VERBALE DEL SEMINARIO TENUTO DAL DR. MARCO FELICI
5 MARZO 2019

Oggi nella Sala Fiore del Dipartimento di Fisica (Edificio Marconi), alle ore 14.00 il Dr. Marco Felici, già RTDB e vincitore della procedura valutativa di chiamata a Professore Associato ex art. 24 L 240/2010, SSD FIS/03 SC02B1, ha tenuto un seminario sulla sua attività di ricerca, convocato tramite mail istituzionale il 28/02/2019 e pubblicizzato sulla pagina web del Dipartimento.
E' presente il Direttore del Dipartimento di Fisica, Prof. Paolo Mataloni.
Sono presenti alcuni docenti e ricercatori del Dipartimento di Fisica.
Dopo una breve presentazione da parte del Direttore, il seminario ha inizio.

Titolo: Spatially Selective Hydrogen Irradiation/Removal: A Versatile Nanofabrication Tool for Photonic Applications

Abstract:
Nanophotonics investigates the coupling of light and matter at sub-wavelength scales. As such, it requires a nm-level control of the spatial distribution of the confined electromagnetic field, as well as a similar precision in the positioning of single nano-emitters within the field.
As we review here, a very promising route towards the achievement of these goals exploits the effects of the incorporation of hydrogen in dilute-nitride semiconductors (e.g., GaAsN). Following H irradiation, indeed, the formation of stable N-H complexes fully neutralizes the effects of N on the electronic, optical and structural properties of these materials. This enables, for example, the fabrication of site-controlled, single-photon emitting quantum dots, either by spatially selective H irradiation—by low-energy (100 eV) H irradiation of lithographically pre-patterned samples—or removal—using the hot spot generated by a SNOM tip or by a plasmonic nanoaperture to locally break the N-H bonds in a fully hydrogenated GaAsN:H layer.
In addition, we present compelling new evidence on the effects of H irradiation on a completely different class of materials, i.e., transition-metal dichalcogenides (TMDs). In bulk TMDs, H irradiation results in the formation of monolayer-thick domes. These domes host strong, non-trivial strain fields that cause unprecedented major changes in the band structure of the material, including a hitherto unobserved direct-to-indirect band gap transition on going from the dome’s edge to its top. The domes can be produced with well-ordered positions and sizes tunable from the nm to the µm scale, with important prospects for nanophotonics.

L'esposizione termina alle 14.25

Al termine dell’esposizione del seminario e della replica da parte del Dr. Felici a quesiti specifici (interviene il Prof. Mariani), il Direttore del Dipartimento di Fisica esprime il giudizio che il seminario sia stato interessante e ben esposto e che il Dr. Felici abbia risposto alle domande con chiarezza e competenza.

La presentazione termina alle 14.30

Il Segretario
Dr.ssa Cinzia Muroccca

Il Direttore del
Dipartimento di Fisica
Prof. Paolo Mataloni