Allegato B

RICCARDO LORRAI Curriculum Vitae

Rome

Date September the 3rd 2024

Part I – General Information

Full Name RICCARDO LORRAI	
Citizenship	ITALIAN
Spoken Languages	ITALIAN, ENGLISH

Part II – Education

Туре	Year	Institution	Notes (Degree, Experience,)
University Bachelor degree	2012	Sapienza, University of Rome	103/110 Title: "Caratterizzazione mediante analisi genotipica, di piante <i>gai-t6 rga28</i> , di Arabidopsis esprimenti la proteina chimerica DAG1-HA."
University Master degree	2014	Sapienza, University of Rome	110 e lodeTitle: "Studio della relazione molecolare efunzionale tra il fattore di trascrizione DOFDAG1 e la proteina DELLA GAI diArabidopsis thaliana."
PhD	2018	Sapienza, University of Rome	Lode Title: "Study of the role of the DOF transcription factor DAG1 in the control of seedling development in <i>Arabidopsis</i> <i>thaliana</i> "

Part III – Appointments

IIIA – Academic Appointments

Start	End	Institution			Position
01/10/2018	28/02/2019	Sapienza,	University	of	Post-doc (co.co.co) as molecular
		Rome, dpt.	of Biology	and	biologist with responsibilities in
		Biotechnolog	gies "C. Darw	vin"	supporting the cloning and
					heterologous expression of hydrolytic
					enzymes from phytopathogenic fungi
					and bacteria.
01/04/2019	30/06/2019	Sapienza,	University	of	Post-doc (co.co.co) as molecular
		Rome, dpt.	of Biology	and	biologist with responsibilities in
		Biotechnolog	gies "C. Darw	vin"	supporting the generation and
					characterization of transgenic

		Arabidopsis thaliana plants.
01/07/2019 30/06/2020	Sapienza, University of Rome, dpt. of Biology and Biotechnologies "C. Darwin"	Post-doc (Assegno di ricerca) focused on the identification, characterization, and heterologous expression of cell wall hydrolytic enzymes from wood- decaying fungi.
01/07/2020 30/06/2021	Sapienza, University of Rome, dpt. of Biology and Biotechnologies "C. Darwin"	Post-doc (Assegno di ricerca) focused on the identification, characterization, and heterologous expression of cell wall hydrolytic enzymes from wood- decaying fungi.
01/10/2021 20/12/2021	Sapienza, University of Rome, dpt. of Biology and Biotechnologies "C. Darwin"	Post-doc (Assegno di ricerca) for proteomic analysis of enzymes secreted by wood-decaying fungi.
22/12/2021 21/12/2024	Sapienza, University of Rome, dpt. of Biology and Biotechnologies "C. Darwin"	RTD-A ex DM 1062/2021 (PON "Ricerca e Innovazione" 2014-2020) for the development of bio-based solutions for the valorization of agro- food waste biomass.

IIIB – Other Appointments

Start	End	Institution	Position
01/11/2014	31/10/207	Sapienza, University of Rome	PhD student fellowship

Part IV – Teaching experience

Year	Institution	Lecture/Course
2021/2022	Sapienza, University of Rome	"Biotechnological improvement of plants for renewable resources and environmental sustainability" (BIO/04, 6 cfu/48 h), LM Biotechnology and Genomic
		for Industry and Environment.
2022/2023	Sapienza, University of Rome	"Molecular and cellular bases of plant biotechnologies" (BIO/04, 3 cfu/24h), LM Cell biology and technology.
2022/2023	Sapienza, University of Rome	"Biotechnological improvement of plants for renewable resources and environmental sustainability" (BIO/04, 6 cfu/48 h), LM Biotechnology and Genomic for Industry and Environment.
2023/2024	Sapienza, University of Rome	"Biotechnological improvement of plants for renewable resources and environmental sustainability" (BIO/04, 6 cfu/48 h), LM Biotechnology and Genomic for Industry and Environment.
2023/2024	Sapienza, University of Rome	"Molecular and cellular bases of plant biotechnologies" (BIO/04, 3 cfu/24h), LM Cell biology and technology.

Part V - Society memberships, Awards and Honors

Year	Title				
2024	SIBV (Italian Society of Plant Biology) membership				
2021	EMBO Scientific Exchange Grant (2 months), Department of Forest Genetics and Plant				
	Physiology, Umeå University, Sweden. Title of the research project is: "Interplay				
	between plant cell wall and cell wall modifying enzymes during apical hook				
	development".				

Part VI.a - Funding Information [grants as PI-principal investigator]¹

Year	Title	Program	Grant value
2021	Interplay between plant cell wall and cell wall modifying enzymes during apical hook development	0 1	

¹ Please note that, as holder of a RTD-A position financed by MIU within the PON program, since December 2021 the candidate cannot participate as PI or investigator to any research project supported by fundings sources external to Sapienza University of Rome.

Part VI.b - Funding Information [grants as I-investigator]¹

Year	Title	Program	Grant value
2023	Role of Cell Wall in Root-	Progetti di Ricerca Medi	-
	Microorganism interaction for plant	(Sapienza Università di	
	development and defense	Roma)	
2022	ELIA (ELIcitors from Agri-food	Progetti di Ricerca Medi	Í l
	and algal waste biomasses):	(Sapienza Università di	
	bioconversion of waste into	Roma)	
	products for sustainable crop		
	protection.		
2021	The plant cell wall: a regulatory hub	Progetti di Ricerca Grandi	
	in immunity and development	(Sapienza Università di	
		Roma)	
2020	Improved pathogen resistance in	Progetti di Ricerca Medi	
	plants through "on command"	(Sapienza Università di	
	release of damage-associated	Roma)	
	molecular patterns		
2016	Role of proline in the control of root	Progetti di Ricerca Piccoli	
	meristem size: A novel non-	(Sapienza Università di	
	hormonal modulator of root growth	Roma)	

¹ Please note that, as holder of a RTD-A position financed by MIUR within the PON program, since December 2021 the candidate cannot participate as PI or investigator to any research project supported by fundings sources external to Sapienza University of Rome.

Part VII – Research Activities

Keywords	Brief Description
Plant	My research activities involve studying various aspects of plant physiology, ranging

Physiology	from seed germination to plant-pathogen interactions. I am particularly fascinated by
Cell Wall	the role of the plant cell wall as an environmental sensor and how it influences the
Plant	plant life cycle in response to biotic and abiotic stresses. During my PhD, my studies focused on photomorphogenesis and the interplay between light signals and hormone
Immunity	signalling during germination and seedling development. As a postdoc, I began
Signal	working on the plant cell wall, specifically in deconstructing agricultural
transduction	lignocellulosic waste to release monosaccharides (as an energy source for
Biotic	microalgae) or oligosaccharides (as elicitors to boost plant immunity in both
stresses	Arabidopsis and Solanaceae). In parallel, I studied the interplay between the cell
Abiotic	wall and hormones during apical hook development, as well as the effect of cell wall
stresses	alterations on the activation of plant immune responses.

Part VIII – Summary of Scientific Achievements

Product type	Number	Data Base	Start	End
Papers [international]	11	Scopus	2014	2024
Books [scientific]	1	Scopus	2023	2024
Product type	Number	Data Base	Start	End
Papers [international]	12	Web of Science	2014	2024
Books [scientific]	1	Web of Science	2023	2024
Product type	Number	Data Base	Start	End
Papers [international]	12	Google Scholar	2014	2024
Books [scientific]	1	Google Scholar	2023	2024

Total Impact factor (Scopus)	44.908
Total Citations (Scopus)	241
Average Citations per Product (Scopus)	20.083
Hirsch (H) index	9
Normalized H index*	0.9

Total Impact factor (Web of Science)	51.408
Total Citations (Web of Science)	227
Average Citations per Product (Web of Science)	17.461
Hirsch (H) index	9
Normalized H index*	0.9

Total Impact factor (Google Scholar)	51.408
Total Citations (Google Scholar)	309
Average Citations per Product (Google Scholar)	23.769
Hirsch (H) index	9
Normalized H index*	0.9

*H index divided by the academic seniority.

Part IX.a- Selected Publications

List of the publications selected for the evaluation. For each publication report title, authors, reference data, journal IF (if applicable), citations, press/media release (if any).

1- Boccaccini A et al. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating AtGA3ox1 gene. *Mol. Plant. 2014 Apr 9. doi: 10.1093/mp/ssu046.* IF 6.337; Citations 33.

2- Boccaccini A et al. Independent and interactive effects of DOF AFFECTING GERMINATION 1 (DAG1) and the DELLA proteins GA INSENSITIVE (GAI) and REPRESSOR OF ga1 (RGA) in embryo development and seed germination. *BMC Plant Biology* 2014, 14:200. doi:10.1186/s12870-014-0200-z.

IF 3.813; Citations 19.

3- Santopolo S et al. Dof Affecting Germination 2 is a positive regulator of light-mediated seed germination and is repressed by Dof Affecting Germination 1. *BMC Plant Biol. 2015 Mar 4;15:72. doi:* 10.1186/s12870-015-0453-1.

IF 3.631; Citations 37.

4- Boccaccini A et al. The DAG1 transcription factor negatively regulates the seed-to-seedlings transition in Arabidopsis acting on ABA and GA levels. *BMC Plant Biology 2016. Sept 16:198 doi: 10.1186/s12870-016-0890-5.*

IF 3.964; Citations 30.

5- Lorrai R et al. Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. *Sci Rep. 2018 Oct* 26;8(1):15895. doi: 10.1038/s41598-018-34256-3.

IF 4.011; Citations 19.

6- Lorrai R et al. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. *AoB Plants. 2018 Oct 5;10(5):ply061. doi: 10.1093/aobpla/ply061. eCollection 2018 Oct.* IF 2.270; Citations 35.

7- Ruta V et al. Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. *BMC Plant Biol. 2019 Oct* 16;19(1):429. *doi:* 10.1186/s12870-019-2057-7.

IF 3.497; Citations 19.

8- Lorrai R and Ferrari S. Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. *Plants (Basel). 2021 Feb 19; doi:10.3390/plants10020399.*

IF 4.658; Citations 41.

9- Lorrai R et al. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX7. Front. Plant Sci., 16 August 2021. https://doi.org/10.3389/fpls.2021.696955.

IF. 6.627; Citations 13.

10- Pontiggia, D. et al. The ancient battle between plants and pathogens: plant cell wall resilience and damage-associated molecular patterns (DAMPs) drive plant immunity. CRC Press, Taylor & Francis Group (2023), pp. 393-411. https://dx.doi.org/10.1201/9781003178309. Citations 1.

11- Boccaccini, A. et al. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. Plants 13.13 (2024): 1793.

IF 4.0 (2023 waiting for 2024) ; Citations 0.

12- Lorrai R et al. **Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation.** Plant Physiology, 2024;, kiae370, https://doi.org/10.1093/plphys/kiae370.

IF 6.5 (2023 waiting for 2024); Citations 0.

Part IX.b–Publications

List of all publications. For each publication report title, authors, reference data, journal IF (if applicable), citations, press/media release (if any).

1- Boccaccini A et al. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating AtGA3ox1 gene. *Mol. Plant. 2014 Apr 9. doi: 10.1093/mp/ssu046.* IF 6.337; Citations 33.

2- Boccaccini A et al. Independent and interactive effects of DOF AFFECTING GERMINATION 1 (DAG1) and the DELLA proteins GA INSENSITIVE (GAI) and REPRESSOR OF ga1 (RGA) in embryo development and seed germination. *BMC Plant Biology* 2014, 14:200. doi:10.1186/s12870-014-0200-z.

IF 3.813; Citations 19.

3- Santopolo S et al. Dof Affecting Germination 2 is a positive regulator of light-mediated seed germination and is repressed by Dof Affecting Germination 1. *BMC Plant Biol. 2015 Mar 4;15:72. doi:* 10.1186/s12870-015-0453-1.

IF 3.631; Citations 37.

4- Boccaccini A et al. The DAG1 transcription factor negatively regulates the seed-to-seedlings transition in Arabidopsis acting on ABA and GA levels. *BMC Plant Biology 2016. Sept 16:198 doi: 10.1186/s12870-016-0890-5.*

IF 3.964; Citations 30.

5- Lorrai R et al. Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. *Sci Rep. 2018 Oct* 26;8(1):15895. doi: 10.1038/s41598-018-34256-3.

IF 4.011; Citations 19.

6- Lorrai R et al. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. *AoB Plants. 2018 Oct 5;10(5):ply061. doi: 10.1093/aobpla/ply061. eCollection 2018 Oct.* IF 2.270; Citations 35.

7- Ruta V et al. Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. *BMC Plant Biol. 2019 Oct* 16;19(1):429. *doi:* 10.1186/s12870-019-2057-7.

IF 3.497; Citations 19.

8- Lorrai R and Ferrari S. Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. *Plants (Basel). 2021 Feb 19; doi:10.3390/plants10020399.*

IF 4.658; Citations 41.

9- Lorrai R et al. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX7. Front. Plant Sci., 16 August 2021. <u>https://doi.org/10.3389/fpls.2021.696955</u>. IF. 6.627; Citations 13.

10- Pontiggia, D. et al. The ancient battle between plants and pathogens: plant cell wall resilience and damage-associated molecular patterns (DAMPs) drive plant immunity. CRC Press, Taylor & Francis Group (2023), pp. 393-411. https://dx.doi.org/10.1201/9781003178309. Citations 1.

11- Lorrai, R et al. **Eye Diseases: When the Solution Comes from Plant Alkaloids.** Planta Medica 2024 May; 90(6):426-439. doi: 10.1055/a-2283-2350. Epub 2024 Mar 7.

IF 2.1 (2023 waiting for 2024); Citations 0.

12- Boccaccini, A. et al. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. Plants 13.13 (2024): 1793.

IF 4.0 (2023 waiting for 2024); Citations 0.

13- Lorrai R et al. **Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation.** Plant Physiology, 2024;, kiae370, https://doi.org/10.1093/plphys/kiae370.

IF 6.5 (2023 waiting for 2024); Citations 0.

Part X.a- Congress attendance

2015 "DOF AFFECTING GERMINATION 2 is a positive regulator of light mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1". The 26th international conference on Arabidopsis research (ICAR 2015). **Elevator pitch**.

2016 "The Arabidopsis DAG1 transcription factor controls the dormancy/germination developmental switch acting on the balance of ABA and GA". The 22nd international conference on plant growth substances (IPGSA 2016). **Poster presentation**.

2017 "Study of the role of the DOF transcription factor DAG1 in the control of seedling development in Arabidopsis thaliana". Biology and Biotechnology C. Darwin meeting (Ponzano). Oral Presentation.
2019 "Resistance to *Botrytis cinerea* in Arabidopsis plants impaired in de-esterified homogalacturonan content correlates to increased cuticle permeability and is suppressed by abscisic acid". XV Cell Wall meeting (Cambridge). Poster presentation.

2022 "Plant cell wall perturbations trigger hormonal changes impairing apical hook development" XVI FISV Congress (Portici). **Poster presentation**.

2023 "Turgor-dependent impairment of apical hook development in Arabidopsis thaliana plants with altered cell wall integrity". XVI Plant Cell Wall Meeting Màlaga, 18-22 June 2023 **Poster presentation**.

2023 "Turgor-sensitive responses link cell wall integrity to a signalling module promoting apical hook formation in *Arabidopsis thaliana*". XII National Conference of the Italian Society of Plant Biology Bari, 11st – 14th September 2023 **Oral presentation**.

Part X.b– Workshop attendance

2016 "Studying the role of the DAG1 transcription factor in the control of photomorphogenesis in Arabidopsis thaliana". PhD school on "Environmental regulation of plant development (2016). **Oral presentation**.

2022 "Plant cell wall alterations and hormonal crosstalk during seedling development" "1st hormone, cell wall and morphogenesis workshop" March 9-10, 2022 (Umeå, Sweden). Oral presentation.
2023 "Workshop on Plant Biology 2023" SIBV workshop (Bertinoro, Italy).

Part XI – Editorial Activities

2024 Reviewer for Molecular Plant Cell Press

"I authorize the processing of the personal data contained in my curriculum vitae in accordance with Legislative Decree 196/2003, as amended by Legislative Decree 101/2018, and EU Regulation 2016/679."

DATE Rome, September the 3rd 2024 SIGNATURE