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The law of averages

• Consider the following R commands and look the resulting picture
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• The averages of the results approach the underlying mean value

• Given a sequence X1,X2, . . . of independent and identically
distributed random variables each having mean value µ

1

n
(X1 + X2 + · · ·+ Xn)

when n→∞ converges to µ... but what does it mean converges



Definition We say that the sequence Z1,Z2, . . . of random variables
converges in mean square to the (limit) random variable Z if

E ([Zn − Z ]2)→ 0 as n→∞

If this holds we write Zn → Z in mean square as n→∞

• Note that E (Y 2) = 0 if and only if P(Y = 0) = 1

I P(Y = 0) = 1⇒ E (Y 2) = 0, obviously from the def. of E
I 0 = E (Y 2) =

∑
y y

2P(Y = y) ⇒ P(Y = 0) = 1

If E ([Zn − Z ]2)→ 0 then it follows that Zn − Z tends to 0 in some sense
when n→∞







Theorem: mean-square law of large numbers Let X1,X2, . . . be a
sequence of independent random variables, each with mean µ and
variance σ2. The average of the first n of the Xi satisfies as n→∞

1

n
(X1 + X2 + · · ·+ Xn)→ µ in mean square



Convergence in probability

Definition We say that the sequence Z1,Z2, . . . of random variables
converges in probability to the (limit) random variable Z if ∀ε > 0

P(|Zn − Z | > ε)→ 0 as n→∞

If this holds we write Zn → Z in probability as n→∞





Theorem: Chebyshev’s inequality If Y is a random variable and
E (Y 2) <∞ then

P(|Y | ≥ t) ≤ 1

t2
E (Y 2)



Theorem If Z1,Z2, . . . is a sequence of random variables and Zn → Z in
mean square as n→∞, then Zn → Z in probability also



Example 8.19 Zn ∈ {0, n} P(Zn = 0) = 1− n−1, P(Zn = n) = n−1.
From Ex. 8.8 we know that it does not converge to 0 in mean square
(α = 1)....but

P(|Zn − 0| > ε) = P(Zn = n) =
1

n
→ 0 n→∞

Then Zn converges to 0 in probability





• The weak law can be proved without the assumption that the Xi

have finite variance...as long as they have the same distribution...

• However the Xi must have a mean. For example if Xi is Cauchy,
1
n (X1 + · · ·+ Xn) does not converge to a constant .... in fact it is
still Cauchy!

• There are also other laws of large numbers which state stronger
form of convergence: almost sure convergence



Central limit theorem

• Let X1,X2, . . . be independent and identically distributed random
variables with mean µ and varaince σ2

• By the law of large numbers we know that Sn = X1 + · · ·+ Xn is of

order n, in fact Sn

n

p→ µ

• Can we say something about the order of Sn − nµ and on the
standardized distribution of Sn, that is

Zn =
Sn − E (Sn)√

var(Sn)
=

Sn − nµ

σ
√
n

• We will show that when n→∞ Zn has a distribution (so the order
of is

√
n) and this distribution is the standard Normal



Theorem: central limit theorem Let X1,X2, . . . be idependent and
identically distributed random variables with mean µ and variance
σ2 > 0. Consider

Zn =
Sn − nµ

σ
√
n

where Sn = X1 + X2 + · · ·Xn. When n→∞ we have

P(Zn ≤ x)→
∫ x

−∞

1√
2π

e−
1
2 u

2

du for x ∈ R

The distribution of Zn converges ∀x to the N(0, 1) distribution



Proof
For the proof we need the following theorem (that we do not prove)

Continuity theorem. Let Z1,Z2, . . ., be a sequence of random variables
with moment generating functions M1,M2 . . . , and suppose that, as
n→∞

Mn(t)→ e
1
2 t

2

for t ∈ R

then

P(Zn ≤ x)→
∫ x

−∞

1√
2π

e−
1
2 u

2

du for x ∈ R

The disttribution function of Zn converges to the distribution function of
the normal distribution if the moment generating function of Zn

converges to the moment generating function of the normal distribution



Consider
Ui = Xi − µ

and note that
E (Ui ) = 0 E (U2

i ) = var(Ui ) = σ2

Take

Zn =
Sn − nµ

σ
√
n

=
1

σ
√
n

n∑
i=1

Ui

The moment generating function of Zn is

MZn(t) = E (etZn) = E
(
e
t 1
σ
√

n

∑n
i=1 Ui

)
= MU1

(
t

σ
√
n

)
MU1

(
t

σ
√
n

)
· · ·MUn

(
t

σ
√
n

)
=

[
MU

(
t

σ
√
n

)]n
where U

d
= Xi − µ

there is a typo in formula 8.29 of the book



Now consider the exapnsion of the generating function MU(x) as power
series about x = 0

MU(x) = MU(0) + x M(1)(0) +
1

2
x2M(2)(0) + o(x2)

= 1 + x · 0 +
1

2
σ2x2 + o(x2) = 1 +

1

2
σ2x2 + o(x2)

Then by considering x = t
σ
√
n

(which when n is large and t is fixed is

approximately 0)

MU

(
t

σ
√
n

)
= 1 +

1

2

t2

n
+ o

(
1

n

)
Hence

MZn(t) =

[
MU

(
t

σ
√
n

)]n
=

[
1 +

1

2

t2

n
+ o

(
1

n

)]n
→ e

1
2 t

2

as n→∞



• In the proof of the central limit theorem we had o(x2) which is a
function h(x) which converges to 0 faster than x2 (when x → 0),
that is h(x) = o(x2) if

lim
x→0

h(x)

x2
= 0 (∗)

• Note also that if limx→x0 f (x) = L, then for every sequence an such
that limn→∞ an = x0, limn→∞ f (an) = L

• In the theorem, the function h(x) = o(x2) is then evaluated in the
point x = t

σ
√
n

. When t is fixed and as a function of n note that

lim
n→∞

h( t
σ
√
n

)

t2

σ2n

= lim
n→∞

h( t
σ

1√
n

)(
t

σ
√
n

)2 = 0

(the sequence an = t
σ
√
n
→ 0 and by (*) limn→∞ h(an)/a2n = 0)

• Hence h( t
σ
√
n

) (as a function of n) is o(n−1) because (when

n→∞) it goes to 0 faster that n−1



Definition The sequence Z1,Z2, . . . is said to converge in distribution to
Z as n→∞ if

P(Zn ≤ x)→ P(Z ≤ x) for x ∈ C

where C is the set of reals at which the distribution function
FZ (z) = P(Z ≤ z) is continuous

Theorem If Z1,Z2, . . . is a sequence of random variables and Zn

converges to Z in probability, then Zn converges to Z in distribution.

The converse is generally false, unless the convergence is to a constant c

Theorem If Z1,Z2, . . . is a sequence of random variables and Zn

converges to a constant c in distribution, then Zn converges to c in
probability also
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