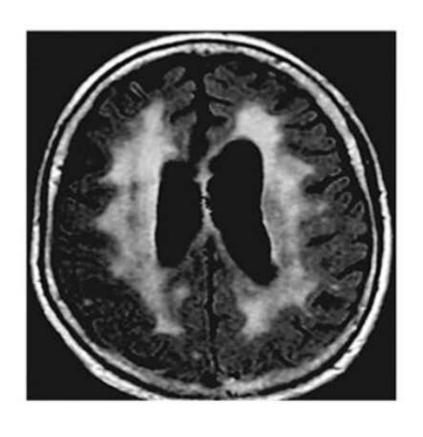


AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

IL MODERNO APPROCCIO RADIOTERAPICO AI TUMORI METASTATICI CEREBROSPINALI

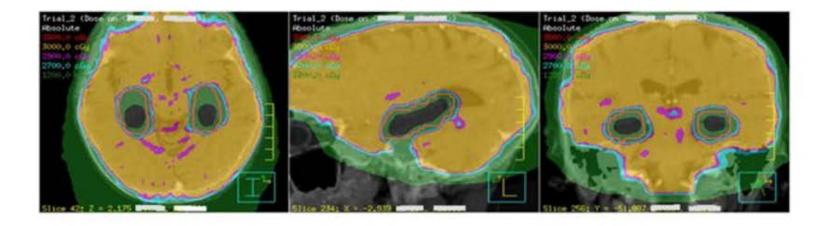
✓ Outline


- SRS alone for brain metastases
- How many metastases can be treated with SRS?
- Immunotherapy/targeted therapy for brain metastases
- Combining SRS with Immunotherapy/targeted agents
- Future research

✓ Outline

- SRS for brain metastases
- How many metastases can be treated w SRS?
- Immunotherapy/targeted therapy for brain metastases
- Combining SRS with Immunotherapy/targeted agents
- Future research

✓ Whole Brain Radiation Therapy


Late toxicity

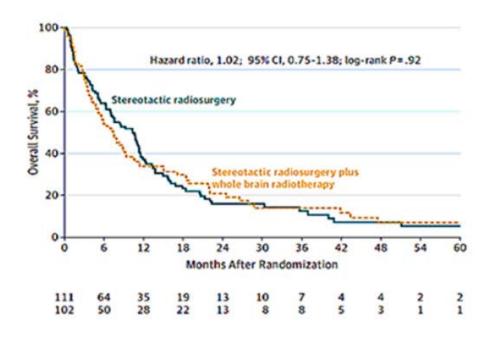
Normal pressure hydrocephalus, causing cognitive, gait and bladder dysfunction

Neuroendocrine dysfunction Cerebrovascular disease

RTOG 0933: HA-WBRT

 Conformal avoidance of the hippocampus using IMRT during whole brain radiotherapy (HA-WBRT) for brain metastases preserves memory function

Gondi, et al., Radiother & Oncol 2010, PMID: 20970214


✓ The addition of WBRT to SRS/Surgery has never been shown to not improve OS

Authors	Arms	mOS	P value
Patchell, 1998	Surgery Surgery + WBRT	9.9 11.1	0.39
Kocher, 2011	SRS/Surgery SRS/Surgery + WBRT	10.9 10.7	0.89
Aoyama, 2006	SRS + WBRT	8.0 7.5	0.42
Chang, 2009	SRS SRS + WBRT	15.2 5.7	0.003
Brown, 2016	SRS SRS + WBRT	10.4 7.4	0.92

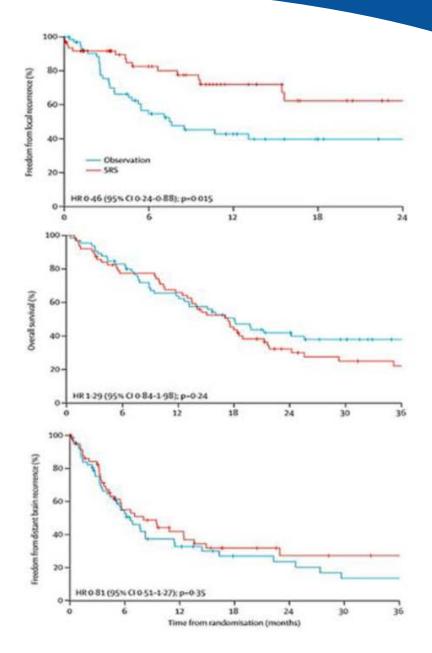
Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3

A Randomized Clinical Trial

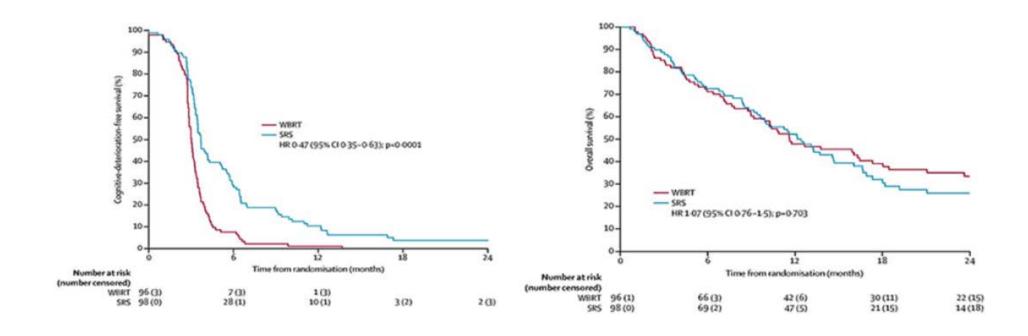
Brain Metastases:

Cognitive Test	SRS	SRS+WBRT	P-value
HVLT Total Recall	8.2%	30.4%	0.0043
HVLT Delayed Recall	19.7%	51.1%	0.0009
HVLT Recognition	22.6%	40.4%	0.0585
TMT Part A	16.7%	30.4%	0.1063
TMT Part B	19.0%	37.2%	0.0677
COWA	1.9%	18.6%	0.0098
Pegboard-Dominant	29.3%	47.7%	0.0656

Cognitive Test	SRS	SRS+WBRT	P-value
HVLT Total Recall	0.87	0.12	0.177
HVLT Delayed Recall	-0.05	-0.36	0.631
HVLT Recognition	0.35	-1.43	0.044
TMT Part A	0.33	-0.42	0.498
TMT Part B	1.1	0.01	0.397
COWA	0.34	-0.25	0.071
Pegboard-Dominant	-0.45	-6.46	0.114

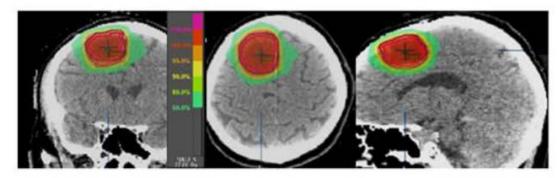

ASTRO Recommendations

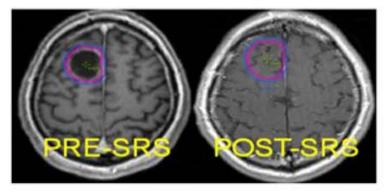
- Don't routinely add adjuvant WBRT or SRS for limited brain metastases
- Randomized studies have demonstrated no OS benefit
- The addition of WBRT to SRS is associated with diminished cognitive function and worse-patient fatigue and QOL
- Surveillance and judicious salvage allows patients to enjoy the highest QOL without a detriment in functional status and OS


AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial

Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial




Stereotactic Radiosurg

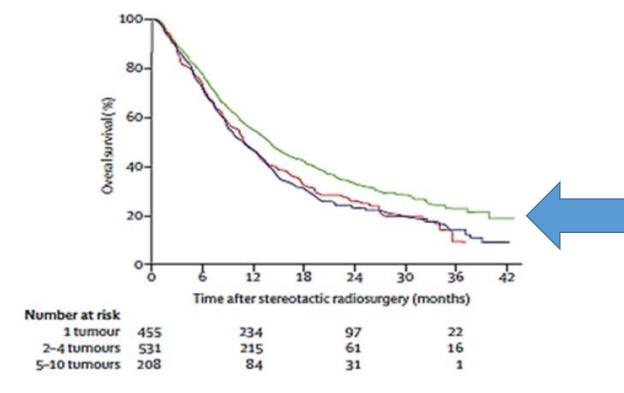
Stereotactic Radiosurgery for Resected Brain Metastases: New Evidence Supports a Practice Shift, but Questions Remain

By Giuseppe Minniti, MD, PhD, Scott G. Soltys, MD, Lia M. Halasz, MD, John C. Breneman, MD, Michael Chan, MD, Nadia N. Laack, MD, John P. Kirkpatrick, MD

- Timing of SRS
- Which target delineation
- Which dose/fractionation
- Which histologies can benefit
- Post-SRS vs Pre-SRS


Multicenter Randomized Phase III study on brain metastases susceptible to surgical resection (> 21mm or < with edema unresponsive to medical therapy or with considerable mass effect).

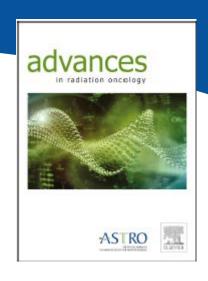
- -Diff. Leptomeningea and RN post SRS
- -Better target definition
- -Cell spilled prevention
- -Better oxygenation
- -Resection of irradiated tissue
- -Control arm: surgery + Fractional SRS
- -Experimental arm: fractional SRS + surgery

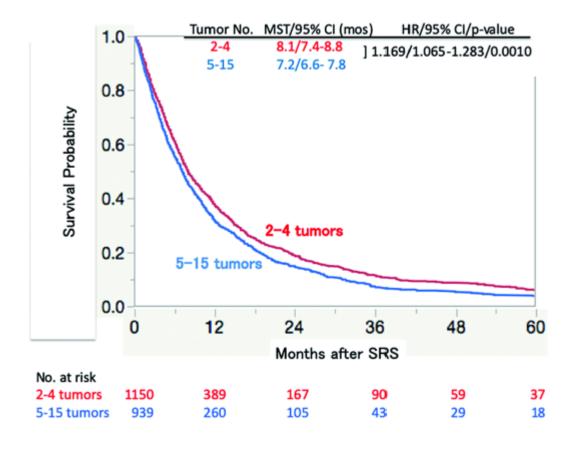

	Scheda di valutazione per partecipazione a studio randomizzato di fase III: radiochirurgia ipofrazionata			
	preoperatoria vs radiochirurgia ipofrazionata postoperatoria in pazienti con BMs suscettibili di trattamento chirurgico.			
istituto e città	trattamento cimargico.			
1	N° di pazienti con BM operati all'anno			
2	I casi clinici vengono discussi collegialmente?	sr	NO	
	Se si, con che frequenza?	settimanale	quindicinale	altro (specificare)
3	Fate a tutti i pazienti una RM post-operatoria entro 48-72 ore?	SI'	NO	·
4	Nel vostro centro sono eseguibili le seguenti indagini istopatologiche, biomolecolari ed immunoistochimiche sul campione di tessuto tumorale:			
	□ Ematossilina Eosina □ GFAP			
	□ CD31 □ NG2			
	□ CD3+ □ CD4+ □ CD8+ □ CD68+ □ FOXP3 □ PD-L1.			
	□ BRAF □ EGFR □ KRAS □ ALK			
	□ KRAS □ MSI □ ER □ PgR □ HER-2			
	□ ELISA su fluido cerebrospinale			
5	Nella pratica clinica del reparto viene eseguita la Radioterapia post-operatoria?		NO	
	Se la risposta alla domanda 5 è SI' che tipo di RT:			
	□ SRS in singola seduta			
	□ SRS ipofrazionata			
	□ WBRT			
6	E' presente presso il vostro centro una NeuroRadiologia?		NO	
7	E' pratica clinica eseguire presso il vostro centro la RM di simulazione oltre alla TC?		NO	
8	Viene effettuata una valutazione neuropsicologica del paziente?		NO	
	Se si, che tipo di test utilizzate?			
9	E' presente presso il vostro centro un data Manager o una persona che si occupa della gestioni dei dati degli studi di ricerca?		NO	

✓ Outline

- SRS for brain metastases
- How many metastases can be treated with SRS?
- Immunotherapy/targeted therapy for brain metastases
- Combining SRS with Immunotherapy/targeted agents
- Future research

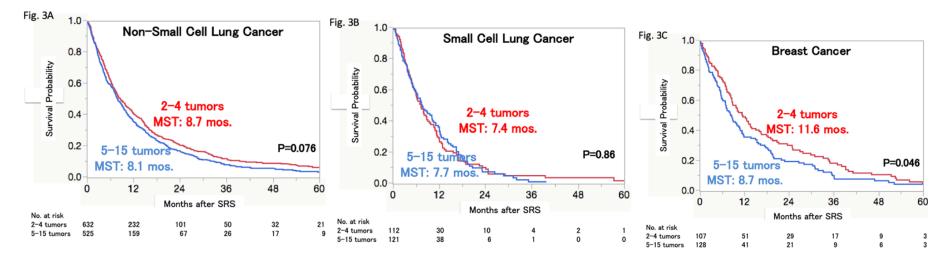
Group	Median overall survival, months (95% CI)	HR (95% CI)	pvalue
- 1 tumour	13-9 (12-0-15-6)	0-76 (0-66-0-88)	0.0004
2-4 tumours	10-8 (9-4-12-4)	Reference	
5-10 tumours	10-8 (9-1-12-7)	0-97 (0-81-1-18)	0.78

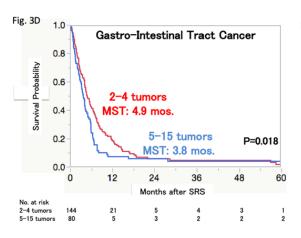


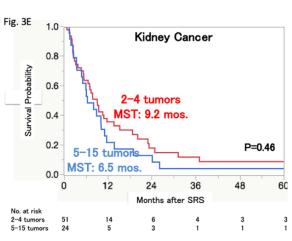

A multi-institutional prospective observational study

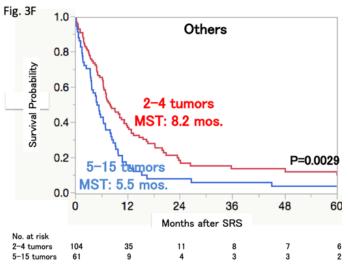
- -Single fraction 20-22 Gy
- -Cumulative volume < 0 = 15mL
- -Resume Several randomized clinical Trials
- -1194 patients (455 1 mts, 531 2-4 mts, 208 5-10 mts).
- -OS non inferior between 1-4/5-10 BUT
- -1-4 BMs fewer neurocognitive sequelae and improved quality of life with SRS

A Cohort Study of Stereotactic Radiosurgery Results for Patients with 5-15 versus 2-4 Brain Metastatic Tumors


Masaaki Yamamoto, M.D., Ph.D., Yasunori Sato, Ph.D., Yoshinori Higuchi, M.D., Ph.D., Hidetoshi Kasuva, M.D., Ph.D., Bierta E. Barfod, M.D.






Compared SRS results for 2-4 vs 5-15 BMs based on 1254 patients with 2-4 tumors and 939 with 5-15 BMs

AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

Treatment results for patients with 5-10 BMs were not inferior to those for patients with 2-4 BMs, and, notably, found that there was no significant difference in long-term neurocognitive function (NCF) maintenance between the two tumor number groups (GPA prognostic index)

NHS Criteria for commissioning

Patients meeting all of the following criteria will be routinely funded for SRS/SRS:

- MDT discussion
- Systemic disease status controllable/new diagnosis/no extra cranial disease
- Prognosis > 6 months
- PS ECOG ≤ 2
- Total PTV ≤ 20cc
- SRS New BM (> 3 months after)
- RE-RT (> 6 months)

AIM

- The aim of this report is to evaluate the utility of the NHSE selection criteria by comparing outcomes with previously published data.
- We have also sought to identify prognostic factors that may help to further define patient subgroups that may specifically or particularly benefit from radiosurgery for brain metastases.

Dott.ssa C. Reverberi

Treatment's preparation

- CT scan with thermoplastic mask: Axial unenhanced images were acquired at 1.5mm slice-thickness
- The MRI scan images were acquired without immobilisation in the mask, using 1mm slices with intravenous gadolinium contrast.
- All patients underwent SRS/SRT using CyberKnife robotic radiosurgery (Eclipse system) or gantry-based Linac radiosurgery (on Elements System)

Planning procedu

- The dose was prescribed to each PTV volume separately, and the planning team would aim to covered at least 98% of the volume by the 50% isodose at least
- The prescribed doses vary between 16-24Gy for a single fraction of treatment and between 21-25Gy for 3-5 fractions

TABLE 1. STANDARD VOLUME-BASED PRESCRIPTION DOSES (SHAW 2000)

PTV volume	Maximum Prescription dose	No. of fractions
≤ 4 cm3	24Gy	1#
≤ 8 cm3	20Gy	1#
> 8 cm3 and ≤ 14 cm3	18Gy	1#

In conjunction with immediate (within 4-6 weeks) whole brain radiotherapy:

≤ 1 cm3	20Gy	1#
≤ 4 cm3	18Gy	1#
> 4 cm3 and ≤ 14cm3	16Gy	1#

Summary of dose constraints for organ at risk (Hanna 2018) (Susan 2016 (Apr)) (Mayo 2010) (Lambrecht 128(2018))

(Lambrecht 128(2018))		
Single fraction radiosurgery (1#)		
OARs	Dmax Constraint*	Volume constraint
Optic Chiasm	ldeally < 10Gy Acceptable < 12Gy	V8Gy ≤ 0.1cc
Optic Nerve	ldeally < 10Gy Acceptable < 12Gy	V8Gy ≤ 0.1cc
Retina	5Gy	
Lens	2Gy	
Cochlea	9Gy	4Gy D mean for hearing preservation
Facial Nerve	16Gy	
Trigeminal Nerve	20Gy	
Cranial Nerve 3,4,6	26Gy	
Cranial Nerve 9,10,11	12Gy	
Brainstem**	Ideally < 10Gy Acceptable < 12.5Gy	V10 ≤ 0.5cc
Normal brain (no PTV included)	Aim V10Gy ≤ 10cc Acceptable V12Gy ≤ 10cc	V5Gy ≤ 50%
Three fractions radiosurgery (3#)		
OARs	Dmax Constraint	Volume constraint
Optic Chiasm	ldeally < 15Gy Acceptable < 17.4Gy	V15.3Gy ≤ 0.1cc
Optic Nerve	Ideally < 15Gy Acceptable < 17.4Gy	V15.3Gy ≤ 0.1cc
Cochlea	17.1Gy	6Gy D mean for hearing preservation
Facial Nerve	26Gy	
Trigeminal Nerve	26Gy	
Brainstem**	Ideally < 18Gy Acceptable < 23.1Gy	
Normal brain (no PTV included)	V19.5Gy ≤ 10cc	V5Gy ≤ 50%
*Dmax to poit dose impies dose to volu	ume < 0.035cc** Where PTV is no	ot inside the brainstem

Male 166 (43%)

100

90

80

70

No extracranial disease

Median: 63

years

Controllable

New diagnoses

Treatment characteristics

Single (293 pts – 75.9%)

16Gy – 19 Gy (24 pts-8.2%)

20Gy - 24 Gy (269pts -

91.8%)

386

M 67 ys

(range 21-

89)

Female 220 (57%)

F 60 ys (28-

86)

48 pts (13.8%)

155 pts (44.6%)

92 pts (26.4%)

53 pts (15.2%)

296 pts (76.7%)

66 pts (17.1%)

24 pts (6.2%)

Three (93 –

24.1%)

20-23 Gy (7 pts-

7.5%)

24 Gy (84 pts-

90.3%)

27 Gy (2 pts – 2.1%)

Extra-cranial disease (ECD)

Controllable

New diagnosis

No ECD

0-4cc

4-8cc

>8cc

2-4

>5

<u>1#</u>

3#

Number of fraction

Number of met

Volume category

296

24

166

207

100

179

141

165

80

293

93

12.62 (9.54-15.7)

12.82 (8.31-17.33)

10.26 (5.93-14.58)

10.88 (7.67-14.09)

11.74 (9.48-13.99)

17.95 (9.86-26.05)

16.011 (11.88-20.14)

10.88 (7.82-13.94)

NR

19.86

INR

2.24

2.01

1.33

1.38

1.75

1.1

0.012

< 0.0001

0.008

0.055

0.003

0.086

0.013

0.284

0.155

0.22

0.003

0.002

0.69

0.99

	SANT'ANDREA	
Table 1. Pation	ent characteristics	

	SANT'ANDREA	
Table 1. Pat	ient characteristics	

No of patients

Gender

Karnowski

(KPS)

disease

Number of

Total Dose

fractions

Performance Status

Status extra-cranial

348 pts analysed

Age

May 2016-Sept 2018

	SANT'ANDREA	
Table 1 Pat	ient characteristics	

	SANT'ANDREA	IERO ONIVERSITARIA
75 1 1 4 B		

	SANT'ANDREA	
77.11.4 P		_

	SANT'ANDREA	
77.11.4 P		

SANT'ANDREA	

SANT'ANDREA	
AZILINDA OSI LDALIL	

SANT'ANDREA

SANT'ANDREA	

SANT'ANDREA

SANT'ANDREA	LIERO-UNIVERSITARIA
37 (1 1 1 7 (1 1 B) (E) (

	SANT'ANDREA	IERO ONIVERSITARIA

AZIENDA OSPEDA	aliero-universitaria
SANT'ANDREA	
37 (1 1 1 7 (1 1 2) 1 (2) 1	

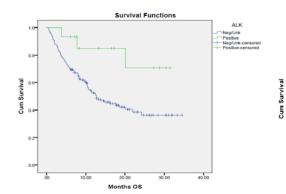
 AZIENDA OSPEDALIERO-UNIVERSITARIA
SANT'ANDREA
SANTANDILA

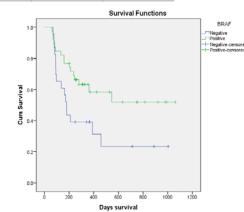
 AZIENDA OSPEDAL 	.iero-universitaria
SANT'ANDREA	
5, 11 17 11 1D 1 (E) (

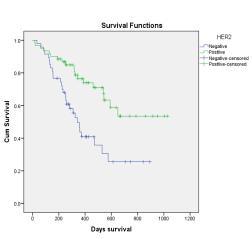
AZIENDA	a ospedal	.IERO-UNI	VERSITARIA
SANT'AN	IDREA		
37 tt 1 1 7 tt 1			

 AZIENDA OSPEDALIERO-UNIVERSITARIA
SANT'ANDREA
SANTANDILA

	AZIENDA OSPEDALIERO-UNIVERSITARIA	
	SANT'ANDREA	




OS & Primary tumour histology

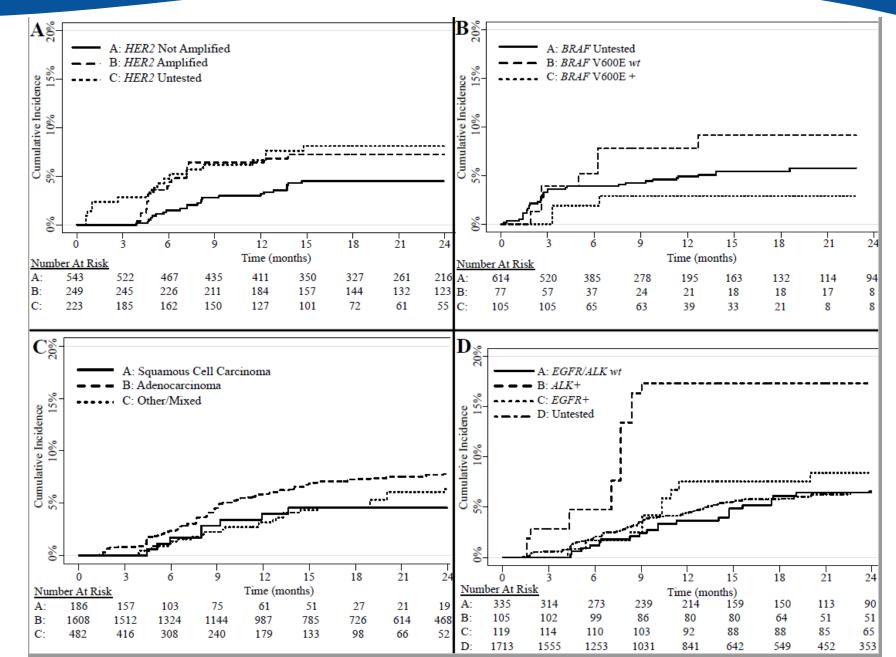

Table 4. Univariate and Multivariate analysis of OS according to the primary tumour.

	No pts	No events (death)	Median OS (95%CI)	Univar anal. (P value)	Mult ivar anal (P valu e)	HR (95% CI)
All	386	196	15.19 (12.0- 18.38)			
Breast	90	37	19.43 (12.86- 26.0)		0.00	0.51 (0.34- 0.78)
Lung	162	82	14.56 (8.1- 21.02)	0.012	0.02	0.68 (0.48- 0.95)
Melano ma	49	23	15.09 (3.57- 26.6)		0.08	0.65 (0.40- 1.05)
<u>Others</u>	85	54	9.5 (6.48- 12.52)		0.01	-

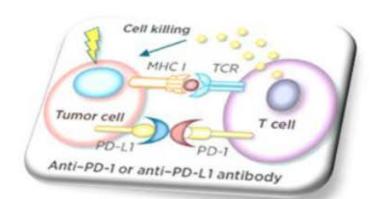
		Overall survival				
	n	Median (months)	6 months (%)	12 months (%)	24 months (%)	
All	386	15.2	72.5	55.1	38.4	
Breast*	90	19.7	84.4	63.9	43.7	
HER2 +ve	55	NR	89.1	73.7	51.4	
HER2 -ve	32	10.8	75.0	41.9	21.0	
Lung*	162	14.8	72.2	55.3	41.4	
ALK +ve	15	NR	93.3	84.8	70.7	
EGFR +ve	20	20.1	84.4	66.3	48.3	
PDL1 +ve	54	22.0	68.5	59.8	45.8	
Melanoma*	49	15.3	71.4	59.2	43.8	
BRAF +ve	27	NR	81.5	66.7	55.6	
BRAF WT	15	13.0	60.0	53.3	40.0	

AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

Association between Radiation Necrosis and Tumor Biology following Stereotactic Radiosurgery for Brain Metastasis


Jacob A.

Characteristic	Cohor	<i>P</i> -Value	
Characteristic	Radiation Necrosis	Control	P-v alue
NSCLC Histology	- (-/	(-/	0.01
Adenocarcinoma	83 (76)	447 (61)	
Squamous Cell	7 (6)	90 (12)	
Mixed/Other	19 (18)	190 (26)	
NSCLC Molecular Status			< 0.01
EGFR- / ALK-	13 (12)	91 (13)	
EGFR+ / ALK-	9 (8)	26 (4)	
EGFR- / ALK+	6 (6)	5 (1)	
<mark>Unknown</mark>	81 (74)	605 (83)	
Breast Receptor Status			
ER+	24 (49)	74 (31)	< 0.01
PR+	14 (29)	42 (17)	0.02
HER2-amplified	17 (35)	40 (17)	< 0.01
Triple Negative	19 (39)	83 (34)	0.43
Melanoma <i>BRAF</i> Status			0.87
$BRAF \mathrm{V600+}$	2 (7)	17 (10)	
BRAF V600 wt	4 (15)	21 (13)	
Unknown	21 (78)	129 (77)	


Ь

AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

✓ Outline

- SRS alone for brain metastases
- How many metastases can be treated with SRS?
- Immunotherapy/targeted therapy for brain metastases
- Combining SRS with Immunotherapy/targeted agents
- Future research

✓ Outline

- SRS alone for brain metastases
- How many metastases can be treated with SRS?
- Immunotherapy/targeted therapy for brain metastases
- Combining SRS with Immunotherapy/targeted agents
- Future research

BRAF and SRS

	# concurrent BRAF/RS	Results	
Marseille	20	No increased risk	
Emory	15	symptomatic radiation necrosis was me frequent in the BRAF inhibitor group (28.2 vs. 11.1% at 1 year, P <0.001)	
Utah	14	1-year rates of freedom from intratumoral hemorrhage were 39.3% and 77.0%	
Moffitt	24	No grade 3 or greater toxicity	
UVA	17	"acceptable safety profile"	
UCSF	Phase II trial NCT01721603	Trial ongoing	

Series with at least ten patients are mixed regarding whether concurrent BRAF agents increase risk of toxicity

Authors	Type of study	Patients	treatment	CNS-PFS	os	Toxicit
Ahmed, 2016	Retrospective	21	Pembro/Nivo plus RT	6-month 61%, 12-month 38%	6-month 81%, 12-month 66%	0
Parakh, 2017			6-r	nonths PFS	12-month OS	0 NR
Anderson , 2017						0
Goldberg, 2016	SRS plu	us ICI		60-80%	65-80%°°	12%
Chen, 2018	pembr	o/Nivo)	30-40%	50-60%	NR
Gonzales, 2016	alone					NR 0
Cowey, 2018						NR
Nardin, 2018	°°cocurrer					6.8%
Qian, 2016	nonconcu	rrent 60-75	5%			NR
				NR	non-concurrent 9 months	NR
Patel 2015	Retrospective	44	IPI plus SRS	12-month CNScr71.4%	12-month OS 37.1% median OS 12.4 months	NR
Kiess, 2015	Retrospective	46	IPI plus SRS	NR	12-month OS 60%	17.4%
Queirolo, 2014	Retrospective	146	IPI	CNScr 27%	4.3 months	6%

^{**}w ithin 6 months; "concomitant, w ithin 4 w eeks; "Pts w ith symptomatic BM had shorter PFS than those w ithout symptoms (2.7 vs 7.4 months, P=0.035)

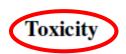
Brain metastases from non-small cell lung cancer with EGFR or ALK mutations: A systematic review and meta-analysis of multidisciplinary approaches

30 Studies (2649 pz)

Raj Singh^a, Eric J. Lehrer^b, Stephen Ko^c, Jennifer Peterson^c, Yanyan Lou^d, Alyx B. Porter^e, Rupesh Kotecha^f, Paul D. Brown^h, Nicholas G. Zaorskyⁱ, Daniel M. Trifiletti^{c,*}

^aDepartment of Radiation Oncology, Virginia Commonwealth University Health System, Richmond; ^bDepartment of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York; ^cDepartment of Radiation Oncology; ^dDepartment of Medical Oncology; ^eDepartment of Neurology, Mayo Clinic, Phoenix; ^fDepartment of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; ^bDepartment of Radiation Oncology, Mayo Clinic, Rochester; and ^fDepartment of Radiation Oncology, Penn State Cancer Institute, Hershey, USA

	TKI Alone	RT Alone (WBRT/SRS)	Vs TKI + SRS
OS	23,3	32,2	28,3
PFS	++	+	++



AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA

Robin, et al. (2018) *	ceritinib, alectinib, brigatinib, and lorlatinib	35 patients 53 ALK +: 19 patients (24– EGFR +: 16 patients All received SRS 28 – no prior WBRT 6 – WBRT before SRS 1- WBRT after SRS 20 – TKI during treatment course	N/A 79)	N/A	6 (4-26)	4.1 years	Median fr from CNS progressic 7.8 month followed 1 6.8 month followed 1 3.2 month 5-year fre from WBF (FFWBRT) 97%	on: ns, by ns, by sedom	3 years ALK + patients: 4.2 years	7/516 lesion (1.4%) and 4 (11.4%) occu median of 9. (range: 4.6–	/35 patients rring at a	Receipt of CNS-ac TKIs at diagnosis associated with improved OS (p <	
Study	ткі	n (Patients)	Median Age (range)	Median GTV/PTV	Treatment Planning	Number of (range)	Fol	edian llow-up nge)	CNS-PFS (95% CI)	OS	(95% CI)	Toxicities	Additional Notes/ Comments
Doherty, et al. (2017)*	EGFR: Erlotinib or gefinitib afatanib osimertinib or rocelitinib ALK; crizotinib and ceritinib	ALK +: 163 WBRT and TKI: 98	59 (29–86)	N/A	SRS: 15–21 Gy depending on GT WBRT: 30 Gy/10 fractions or 20 Gy/5 fractions	>4: 82 SRS: 94%		A	Median time to intrace progression WBRT + T 50.5 months (p = 0.00 SRS + TKI: 12 months alone: 15 months EGR Significant trend maintained as above (p = 0.0064) AIK +: NS	KI: WB 38) 21.6 TKI SRS R +: 23.5 alor No	dian OS; RT + TKI: 6 months + TKI: 9 months TKI ne: 22.6 months association on A of first-line atment on OS	N/A	
Wang, et al (2018)*		all EGFR + Upfront RT (interval between diagnosis and RT of <3 months): 30 Deferred RT for chemotherapy or TKI: 15	46 (58–70)	N/A	WBRT: 30 Gy/10 fractions SRS: N/A	One: 14 Two: 5 >2: 26	N/A		ledian intracranial PFS: 7.7 months (12.4–23)	Median C 28 month (17.3–38. Upfront T 26.5 mon Upfront T 28 month	OS: N/A ns 77) RTT: tiths TKI:	•	
Xie, et al. (2018)	Osemertinib	all EGFR + treated with osemertinib Progressing BMs with TKI only (Group A): 11 Progressing BMs with TKI and SRS (Group B): 9 Stable BMs with TKI only (Group C): 20	63 (32-81)	Median GTV: Group A: 9 cc (3-25 cc) Group B: 11 cc (4-30 cc)	N/A	N/A	N/A	83 (6 83 (4 Gi No 6	ledian intracranial PFS: 8 months 6.2–12.1) roup A: 8 months 6.3–13.4) roup B: ot reached roup C: 4 months 6.6–11.1)	Median C 16.2 mon Group A: Not reach Group B: 16.2 mon Group C: Not reach	OS: N/A osths ned oths		

(continued on next page)

Preliminary experience of the concurrent use of radiosurgery and T-DM1 for brain metastases in HER2-positive metastatic breast cancer

J Neurooncol. 2017 May;132(3):525. doi: 10.1007/s11060-017-2405-0. Epub 2017 Mar 23.

Arthur Geraud¹·H Radio-sensitising effect of T-DM1 should not be discarded for the efficacy of radiosurgery in the management of brain metastases in patients with HER2-positive metastatic breast cancer.

y was low for most patients in the conuential group. The

Altundag K1.

Results

Author information

Comment on

Response Preliminary experience of the concurrent

Neurooncol. 2017]

After radiosurgery and concurrent 1-DIVII (n. Neuro Oncol. 2014 Jul;16(7):1006-9.

Trastuzumab emtansine and stereotactic significant brain edema.

Carlson JA, Nooruddin Z, Rusthoven C, Elias A, Borges VF, Diame

Abstract

BACKGROUND: In the last 10 years, multiple new targete factor receptor 2-positive (HER2+) breast cancer. Up to requiring some form of radiation therapy. The interaction unreported.

METHODS: In this series, we describe 4 patients who devanthese patients were treated with stereotactic radiosurge metastatic HER2+ breast cancer. Additionally, we present patients treated during this same time period.

RESULTS: Using previously published clinical and preclin interaction.

CONCLUSION: Increased awareness of potential interact

Combination of Trastuzumab Emtansine and Stereotactic Radiosurgery Results in High Rates of Clinically Significan Radionecrosis and Dysregulation of Aquaporin-4.

Stumpf PK¹, Cittelly DM², Robin TP³, Carlson JA⁴, Stuhr KA³, Contreras-Zarate MJ², Lai S², Ormond DR⁵, Rusthoven CG³, Gaspar LE³, Rabinovitch R³, Kavanagh BD³, Liu A³, Diamond JR⁶, Kabos P⁷, Fisher CM¹.

Author information

Abstract

PURPOSE: Patients with human EGFR2-positive (HER2⁺) breast cancer have a high incidence of brain metastases, and trastuzumab emtansine (T-DM1) is often employed. Stereotactic radiosurgery (SRS) is frequently utilized, and case series report increased toxicity with combination SRS and T-DM1. We provide an update of our experience of T-DM1 and SRS evaluating risk of clinically significant radionecrosis (CSRN) and propose a mechanism for this toxicity.

EXPERIMENTAL DESIGN: Patients with breast cancer who were ≤45 years regardless of HER2 status or had HER2⁺ disease regardless of age and underwent SRS for brain metastases were included. Rates of CSRN, SRS data, and details of T-DM1 administration were recorded. Proliferation and astrocytic swelling studies were performed to elucidate mechanisms of toxicity.

RESULTS: A total of 45 patients were identified; 66.7% were HER2⁺, and 60.0% were ≤ 45 years old. Of the entire cohort, 10 patients (22.2%) developed CSRN, 9 of whom received T-DM1. CSRN was observed in 39.1% of patients who received T-DM1 versus 4.5% of patients who did not. Receipt of T-DM1 was associated with a 13.5-fold (*P* = 0.02) increase in CSRN. Mechanistically, T-DM1 targeted reactive astrocytes and increased radiation-induced cytotoxicity and astrocytic swelling via upregulation of Aquaporin-4 (Aqp4).

CONCLUSIONS: The strong correlation between development of CSRN after SRS and T-DM1 warrants prospective studies controlling for variations in timing of T-DM1 and radiation dosing to further stratify risk of CSRN and mitigate toxicity. Until such studies are completed, we advise caution in the combination of SRS and T-DM1.

©2019 American Association for Cancer Research.

Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: evaluation of brain control and toxicity

CNS event Headache

Hemorrhage

Seizure

Diziness

Brain necrosis

Giuseppe Minniti^{1*}, Dimitri Anzellini², Chiara Reverberi², Gian Carlo Antonini Cappellini³, Luca Marchetti¹, Federico Bianciardi¹, Alessandro Bozzao⁴, Mattia Osti², Pier Carlo Gentile¹ and Vincenzo Esposito⁵

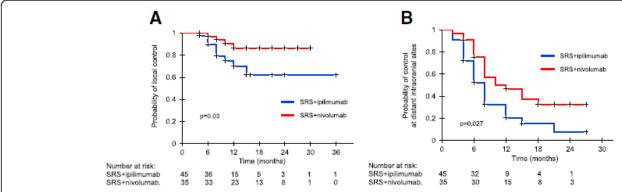
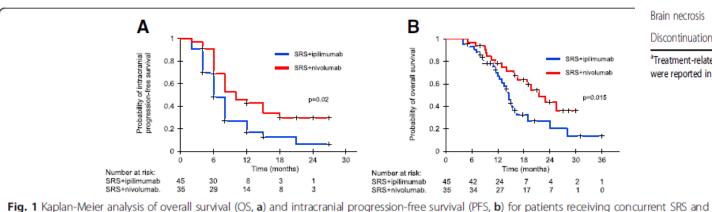



Fig. 2 Kaplan-Meier analysis of local control (LC, a) and distant brain control (DBC, b) after concurrent SRS and ipilimumab (blue li nivolumab (red line). LC and DBC were significantly better in SRS and nivolumab group

ipilimumab (blue line) or nivolumab (red line). OS and intracranial PFS were significantly better in SRS and nivolumab group

were reported in both cohorts

8 (18%)

3 (7%)

3 (7%)

4 (9%)

13 (29%)

2 (4%)

1 (2%)

2 (4%)

5 (11%)

4 (12%)

2 (6%)

2 (6%)

2 (6%)

7 (20%)

1 (3%)

1 (3%)

1 (3%)

3 (9%)

Discontinuation of treatment aTreatment-related adverse events of any grade occurring in at least 5% of patiens in either cohorts. Some patients had more than one event. No grade 4 events

Single-fraction versus multi-fraction (3 x 9 Gy) stereotactic radiosurgery for

large (> 2 cm) brain metastases: a comparative analysis of local control and

risk of radiation-induced brain necrosis

Table 2. Effect of single-fraction SRS and multi-fraction SRS on LC and RN risk a,b

Outcome	HR*	95% CI	р
Local control			
Unadjusted cohort	0.43	0.21 to 0.9	0.03
Propensity score matching	0.35	0.13 to 0.76	0.01
IPTW propensity score	0.33	0.16 to 0.68	0.007
RN risk			
No adjustment	0.42	0.21 to 0.83	0.03
Propensity score matching	0.22	0.14 to 0.73	0.005
IPTW propensity score	0.23	0.18 to 0.66	0.001

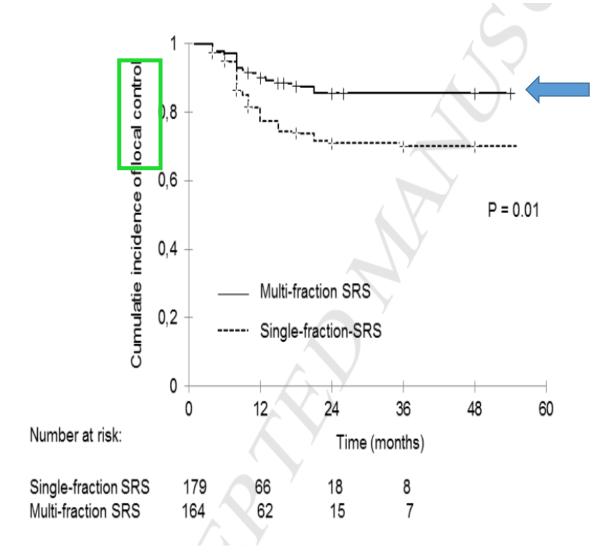
Abbreviations: SRS, stereotactic radiosurgery; LC, local control; RN,radiation-induced brain necrosis; HR, hazard ratio; CI, confidence interval; * Single-fraction SRS is the reference group; a Propensity score-matching and inverse-probability-of-treatment weighting (IPTW) propensity score b age at diagnosis, gender, histology, number of metastases, extracranial disease, and tumor volumes

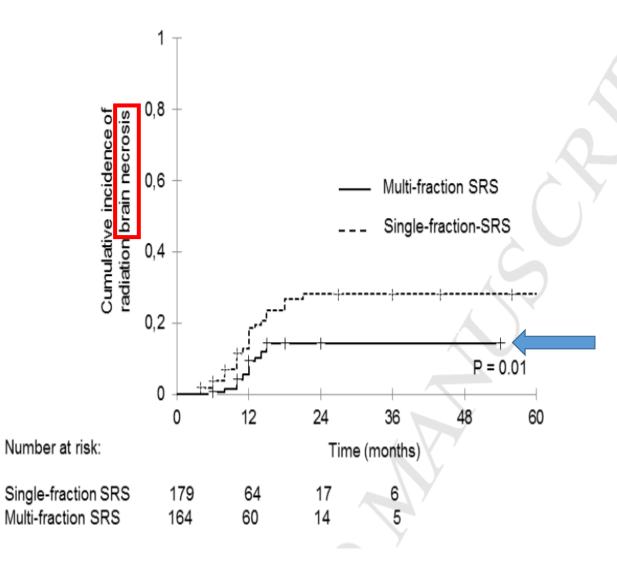
Giuseppe Minniti, M.D,

7Gyx3

a/b 3

- Different radiation schedules used to treat large metastasis (3x7Gy n=11)
- V12 e V18 Gy most significant predictors of RN
- BED: 108 9Gyx3
 - EQD2: 64,8
- BED:70

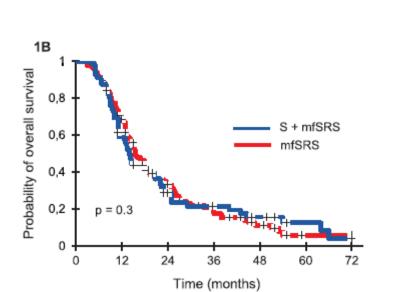

EQD2:42

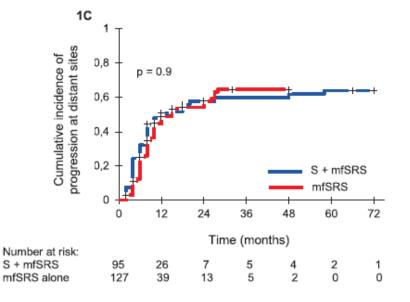

BED: 153

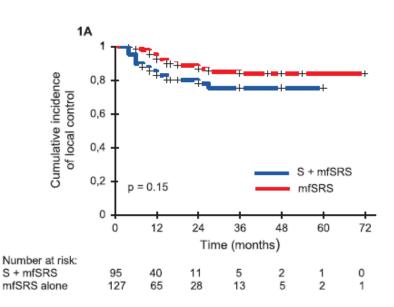
EQD2: 92

WBRT 30Gy:BED 60 EQD2 36

AZIENDA OSPEDALIERO-UNIVERSITARIA SANT'ANDREA






Comparative effectiveness of multi-fraction stereotactic radiosurgery for surgically resected or intact large brain metastases from non-small-cell lung cancer (NSCLC)

Giuseppe Minniti^{a,*}, Claudia Scaringi^a, Gaetano Lanzetta^b, Dimitri Anzellini^c, Federico Bianciardi^a, Barbara Tolu^a, Roberta Morace^b, Andrea Romano^d, Mattia Osti^a, PierCarlo Gentile^a, Sergio Paolini^b

^a Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy

b IRCCS Neuromed, 86077 Pozzilli IS Italy

^c Radiation Oncology Unit, Sant' Andrea Hospital, University Sapienza, 00100 Rome, Italy

^d Neuroradiology Unit, Sant' Andrea Hospital, University Sapienza, 00189 Rome, Italy

Int J Radiat Oncol Biol Phys. 2011 Jun 1;80(2):362-8. doi: 10.1016/j.ijrobp.2010.02.028.

Minimized doses for linear accelerator radiosurgery of brainstem metastasis.

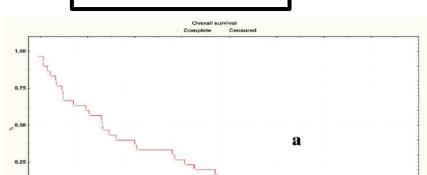
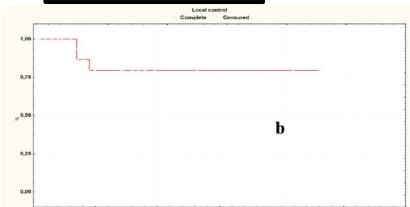
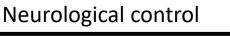
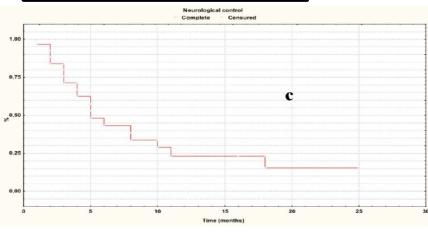

Valery CA¹, Boskos C, Boisserie G, Lamproglou I, Cornu P, Mazeron JJ, Simon JM.

Table 2. Neurological status before and after treatment


		Post-SRS status				
		No change	Improvement	Deterioration		
Pre-SRS	No symptoms Hemiparesis	12 1	2	4 2		
status	Cranial nerve	1	3	1		
	palsy Cerebellar syndrome	1	3	0		

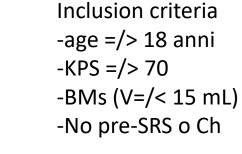
CONCLUSION


Brainstem metastases are known to be challenging lesions. They are difficult to control with conventional treatments but nevertheless require optimized local control before a significant influence on patient survival can be achieved. In our study, we show that reduced doses, compared with those usually administered, can achieve the same local control of brainstem lesions with no side effects. This could well minimize the risk of neurological deterioration, and could lead to possibilities for further local treatment with second radiosurgery or conformal radiotherapy to the area if required.



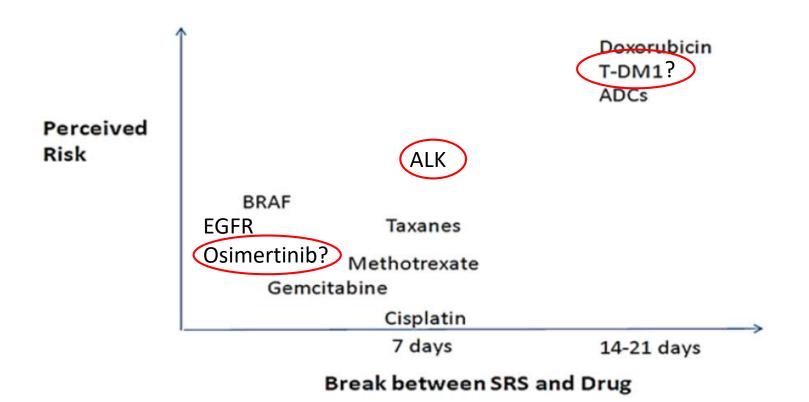
Overall Survival

Local Control


Research Project: MF-SRS concomitant with Immunotherapy or Target therapy

Anzellini D., Reverberi C., Bozzao A., Botticelli A., Pellegrini P., De Sanctis V., Osti M.F.

Overview of the research proposed at national and internationale level


-SRS Vs WBRT -SRS Vs MF-SRS -IT/TT: LC 22 al 93% % PD (Manteinance of the treatment line)
Symptomatic

Objectives and methodology

-MF-SRS 9Gy x 3/8Gy x3 -IRANO
- GTV T1 volumetric -PET/TC
-PTV 2mm
-q21, q15
-7d (ALK)

MF-SRS Plus Drug

No break:

- anti-PD1
- anti-PDL1
- anti-CTLA-4
- capecitabine
- temozolomide
- etoposide
- vinorelbine
- pemetrexed
- lapatinib
- trastuzumab
- hormonal agents
- sunitinib
- bevacizumab
- mTor

Future research

- Optimal timing between SRS and immunotherapy/targeted agents
- Optimal dose/fractionation for BM according to size and immunotherapy/targeted agents

Radiotherapy techiques

- Neurocognitive status and quality of life for patients with BM treated with SRS and immunotherapy/targeted therapy
- Share our experience with other centers and create «big prospective database» to improve our knowledge and testing new technologies

Grazie per l'attenzione