

Nano-Day 2020

Pierluigi Mondelli

ITN Marie-Curie PhD student Advanced Functional Material and Devices Group Condensed Matter Physics | Physics Department | University of Oxford Clarendon Laboratory, Parks Road Oxford OX1 3PU, England, UK

email: pierluigi.mondelli@physics.ox.ac.uk

On-line meeting

17-06-20

Previous Experience at Sapienza University of Rome

BSc in Mechanical Engineering and MSc in Nanotechnology

Improving the graphene quality for silicon-based electronics (MSc thesis project)

Supervisors: Prof C. Mariani, Prof N. Motta (QUT)

Single-Molecule Magnet (SMM) self-assembling for spintronics (<u>1-year research fellowship</u>)

Supervisors: Prof C. Mariani and Prof M. G. Betti (Sapienza)

Ordered network of SMMs The different d-state occupancy leads to different interaction mechanism with Co (super-exchange or direct exchange)

0.5

0.0

Magnetic Field (T)

Pierluigi Mondelli

UNIVERSITY OF

OXFORD

Summary of the Results - Publications

Improving the graphene quality for silicon-based electronics (MSc thesis project)

- Mondelli P., Gupta B., Betti M. G. et al. High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111) Nanotechnology 28 (2017) 115601
- Gupta B., di Bernardo I., Mondelli P, et al. Effect of Substrate Polishing on the Growth of graphene on 3C-SiC(111)/Si(111) by high temperature annealing Nanotechnology 27 (2016) 185601

Single-Molecule Magnets (SMM) self-assembling for spintronics (<u>1-year research fellowship</u>)

- Avvisati G., Gargiani P., Mondelli P. et al. Metal phthalocyanines interaction with Co mediated by a moiré graphene superlattice, The Journal of Chemical Physics 2019, Vol. 150, Issue 5
- Avvisati G., Mondelli P., et al. Graphene-mediated interaction between FePc and intercalated cobalt layers, Applied Surface Science 2018, Vol. 438 2-6
- Avvisati G., Gargiani P., Mondelli P. et al. Superexchange pathways stabilize the magnetic coupling of MnPc with Co in a spin interface mediated by graphene, *Physical Review B* 98, 115412 (2018)
- Gargiani P., Lisi S., Avvisati G., Mondelli P. et al. Mixing of MnPc electronic states at the MnPc/Au(110) interface, The Journal of Chemical Physics 2017, Vol. 147, Issue 13

Pierluigi Mondelli

UNIVERSITY O

OXFORD

Nano-Day

The Molecular Organization of Non-Fullerene Acceptors for Organic Photovoltaics

From Single-Crystals to Solar Cells

PhD Candidate:Pierluigi MondelliSupervisor:Prof Moritz Riede (University of Oxford)Co-supervisor:Dr Graham Morse (Merck Chemicals Ltd)

European Commission Horizon 2020 European Union funding for Research & Innovation

On-line meeting

17-06-20

Principles of Organic Photovoltaics (OPV)

Formation and splitting of strongly-bound excitons (Frenkel excitons)

From light absorption to free charge collection

- **1.** Exciton formation upon light absorption
- 2. Migration to the donor/acceptor interface
- **3.** Exciton splitting into free charges
- 4. Charge collection at the electrodes

In inorganic semiconductors the free charges are generated upon light absorption (Wennier exciton with very low binding energy $E_B \ll kT \approx 25$ meV)

Pierluigi Mondelli

Energy diagram of an organic BHJ

Printed Electronics and Organic Photovoltaics (OPV)

A technology for solution-processing addressing multiple needs

Indoor applications

UNIVERSITY OF

Self-powered indoor electronic devices

Outdoor applications

BIPV (Building Integrated Photovoltaics)

Processability

Mobile and flexible offgrid power supply

Pierluigi Mondelli

Non-Fullerene Acceptors (NFAs) vs Fullerenes

Chemical Structure → Solid-State Packing → Charge Transport

- NFAs outperformed fullerenes thanks to their higher absorption of the solar spectrum, energy levels tunability and better stability (despite the lower electron mobility)
- Study of the arrangement of the molecules in the solid-state gives insight about the propensity of the material to build favorable systems in terms of charge transport
- Microstructure-property relations for NFAs

UNIVERSITY OF

OXFORD

Single-Crystal Growth (Solvent-Vapour Diffusion)

UNIVERSITY OF

OXFORD

Structure determination by X-Ray Diffraction (XRD)

New crystals obtained in addition to structures known from literature

* Identification of the packing motif and the dimensionality of the π - π overlap

[1] Swick et al. PNAS 2018, DOI: 10.1073/pnas.1807535115.[2] Qu et al. ACS Appl Mater Interfaces, 2018, 10, 39992-40000.[3] Shi et al. Chemistry of Materials, 2017, 29, 8369-8376.[3] Data courtesy of Sarah Holliday, Imperial College London[5] Yan et al. Advanced Energy Materials, 2018, DOI: 10.1002/aenm.201800204

OXFORD Effect of the Domain Connectivity on the Charge Transport

Calculated band structure by DFT and electron effective mass

3D interconnected domains don't present any directional bottleneck for the charge transport
---> isotropic transport
Mondelli P. et al. Materials Horizon 2020, DOI: 10.1039/c9mh01439j

Pierluigi Mondelli

Nano-Day

From Single-Crystals to Solar Cells

How can we extend these learnings even further?

Former supervisors and colleagues during my MSc thesis project and 1-year fellowship:

- > Prof Carlo Mariani (Physics Department, University of Rome "La Sapienza", Rome, Italy)
- Prof Maria Grazia Betti (Physics Department, University of Rome "La Sapienza", Rome, Italy)
- > Prof Nunzio Motta (Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia)
- > Dr Giulia Avvisati (Physics Department, University of Rome "La Sapienza", Rome, Italy)

Current supervisors and collaborators:

- Prof Moritz Riede (Physics Department, University of Oxford, Oxford, United Kingdom)
- > Prof Dr Carsten Deibel (Optics and Photonics of Condensed Matter, Technical University of Chemnitz, Chemnitz, Germany)
- > **Dr Graham Morse** (PV Physics Fundamentals, Merck Chemicals Ltd, Southampton, United kingdom)
- > Prof Paolo Radaelli (Physics Department, University of Oxford, Oxford, United Kingdom)
- > Prof David Beljonne (Chemistry of Novel Materials, University of Mons, Mons, Belgium)
- > Prof Chris-Kriton Skylaris (Chemistry Department, University of Southampton, Southampton, United Kingdom)

Pierluigi Mondelli