Stochastic Processes

Andrea Tancredi

Sapienza University of Rome

Week 10

The law of averages

Chebyshev's inequality and the weak law

Central limit theorem

Random walks

The law of averages

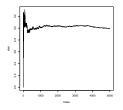
• Consider the following R commands and look the resulting picture

```
> x=rpois(5000,3)
```

> xbar=cumsum(x)/(1:5000)

```
> plot(xbar,type="l")
```

>



- The averages of the results approach the underlying mean value
- Given a sequence X₁, X₂,... of independent and identically distributed random variables each having mean value μ

$$\frac{1}{n}(X_1+X_2+\cdots+X_n)$$

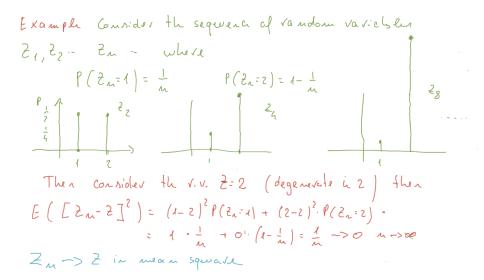
when $n \rightarrow \infty$ converges to μ ... but what does it mean converges

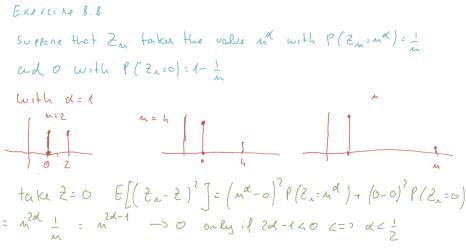
Definition We say that the sequence $Z_1, Z_2, ...$ of random variables converges in mean square to the (limit) random variable Z if

$$E([Z_n-Z]^2)
ightarrow 0$$
 as $n
ightarrow \infty$

If this holds we write $Z_n o Z$ in mean square as $n o \infty$

If $E([Z_n - Z]^2) \to 0$ then it follows that $Z_n - Z$ tends to 0 in some sense when $n \to \infty$





Theorem: mean-square law of large numbers Let $X_1, X_2, ...$ be a sequence of independent random variables, each with mean μ and variance σ^2 . The average of the first *n* of the X_i satisfies as $n \to \infty$

-1

P

$$rac{1}{n}(X_1+X_2+\dots+X_n)
ightarrow \mu$$
 in mean square

roof
Consider
$$S_{m} = X_{1+}X_{2+} \cdots X_{m}$$

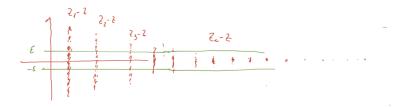
 $E\left[\frac{1}{m}S_{m}\right] = \frac{1}{m}E\left(X_{1}+X_{2}+\cdots+X_{m}\right) = \frac{1}{m}mp ep$
Then
 $E\left[\left(\frac{1}{m}S_{m}-P\right)^{2}\right] = var\left(\frac{1}{m}S_{m}\right) = \frac{1}{m^{2}}vcr\left(X_{1}+X_{2}+\cdots+X_{m}\right)$
 $= \frac{1}{m^{2}}\left[var\left(X_{1}\right)+var\left(X_{2}\right)+\cdots+var\left(X_{m}\right)\right] = \frac{1}{m^{2}}mc^{2} = \frac{c^{2}}{m^{2}} = 0$

Convergence in probability

Definition We say that the sequence $Z_1, Z_2, ...$ of random variables converges in probability to the (limit) random variable Z if $\forall \epsilon > 0$

$$P(|Z_n-Z|>\epsilon)
ightarrow 0$$
 as $n
ightarrow\infty$

If this holds we write $Z_n \to Z$ in probability as $n \to \infty$



Theorem: Chebyshev's inequality If Y is a random variable and $E(Y^2) < \infty$ then

$$P(|Y| \ge t) \le rac{1}{t^2} E(Y^2)$$

Proof Note that $P_{1}|_{2}+\zeta = P_{1}|_{2}+2$ Since γ^{2} is a positive variable we can say that $P_{1}|_{2}+\zeta = P_{1}|_{2}+2$, $\zeta = \frac{E[\gamma^{2}]}{+2}$ **Theorem** If $Z_1, Z_2, ...$ is a sequence of random variables and $Z_n \to Z$ in mean square as $n \to \infty$, then $Z_n \to Z$ in probability also

Proof

$$P(|z_n-2| = z \in L \leq \frac{EL((z_n-2)^2)}{E^2}$$

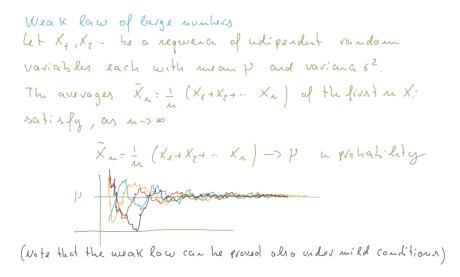
Hence if $E[(z_n-2)^2] \rightarrow O$ (for the man squeck convergence)
also $P(|z_n-2| = z \in L \rightarrow O$
The converse is fabre : convergence in probability = 5

convergence in mean square

Example 8.19 $Z_n \in \{0, n\}$ $P(Z_n = 0) = 1 - n^{-1}$, $P(Z_n = n) = n^{-1}$. From Ex. 8.8 we know that it does not converge to 0 in mean square $(\alpha = 1)$but

$$P(|Z_n - 0| > \epsilon) = P(Z_n = n) = \frac{1}{n} \to 0 \quad n \to \infty$$

Then Z_n converges to 0 in probability



- The weak law can be proved without the assumption that the X_i have finite variance...as long as they have the same distribution...
- However the X_i must have a mean. For example if X_i is Cauchy, $\frac{1}{n}(X_1 + \cdots + X_n)$ does not converge to a constant in fact it is still Cauchy!
- There are also other laws of large numbers which state stronger form of convergence: *almost sure convergence*

Central limit theorem

- Let X_1, X_2, \ldots be independent and identically distributed random variables with mean μ and variance σ^2
- By the law of large numbers we know that $S_n = X_1 + \cdots + X_n$ is of order *n*, in fact $\frac{S_n}{n} \xrightarrow{p} \mu$
- Can we say something about the order of $S_n n\mu$ and on the standardized distribution of S_n , that is

$$Z_n = \frac{S_n - E(S_n)}{\sqrt{\operatorname{var}(S_n)}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

• We will show that when $n \to \infty Z_n$ has a distribution (so the order of is \sqrt{n}) and this distribution is the standard Normal

Theorem: central limit theorem Let $X_1, X_2, ...$ be idependent and identically distributed random variables with mean μ and variance $\sigma^2 > 0$. Consider

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

where $S_n = X_1 + X_2 + \cdots + X_n$. When $n \to \infty$ we have

$$P(Z_n \leq x)
ightarrow \int_{-\infty}^{x} rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}u^2} du \quad \textit{for } x \in \mathbb{R}$$

The distribution of Z_n converges $\forall x$ to the N(0,1) distribution

Proof

For the proof we need the following theorem (that we do not prove)

Continuity theorem. Let Z_1, Z_2, \ldots , be a sequence of random variables with moment generating functions M_1, M_2, \ldots , and suppose that, as $n \to \infty$

$$M_n(t) o e^{rac{1}{2}t^2}$$
 for $t \in \mathbb{R}$

then

$$P(Z_n \leq x)
ightarrow \int_{-\infty}^{x} rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}u^2} du \quad \textit{for } x \in \mathbb{R}$$

The distribution function of Z_n converges to the distribution function of the normal distribution if the moment generating function of Z_n converges to the moment generating function of the normal distribution Consider

$$U_i = X_i - \mu$$

and note that

$$E(U_i) = 0$$
 $E(U_i^2) = var(U_i) = \sigma^2$

Take

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n U_i$$

The moment generating function of Z_n is

$$\begin{aligned} M_{Z_n}(t) &= E(e^{tZ_n}) = E\left(e^{t\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n U_i}\right) \\ &= M_{U_1}\left(\frac{t}{\sigma\sqrt{n}}\right) M_{U_1}\left(\frac{t}{\sigma\sqrt{n}}\right) \cdots M_{U_n}\left(\frac{t}{\sigma\sqrt{n}}\right) \\ &= \left[M_U\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n \quad \text{where } U \stackrel{d}{=} X_i - \mu \end{aligned}$$

there is a typo in formula 8.29 of the book

Now consider the exapnsion of the generating function $M_U(x)$ as power series about x = 0

$$M_U(x) = M_U(0) + x M^{(1)}(0) + \frac{1}{2}x^2 M^{(2)}(0) + o(x^2)$$

= $1 + x \cdot 0 + \frac{1}{2}\sigma^2 x^2 + o(x^2) = 1 + \frac{1}{2}\sigma^2 x^2 + o(x^2)$

Then by considering $x = \frac{t}{\sigma\sqrt{n}}$ (which when *n* is large and *t* is fixed is approximately 0)

$$M_U\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 + \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right)$$

Hence

$$M_{Z_n}(t) = \left[M_U\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n = \left[1 + \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right)\right]^n \to e^{\frac{1}{2}t^2} \quad \text{as } n \to \infty$$

In the proof of the central limit theorem we had o(x²) which is a function h(x) which converges to 0 faster than x² (when x → 0), that is h(x) = o(x²) if

$$\lim_{x\to 0}\frac{h(x)}{x^2}=0 \quad (*)$$

- Note also that if $\lim_{x\to x_0} f(x) = L$, then for every sequence a_n such that $\lim_{n\to\infty} a_n = x_0$, $\lim_{n\to\infty} f(a_n) = L$
- In the theorem, the function $h(x) = o(x^2)$ is then evaluated in the point $x = \frac{t}{\sigma\sqrt{n}}$. When t is fixed and as a function of n note that

$$\lim_{n \to \infty} \frac{h(\frac{t}{\sigma\sqrt{n}})}{\frac{t^2}{\sigma^2 n}} = \lim_{n \to \infty} \frac{h(\frac{t}{\sigma\sqrt{n}})}{\left(\frac{t}{\sigma\sqrt{n}}\right)^2} = 0$$

(the sequence $a_n = \frac{t}{\sigma\sqrt{n}} \rightarrow 0$ and by (*) $\lim_{n \rightarrow \infty} h(a_n)/a_n^2 = 0$)

• Hence $h(\frac{t}{\sigma\sqrt{n}})$ (as a function of n) is $o(n^{-1})$ because (when $n \to \infty$) it goes to 0 faster that n^{-1}

Definition The sequence Z_1, Z_2, \ldots is said to converge in distribution to Z as $n \to \infty$ if

$$P(Z_n \le x) \to P(Z \le x)$$
 for $x \in C$

where C is the set of reals at which the distribution function $F_Z(z) = P(Z \le z)$ is continuous

Theorem If $Z_1, Z_2, ...$ is a sequence of random variables and Z_n converges to Z in probability, then Z_n converges to Z in distribution.

The converse is generally false, unless the convergence is to a constant c

Theorem If $Z_1, Z_2, ...$ is a sequence of random variables and Z_n converges to a constant c in distribution, then Z_n converges to c in probability also

Consider the rendom warichen

Xn ~ g-m, o, m y PLX=0 h= PLX=- PLX=- L= PLX=- L= Zn 0 <- 1 2m in ->0 $E(X_{\mu}) =$ $\int \frac{1}{2m} \left(m \right) + 0 \frac{m-1}{m} + m \frac{1}{2m} = 0$ $E(X_{m}^{2}) = (-m)^{2} \cdot \frac{1}{2m} + o^{2} \frac{m-1}{m} + m^{2} \frac{1}{2m} = m^{2} \frac{1}{2m} + m^{2} \cdot \frac{1}{2m} = m$ $VAR(X_{n}) = \bar{E}(X_{n}^{2}) - \bar{E}(X_{n})^{2} = m - 0 = m$

Does the so querce of rendom variables converge in mean square to 6? $E\left(\left(X_{n}-\omega\right)^{2}\right) = Var\left(X_{n}\right) = n \rightarrow \infty$ act to o_{-n} There is not convergence a men squere $F(x) = P(X_{m} \leq x) = \begin{cases} 0 & x \leq -m \\ \frac{1}{2m} & -m \leq x < 0 \\ \frac{1}{2m} + l - \frac{1}{m} & 0 \leq x < m \\ \frac{1}{2m} + l - \frac{1}{m} & m \leq x < 0 \end{cases} = \begin{cases} 0 & x \leq -m - m \leq x < 0 \\ \frac{1}{2m} - m \leq x < 0 \\ \frac{1}{2m} + l - \frac{1}{m} & m \leq x < 0 \end{cases}$