Stochastic Processes

Prof. Andrea Tancredi June 2023

Name and surname:

Solve 2 exercises: time 2 hours.

- 1. Suppose Xavier has a fair 4-sided die and Yuan has a fair 6-sided die. They roll their dice at the same time (independently) until someone rolls a "1". Let X be the number of rolls of Xavier and Y be the number of rolls of Yuan.
 - (a) Find the probabilities P(X = k) and P(Y = k) for k = 1, ...,
 - (b) Find the probability that they roll the first 1 at the same time
 - (c) Find the probabilities P(Y < k) and P(Y < X)
- 2. Let X and Y have joint density

$$f_{XY}(x,y) = \begin{cases} c(x^2 + y) & 0 < x < y < 2\\ 0 & otherwise \end{cases}$$

Compute each of the following

- a) The value of c
- b) The marginal density $f_X(x)$ for all $x \in \mathcal{R}$
- c) The marginal density $f_Y(y)$ for all $y \in \mathcal{R}$
- d) P(Y < 1)
- e) P(X + Y < z) for 0 < z < 2
- 3. Let X and Y jointly continuous random variable with density

$$f_{XY}(x,y) = \begin{cases} c(4x^2y + 2y^5) & 0 < x < 1, 0 < y < 1 \\ 0 & otherwise \end{cases}$$

1

Consider $Z = X + Y^2$ and $W = X - Y^2$

- a) Find the value of c
- b) Write the set where the joint density of (Z, W) is positive
- c) Find the joint density of (Z, W)
- d) Find the marginal density of Z

- 4. In the two urns A and B there are three red and two green balls. One ball is drawn from the urn containing three balls and it is placed in the other urn. Let X_n be the number of green balls in the urn that after n draws contains two balls, for $n = 1, 2, ..., X_0 = 2$.
 - (a) Explain why the sequence $\{X_n; n \geq 0\}$ is a Markov chain
 - (b) Find the distribution of X_2
 - (c) Find the transition matrix of X_n
 - (d) Find the invariant distribution
 - (e) Now consider the sequence Y_n where

$$Y_n = \begin{cases} 1 & \text{if the ball drawn in the n:th draw is red} \\ 2 & \text{if the ball drawn in the n:th draw is green} \end{cases}$$

write the conditional probability $P(Y_n = i | X_{n-1} = j)$ for i = 1, 2 and j = 1, 2, 3. Is the sequence $\{Y_n; n \geq 0\}$ a Markov chain? Find the distribution of Y_n in the long period?