Master of Science in Nanotechnology Engineering

Class LM 53 Materials Engineering

International Strand

First year course A.Y. 2024-25 Second year course A.Y. 2025-26

The Master of Science in Nanotechnology Engineering is organized into two alternative strands:

- strand A: with most of the courses taught in Italian
- strand B: for foreign students, with all the courses taught in English

Strand A includes:

- I. 6 mandatory (code B) courses (57 CFU in total) to be selected among the ones listed in table A.I
- II. 2 courses (12 CFU) to be selected among the ones (code B) listed in table A.II
- III. 1 course (9 CFU) to be selected among the ones (code C) listed in table A.III
- IV. 2 completion courses (12 CFU in total) to be selected among the ones (code C) listed in table A.IV

Strand B includes:

- I. 7 mandatory (code B) courses (66 CFU in total) to be selected among the ones listed in table B.I
- II. 1 course (6 CFU) to be selected among the ones (code B) listed in table B.II
- III. 1 course (6 CFU) to be selected among the ones (code C) listed in table B.III
- IV. 2 completion courses (12 CFU in total) to be selected among the ones (code C) listed in table B.IV

The study plan must be completed (120 CFU in total) with:

- V. 2 free-choice courses (12 CFU in total) code D
- VI. Thesis defense (corresponding to 17 CFU) code E
- VII. Other activities aimed at preparing students for careers after graduation (1 CFU) code F

Some related courses are joined together in an UDI (see below for details).

With reference to point VII), the eligible activities must be approved by the Area Council and certified by the President of Area Council or by delegated professors.

In order to guarantee the maximum flexibility, an individual study plan can be presented for approval. The individual study plan should be prepared according to the guide reported in the following. The students presenting an individual study plan that is not compliant with the indications reported in the guide are required to integrate it with a motivation letter in order to justify the personal choices. The Area Council reserves the right to approve or reject the plan. At any rate, the individual study plan must be compliant with the above set of rules, from point I) to VII).

1.1.1 STRAND B (International students)

Legend for tables B.I – B.IV

Lang: IT (course in italian); ENG (course in english).

Type (course category): CR (standard course); CL (laboratory course)

Val (type of evaluation): E (final exam with grading out of 30); V (pass-fail grade).

TAF (Type of Educational Activity): B (core educational activity); C (educational activity in elective/similar or supplementary

disciplines); D (free-choice); E (thesis defense); F (other educational activities).

Table B.I – Mandatory courses for strand B

	Course	CFU	Sem.	SSD	Lang.	Туре	Val	TAF
1	Chemistry for Nanotechnology	9	ı	CHIM/07	ENG	CR	E	В
	Modern Physics for Nanotechnology (UDI: 12 CFU))							
2	Elements of quantum mechanics	6	-	FIS/01	ENG	CR	Е	В
	Elements of condensed matter physics	6	- 1	FIS/03	ENG	CR	Ε	В
	Surface Engineering and Nanostructured Materials (UDI: 12 CFU)							
3	Nanostructured materials	6	II	ING- IND/22	ENG	CR	E	В
	Surface Engineering	6	Ш	ING- IND/22	ENG	CR	Е	В
4	Continuum Mechanics	6	ı	ICAR/08	ENG	CR	Е	В
	Electron microscopies and related techniques (UDI: 9 CFU)							
5	Electron microscopies	6	II	FIS/01	ENG	CR	E	В
	Scanning probe microscopy	3	Ш	FIS/01	ENG	CR	Е	В
6	Micro-nanofluidics	9	III	ING- IND/06	ENG	CR	E	В
	Micro-nano devices and materials for electrical/electromagnetic applications and fundamentals (UDI: 9 CFU)							
7	Fundamentals of micro-nano devices and materials for electrical/ electromagnetic applications	3	Ш	ING- IND/31	ENG	CR	Е	В
	Micro-nano devices and materials for electrical- electromagnetic applications	6	III	ING- IND/31	ENG	CR	E	В

Table B.II – Course to be chosen for strand B

	Course	CFU	Sem.	SSD	Lang.	Type	Val	TAF
8	Transport Phenomena in Microsystems and Micro-Nano Reactive Devices	6	=	ING-IND/24	ENG	CR	E	В
	Physical metallurgy of innovative nano-structured materials	6	Ш	ING- IND/21	ENG	CR	E	В
	Additive manufacturing and Laser texturing	6	Ш	ING-IND/16	ENG	CR	Е	В

Table B.III – Course to be chosen for strand B

	Course	CFU	Sem.	SSD	Lang.	Туре	Val	TAF
9	Semiconductor devices	6	Ш	ING- INF/01	ENG	CR	E	С
	Artificial materials, metamaterials and plasmonics for electromagnetic applications	6	Ш	ING- INF/02	ENG	CR	E	С
	Optoelectronics	6	Ш	ING-INF/01	ENG	CR	Е	С

Table B.IV – Completion courses for strand B

	Course	CFU	Sem.	SSD	Lingua	Tipo	Val	TAF
	Sensors and electrical/electromagnetic characterization laboratory	6	IV	ING- IND/31	ENG	CR	E	С
	Laboratory of Electrorheology	6	Ш	ING- IND/31	ENG	CR	E	С
	Laboratories of Atomistic and Micro-Nano- Fluidics Simulations (UDI: 6 CFU)							
	Atomistic Simulations Laboratory	3	IV	FIS/01	ENG	CR	Е	С
	Micro-Nano Fluidic Simulations Laboratory	3	IV	ING- IND/06	ENG	CR	Ε	С
	Nanoelectronics Laboratory (UDI: 6 CFU)							
	Nanoelectronics device characterization	3	IV	ING-INF/01	ENG	CR	Е	С
	Nanoelectronics Laboratory	3	IV	ING-INF/01	ENG	CR	Е	С
10	Biophotonics Laboratory	6	Ш	FIS/01	ENG	CR	Е	С
е	Dynamics of micro-mechatronic systems	6	Ш	ING- IND/13	ENG	CR	Ε	С
11	Optics	6	II	FIS/01	ENG	CR	Е	С
	LASER Fundamentals	6	IV	FIS/01	ENG	CR	E	С
	Macromolecular Structures	6	I	BIO/10	ENG	CR	Е	С
	Principles of Biochemical Engineering	6	II	ING- IND/24	ENG	CR	Е	С
	Electromagnetic Fields and Nanosystems for Biomedical Applications	6	111	ING-INF/02	ENG	CR	E	С
	Molecular Dynamics and Atomistic Simulations (UDI: 6 CFU)							
	Statistical mechanics and Monte Carlo techniques	3	Ш	FIS/01	ENG	CR	E	С
	Classical molecular dynamics	3	Ш	FIS/01	ENG	CR	Е	С
	Nanobiotechnology	6	Ш	ING- IND/25	ENG	CR	Ε	С

1.1.2 Guide to the compilation of the individual study plan – STRAND B (international students)

The student must submit the Individual Study Plan by the deadline set by the teaching secretariat. Furthermore, the student is required to submit it before taking any non-mandatory exam. Students can only submit a single Study Plan per Academic Year. The study plan should include 9 mandatory exams (78 CFU) reported in the Table B.I, B.II and B.III.

The study plan must be completed by indicating a number of courses chosen for a total of 24 credits (CFU). In particular:

- the student can include any courses given in the University for a maximum of 12 credits;
- the student must include a number of courses, among those in the lists L1E and L2E, for a minimum amount of 12 credits.

To complete a curriculum coherent with the educational objectives of the Degree Course, the Nanotechnology Engineering Area Council recommends choosing the above courses within the suggested thematic groups (G1, G2, G3). With the aim to complete the student's cultural and technological education, the Nanotechnology Engineering Area Council also suggests:

- to choose at least 2 courses (for a minimum of 12 credits) belonging to the same Thematic Groups (G1, G2, G3) from L1E and L2E lists.
- verify that at least 2 applicative/experimental courses (for a minimum of 12 credits) are included in the study plan among those listed in the L1E.

Some courses, due to their contents, fall into more than one thematic group.

If the student wants to choose, for 12 credits, among the free-choice exams courses provided in other degree courses, it is suggested to first contact the teachers of the courses, in order to verify to have the necessary prerequisites, verify the year and semester of course delivery and the absence of substantial program overlaps with other courses already included in their study plan.

Students are recommended to attend courses respecting the chronological order in which they are taught throughout the academic year.

1.1.2.1 Thematic groups

G1: Modelling and Design

- o Sensors and electrical/electromagnetic characterization laboratory
- Laboratory of Electrorheology
- o Laboratories of Atomistic and Micro-Nano- Fluidics Simulations (UDI)
- O Dynamics of micro-mechatronic systems
- o Molecular Dynamics and Atomistic Simulations (UDI)
- Nanobiotechnology

G2: Optics and Electronics

- Nanoelectronics Laboratory (UDI)
- Biophotonics Laboratory
- Optics
- LASER Fundamentals
- Molecular Dynamics and Atomistic Simulations (UDI)

G3: Biotechnology

- O Laboratories of Atomistic and Micro-Nano-Fluidics Simulations
- Biophotonics Laboratory
- Macromolecular Structures
- Principles of Biochemical Engineering
- Nanobiotechnology
- o Electromagnetic Fields and Nanosystems for Biomedical Applications
- Molecular Dynamics and Atomistic Simulations (UDI)

APPLICATIVE/EXPERIMENTAL COURSES (L1E List)							
Subject			SSD	Lang.	Group		
Sensors and electrical/electromagnetic characterization laboratory			ING-IND/31	ENG	G1		
Laboratory of Electrorheology			ING-IND/31	ENG	G1		
UDI (6 CFU): Laboratories of Atomistic and Micro-	Atomistic Simulations Laboratory	3	FIS/01	ENG	G1, G3		
Nano- Fluidics Simulations	Micro/Nano Fluidic Simulations Laboratory	3	ING-IND/06	LING	G1, G3		
UDI (6 CFU): Nanoelectronics	Nanoelectronics device characterization	3	ING-INF/01	ENG	G2		
Laboratory	Nanoelectronics Laboratory	3	ING-INF/01				
Biophotonics Laboratory			FIS/01	ENG	G2, G3		
	COURSES (L2	2E List)					
Subject			SSD	Lang.	Group		
Dynamics of micro-mech	atronic systems	6	ING-IND/13	ENG	G1		
Optics	Optics		FIS/01	ENG	G2		
LASER Fundamentals	LASER Fundamentals		FIS/01	ENG	G2		
Macromolecular Structur	Macromolecular Structures		BIO/10	ENG	G3		
Principles of Biochemical Engineering		6	ING-IND/24	ENG	G3		
Nanobiotechnology		6	ING-IND/25	ENG	G1, G3		
Electromagnetic Fields and Nanosystems for Biomedical Applications		3	ING-INF/02	ENG	G3		
UDI (6 CFU): Molecular Dynamics	Statistical mechanics and Monte Carlo techniques	3	FIS/01	- FNG	04 03 05		
and Atomistic Simulations	Classical molecular dynamics	3	FIS/01	ENG	G1, G2, G3		