Metodi Statistici per l'Economia

A. Tancredi

Prova scritta del 11-06-2019

A Sia (x_1, \ldots, x_n) un insieme di dati indipendenti e identicamente distribuiti generati da una v.c. X avente distribuzione di probabilità

$$P(X = x; \theta) = {x+k-1 \choose k-1} \theta^k (1-\theta)^x \quad x = 0, 1, 2, \dots$$

dove k è un numero intero positivo noto.

(X rappresenta il numero di insuccessi osservati prima del k-esimo successo in una sequenza di v.c. di Bernoulli indipendenti con probabilità di successo pari a θ)

- 1. Scrivere la funzione di verosimiglianza per θ
- 2. Determinare una statistica sufficiente
- 3. Calcolare lo stimatore di massima verosimiglianza per θ
- 4. Calcolare l'informazione osservata per θ
- 5. Dimostrare che $E(X) = k(1 \theta)/\theta$
- 6. Determinare un intervallo di confidenza approssimato per θ .
- 7. Verificare che lo stimatore di massima verosimiglianza, $\hat{\psi}$ di $\psi = (1 \theta)/\theta$ è uno stimatore corretto
- 8. Sapendo che $Var(X) = k(1-\theta)/\theta^2$, stabilire se la varianza di $\hat{\psi}$ raggiunge il limite inferiore di Rao-Cramer

B Sia $y = (y_1, \ldots, y_n)$ un vettore di osservazioni indipendenti dove y_i è una realizzazione da una v.c. Normale con media μ incognita e varianza σ_i^2 nota

- 1. Scrivere la funzione di verosimiglianza per μ
- 2. Calcolare la stima di masima verosimiglianza $\hat{\mu}$
- 3. Calcolare media e varianza di $\hat{\mu}$
- 4. Cosa succede a $\hat{\mu}$ quando σ_n^2 converge a 0? E quando σ_n^2 diverge a $+\infty$
- 5. Calcolare media e varianza dello stimatore $\bar{Y} = \sum_{i=1}^{n} Y_i / n$
- 6. Verificare che $Var(\bar{Y}) \geq Var(\hat{\mu})$. (Utilizzare la disuguaglianza di Cauchy-Schwarz, $(\sum_{i=1}^n a_i b_i)^2 \leq (\sum_{i=1}^n a_i^2) (\sum_{i=1}^n b_i^2)$ con $b_i = 1/a_i$

C Nell'esercizio precedente supponiamo ora che le varianze σ_i^2 siano pari a $\sigma^2 h_i^2$ con h_1, \ldots, h_n costanti note ma σ^2 incognito

- 1. Scrivere la funzione di verosimiglianza per μ,σ^2
- 2. Calcolare la stima di massima verosimiglianza per μ e per σ^2