X) + var(Y) + 2cov(X, Y)
- If X and Y are independent cov(X,Y)=0 (but the converse is not true...we can have E(XY)=E(X)E(Y) so that the covariance is 0 for dependent variables also)

 The correlation coefficient is of the random variables X and Y is the quantity $\rho(X, Y)$ given by

the quantity
$$\rho(X,Y)$$
 given by
$$cov(X,Y)$$

 $\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$

$$\rho(a+bX,c+dY)=\rho(X,Y)$$

•
$$-1 < \rho(X, Y) < 1$$

Exercise (7.37)
$$\begin{cases} (v,y) = \sqrt{\frac{1}{5}} e^{-t-x/y} & \text{Consider} (X,Y) \text{ with density} \\ (v,y) = \sqrt{\frac{1}{5}} e^{-t-x/y} & \text{XTC YTC} \\ \text{otherwise} \end{cases}$$

$$Find (a) (X,Y)$$

$$Cov (X,Y) = \overline{E}(XY) - E(X). E(Y)$$

$$E(Y) = \frac{1}{5} e^{-t} =$$

To find
$$E(X)$$
 we first observe that
$$\begin{cases} x_{x,y}(x_{x,y}) = \frac{-x}{2} & \frac{1}{2} = \frac{x}{3} \\ y_{y}(x_{y}) & R \\ x_{x,y}(x_{x,y}) & R \end{cases}$$

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(x)} = \frac{1}{2} = \frac{$$

= E(Y) = 1

$$= \int_{0}^{2} e^{3}y \int x \cdot \frac{1}{3} e^{3} dx dy = \int_{0}^{2} e^{3}y \cdot y dy$$

$$= \int_{0}^{2} e^{3}y \int_{0}^{2} x \cdot \frac{1}{3} e^{3} dy = Z$$

do by yournelf COU (X, Y) = E(XY) - E(X). E(Y): 2-4.1 = 1

Moment generating functions

Definition The moment generating function of the random variable X is the function M_X defined by

$$M_X(t) = E(e^{tX}),$$

for all $t \in \mathbb{R}$ for which this expectation exists

The moment generating function of X is then

$$M_X(t) = E(e^{tX}) = \begin{cases} \sum_x e^{tx} P(X = x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

whenever this sum or integral converges absolutely. In some cases, the existence of $M_X(t)$ can pose a problem for non-zero values of t.

Example If X has the normal distribution with mean 0 and variance 1, then

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx)} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx + t^2)} dx \ e^{\frac{1}{2}t^2}$$

$$= e^{\frac{1}{2}t^2} \text{ for all } t \in \mathbb{R}$$

Example If X has the Cauchy distribution

$$M_X(t) = egin{cases} 1 & t = 0 \ \infty & t
eq 0 \end{cases}$$

so that $M_X(t)$ exists only at t=0

Other examples of moment generaling functions

$$\mathcal{H}_{x}(+) = \mathcal{E}(\mathcal{L}^{+}) = \int_{0}^{\infty} \mathcal{L}^{+} dx = \lambda \int_{0}^{\infty} \mathcal{L}^{-} \lambda(\lambda + 1) dx = 0$$

$$= \lambda \frac{1}{\lambda - 1} e^{-x(\lambda - 1)} = \int_{\infty}^{\lambda - 1} \frac{1}{\lambda - 1} + c\lambda$$

$$M_{\times}(+) = E(\ell^{+\times}) = [\ell^{+\circ}(1-r) + \ell^{+\circ}r] = [(\lambda-r) + r\ell^{+}] \quad \forall + c$$

- It turns out to be important only that $M_X(t)$ exists in some neighbourhood $(-\delta, \delta)$ of the origin
- Hence we shall generally use moment generating functions subject to the assumption of existence in a neighbourhood of the origin.
- Observing that

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{3!}x^{3} + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}x^{k}$$

we have (by rigorously interchanging the expectation and the series)

$$E(e^{tX}) = E\left(1 + tX + \frac{1}{2}t^2X^2 + \frac{1}{3!}t^3X^3 + \cdots\right)$$
$$= \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k)$$

 $M_X(t)$ is the exponential generating function of the moments of X

Theorem If $M_X(t)$ exists in some neighbourhood $(-\delta, \delta)$ of the origin, then for k = 1, 2, ...

$$E(X^k) = M_X^{(k)}(0) = \frac{d^k}{dt^k} M_X(t)|_{t=0}$$

the kth derivative of $M_X(t)$ evaluated at t=0.

In fact, by observing that $\frac{d^k}{dt^k}e^{tx}=x^ke^{tx}$ and considering a continuous random variable

$$\frac{d^k}{dt^k} M_X(t) = \frac{d^k}{dt^k} \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{d^k}{dt^k} e^{tx} f_X(x) dx$$

$$= \int_{-\infty}^{\infty} x^k e^{tx} f_X(x) dx = E(X^k e^{tX})$$

If t = 0 we have $M_X^{(k)}(0) = E(X^k)$

Properties of the moment generating function

• If Y = aX + b

$$M_Y(t) = M_{aX+b}(t) = e^{tb}M_X(at)$$

• If X and Y are independent

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

• For the sum $S = X_1 + X_2 + \cdots + X_n$ of n independent

$$M_S(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_n}(t)$$

Theorem: Uniqueness theorem for moment generating function

If the moment generating function M_X satisfies

$$M_X(t) = E(e^{tX}) < \infty - \delta < t < \delta$$

for some $\delta > 0$, there is a unique distribution with moment generating function M_X .

Furthemore, under this condition, we have $E(X^k) < \infty$ for k = 1, 2, ... and

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k) - \delta < t < \delta$$

Theorem: Markov's inequality For any non negative random variable X

$$P(X \ge t) \le \frac{E(X)}{t}$$

Consider the indicator random variable $I_A: \Omega \to \mathbb{R}$ where

$$I_A = \begin{cases} 1 & \text{if } X(\omega) \ge t \\ 0 & \text{otherwise} \end{cases}$$

Note that

- if X < t then $t \cdot I_A = 0$ and $X \ge t \cdot I_A$
- if $X \ge t$ then $t \cdot I_A = t$ and $X \ge t \cdot I_A$
- Hence $X > t \cdot I_A$
- $E(t \cdot I_A) = t \cdot E(I_A) = t \cdot P(X \ge t)$
- If the random U-V is a non negative random variable (that is $U \ge V$) $E(U-V) = E(U) E(V) \ge 0 \Rightarrow E(U) \ge E(V)$
- Then $E(X) \ge t \cdot P(X \ge t)$, that is $P(X \ge t) \le \frac{E(X)}{t}$

Theorem: Jensesn's inequality Let X be arandom variable taking values on (a,b) and let $g:(a,b)\to\mathbb{R}$ be a convex function. Suppose that both E(X) and E(g(X)) exist. Then

$$E(g(X)) \geq g(E(X))$$

no proof

Examples with convex functions g

- $g(x) = x^2$, $E(X^2) \ge E(X)^2$
- $g(x) = -\log(x)$, $E(-\log(X)) \ge -\log(E(X))$, that is $E(\log X) < \log E(X)$