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A B S T R A C T   

Donkey milk (DM) is an emerging foodstuff, gaining increasing attention due to its nutritional properties. As a 
high value-added product, it can be subjected to adulteration with cheaper milks, e.g., cow milk. The present 
work addresses the possibility of developing a fast and economic method for the authentication of pure DM using 
Near Infrared (NIR) Spectroscopy. For this purpose, 147 samples (67 pure DM and 80 mixtures) were analyzed 
fresh; additionally, all samples underwent successive freezing-thawing cycles. Partial Least Squares-Discriminant 
Analysis (PLS-DA) was used to differentiate pure and adulterated samples. PLS-DA model built on the fresh milk 
correctly classified all training and test samples (100% accuracy). When model was applied to the freeze-thawed 
individuals, it showed high accuracy (79.7% after 3 cycles), suggesting that the spectroscopic signature of 
adulteration prevails on that of freezing-thawing, though the impact of the latter was proved to be significant by 
ANOVA-Simultaneous Component Analysis (ASCA).   

1. Introduction 

Donkey milk is attracting growing interest in human nutrition as a 
valuable alternative in feeding infants because of its similarity with the 
human one and its hypoallergenic properties (Souroullas et al., 2018). 
Several authors (Guo et al., 2007; Salimei et al., 2004; Vincenzetti et al., 
2008) have proved that pH, protein content, ashes and total solids in 
donkey milk are more similar to mare and human milk than those of all 
the other mammals. In addition, it stimulates the immune system, reg
ulates the gastrointestinal flora, and prevents inflammatory diseases 
(Derdak et al., 2020). Coppola et al. suggested also the use of donkey 
milk for probiotic purposes (Coppola et al., 2002), providing a good 
growth medium for probiotic lactobacilli strains thanks to its high 
content of lysozyme and lactose. Despite its unique nutrient profile and 
economic potential, in Europe donkey milk can be commercialized only 
since 2004, when EC Regulation n. 853/2004, included it among the 
“other milk species” category (European Commission, 2004). Nowa
days, donkey breeding is circumscribed to Asia, Africa, Eastern and 
some countries of Western Europe, and it is so scattered that the milk 
yield is very low. Thanks to its properties and due to its niche-product 

status, donkey milk is a high value-added product, with a relatively 
high market value (around 15 € per liter); as such, it can be subjected to 
adulteration with milk from other mammalian species, especially with 
cheaper cow milk whose most recent average European price at the barn 
has been reported to be 35.69€/100 kg (European Commission, 2021). 
This is turning into a common illicit practice, involving also other 
valuable kinds of milk, such as buffalo, goat and sheep milk; as a 
consequence, several approaches have been proposed in literature in 
order to detect and prevent these kinds of fraud (Agrimonti et al., 2015; 
Pesic et al., 2011). Nevertheless, there is still a lack of methods aimed at 
the authentication of donkey milk. These fraudulent practices result in 
an authenticity problem, but also in a real health issue. Indeed, recent 
clinical studies confirmed feeding with donkey milk as the safest and the 
most valid alternative for the nutrition of infants affected by cow milk 
protein intolerance (CMPI), an Ig-E mediated severe pathology affecting 
3% of infants under the age of 12 months, often misdiagnosed (Ewing 
and Allen, 2005). 

The adulteration-detection study proposed here lays on these con
siderations and aims at developing a non-destructive approach for 
authenticating donkey milk and detecting its adulteration with cow 
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milk. Near Infrared (NIR) Spectroscopy was employed to achieve this 
goal, because it had proved to perform effectively in such authentication 
issues (Dos Santos Pereira et al., 2021; Teixeira et al., 2021). NIR was 
used to analyze 67 samples of genuine donkey milk and 80 mixtures of 
donkey and cow milk (in different proportions), prepared to mimic the 
adulteration. Moreover, both pure and adulterated samples were sub
jected to successive freezing-thawing (F/T) cycles prior to being 
re-analyzed by NIR. This physical sample preprocessing was included in 
order to investigate whether this pretreatment alters milk specimens. 
Freezing products and selling them as fresh food is a further illegal ac
tion commonly applied, which has to be prevented (Hassoun et al., 
2020). 

Partial Least Squares - Discriminant Analysis (PLS-DA) was used to 
distinguish pure and adulterated donkey milk samples, before and after 
freezing-thawing procedure. The choice of the classifier fell on PLS-DA 
because it had proved to be a suitable tool for the authentication of 
dairies (Aït-Kaddour et al., 2021; Di Donato et al., 2021; Genis et al., 
2021; Mabood et al., 2017) or in similar situations in combination with 
NIR spectroscopy (Firmani et al., 2020; Haughey et al., 2015; Ríos-Reina 
et al., 2018). 

Eventually, in order to further verify whether freezing-thawing 
treatment could have a significant effect on the spectroscopic signa
ture, data were further processed by Analysis of Variance (ANOVA)- 
Simultaneous Component Analysis (ASCA) (Smilde et al., 2005). 

2. Material and methods 

2.1. Samples 

Donkey milk samples were supplied directly from breeders settled in 
Abruzzo (Central Italy). Eighty samples were artificially adulterated 
mixing pure donkey milk and cow milk (purchased in local supermar
kets). Milk samples were stored in a refrigerator at 4 ◦C before the 
analysis, which was performed not later than 5 days from the collection. 
The sophistications were performed by gradually increasing the con
centration of adulterant (from 2% up to 17%). Four samples were pre
pared at each level of adulteration. Data were also used to attempt the 
quantification of cow milk content in donkey milk. One hundred and 
forty-seven samples were available in total, sixty-seven pure and eighty 
mixtures. Pure and adulterated samples were analyzed before (t0) and 
after undergoing one (t1), two (t2) and three (t3) freezing-thawing (F/T) 
cycles. In particular, forty pure and 80 adulterated samples, were 
analyzed at t1, and 40 pure and 20 adulterated mixtures at both t2 and 
t3. 

2.2. NIR measurements 

A Nicolet 6700 (Thermo Scientific Inc., Madison, WI) FT-NIR in
strument equipped with an integrating sphere allowed the direct anal
ysis of all the available samples without any further pre-treatment. A 
suitable volume of each sample was introduced into a glass vial placed 
on the window of the sphere and two replicate spectra were acquired. 
The measurements were performed in reflectance mode in the spectral 
range between 4000 cm-1 and 10,000 cm-1, at a nominal resolution of 4 
cm-1. The signals were exported from the OMNIC software (Thermo 
Scientific Inc., Madison, WI) to the MATLAB environment (R2020b; The 
Mathworks, Natick, MA) and converted to pseudo-absorbance (log(1/ 
R)) to be further processed. 

2.3. Partial Least Squares (PLS) and Partial Least Squares-Discriminant 
Analysis (PLS-DA) 

Dealing with spectroscopic data, Partial Least Squares (PLS) (Wold 
et al., 2001) is one of the most widely used regression methods. 

In the present study, a PLS model was built on NIR data to quantify 
the amount of cow milk in the adulterated donkey milk samples, using 

Variable Sorting for Normalization (VSN) as data pre-processing tech
nique. The reader is addressed to (Rabatel et al., 2020) for more details 
on the VSN algorithm. 

The PLS algorithm can also be used to build classification models, by 
encoding class-belonging into a binary-valued response variable y. The 
resulting discriminant classifier is called Partial Least Squares- 
Discriminant Analysis (PLS-DA) (Sjöström et al., 1986). Since the pre
sent study involved a two-class problem (pure/adulterated), the dummy 
y was a vector, whose generic element yi was equal to 1 when corre
sponding to a sample belonging to Class “pure” or to 0, for Class 
“adulterated”. 

PLS-DA relies on building a PLS regression model between the pre
dictors and the dummy y. Since the predicted response ̂y is real-valued, a 
further step is needed to achieve classification. In the present work, the 
threshold was calculated by applying Linear Discriminant Analysis 
(LDA) on the predicted responses (Indahl et al., 2007). 

2.4. ANOVA-Simultaneous Component Analysis (ASCA) 

ANOVA-Simultaneous Component Analysis (Jansen et al., 2005; 
Smilde et al., 2005) was applied in order to investigate the effect of the 
time factor (as F/T cycles) on the NIR-fingerprint of the pure donkey 
milk and its significance. ASCA operates by partitioning the total vari
ance of the experimental data into the individual contributions induced 
by the effect of the factors under control and their interactions. The 
corresponding effect matrices derived are then analyzed by Simulta
neous Component Analysis (SCA) (Timmerman and Kiers, 2003). 

In the present study, the matrix Xc (of dimensions NxM), contain
ing the NIR experimental data after mean-centering, was partitioned 
into the matrices accounting for the effect of time (Xtime) and for the 
residuals (Xres), associated to the random experimental error, according 
to Eq. (1): 

Xc = X − 1mT = Xtime +Xres (1)  

where m is the grand mean, a row vector collecting the overall average 
spectrum. 

By calculation, Xtime contains the average profiles corresponding to 
the four levels of factor time, i.e., t0, t1, t2 and t3. More in detail, 
Xtime is a NxM matrix in which all the rows corresponding to a 
particular level of the controlled factor are filled with identical copies of 
the mean spectrum of the samples collected at that level. Accordingly, to 
assess the extent of the contribution of the factor, the sum of squares of 
the elements of the effect matrix, i.e., its Frobenius’ norm, is calculated 
as: 

SSQtime = ‖Xtime‖
2
=

∑N

i=1

∑M

j=1
(xtime

ij )
2 (2) 

To verify whether the effect of the factor is significant or not, the 
value of SSQtime obtained according to Eq. (2) is compared with its null 
distribution, which is estimated non-parametrically by means of a per
mutation test (Vis et al., 2007). In a permutation test, the sample is 
randomly reassigned to one of the factor levels (t0, t1, t2 and t3); then, 
the corresponding effect matrix is recalculated and, accordingly, the 
sum of squares of the matrix elements is computed as: 

SSQperm
time = ‖Xperm

time ‖
2
=

∑N

i=1

∑M

j=1
(xtime,perm

ij )
2 (3) 

This procedure is repeated for a sufficient number of times (here, 
10,000) providing an empirical estimate of distribution of the SSQ 
values under the null hypothesis. 

Eventually, Simultaneous Component Analysis is applied to the ef
fect matrix to model the variability associated to the effect of the 
freezing/thawing cycles on the spectroscopic signal. Xtime is therefore 
decomposed as: 
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Xtime = TtimePT
time +Etime (4)  

where Ttime, Ptime and Etime are the scores, the loadings and the re
sidual matrices, respectively. 

3. Results and discussion 

Prior to further investigations, data were imported in MATLAB 
(R2020b; The Mathworks, Natick, MA), and the two replicates acquired 
on each sample were averaged, leading to the NIR profiles displayed in  
Fig. 1. 

As above-mentioned, the aim of the present work was to develop a 
NIR-based method to identify possible adulterations made by the addi
tion of cow milk to donkey milk, and, successively, to quantify the 
amount of adulterant. In order to build and validate the classification 
and regression models, t0-data were split into two (training and test) 
representative sets of samples by the application of the Duplex (Snee, 
1977) algorithm on each class separately. Since the model optimization 
stage also involved the selection of the optimal data pre-processing, to 
avoid any bias related to data splitting the division of the samples was 
carried out as follows. Six matrices were obtained by pre-processing the 
experimental NIR data with any of the combinations of pre-treatments to 
be evaluated (mean centering (MC), SNV+MC, 1st derivative (19 points, 
2nd order polynomial)+MC, 2nd derivative (33 points, 3rd order poly
nomial)+MC, SNV+ 1st derivative+MC, SNV+ 2nd derivative+MC). A 
multi-block exploratory model was built on these matrices to extract 
common components which could account for the relevant variability 

shared by the differently pre-treated data, using ComDim (Qannari 
et al., 2001). Three common components (CCs) were calculated and the 
projection of the pure and adulterated samples onto the corresponding 
sub-space resulted in the two score-matrices Tpure and Tadulterated, 
respectively. Eventually, Duplex algorithm was run on each of these 
score matrices individually to split each category in a representative 
way. Of the 147 t0-milk samples, 112 (25 pure and 60 adulterated) were 
selected as training set and 35 (15 pure and 20 adulterated) were 
employed as test set for the validation of the models. Furthermore, with 
the idea of verifying whether the model built on the fresh samples could 
be also applied for the identification of adulteration in the 
freezed-thawed ones, all the spectra collected at t1, t2 and t3 were 
treated as further validation samples. 

All the MATLAB functions employed in the present work can be 
freely downloaded from the RomeChemometrics web-site (https://www. 
chem.uniroma1.it/romechemometrics/research/algorithms/; last accessed 
March 2022). 

3.1. Authentication of donkey milk: PLS-DA analysis of milk samples 

The most suitable data-preprocessing approach and the optimal 
number of latent variables (LVs) were chosen as those leading to the 
highest average correct classification rate (CCR) in a 7-fold cross- 
validation procedure. The results are shown in Table 1. 

Standard Normal Variate (SNV, (Barnes et al., 1989)), first and sec
ond derivatives (Savitzky and Golay, 1964) were tested alone or in 
combination. Mean-centering was additionally performed prior to the 

Fig. 1. Raw and differently pre-processed (1st derivative, 2nd derivative, SNV, SNV+1st derivative, SNV+2nd derivative) Near infrared spectra collected on the 
milk samples. 
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creation of each model. Looking at Table 1, it seems that SNV (followed 
by MC) is the most appropriate data pre-treatment because it guarantees 
the highest mean Correct Classification Rate (CCR) (and accuracy) in 
cross-validation (100%) with the minimum number of LVs (six). The 
application of the chosen PLS-DA model to the test set provided 100% of 
CCR for both pure and adulterated classes. In Fig. 2 the results of PLS-DA 
analysis are graphically represented through the display of the predicted 
y values as a function of the training/test sample index. 

Variables Importance in Projection (VIP) indices (Wold et al., 1993) 
were calculated to investigate of the relevance of each spectral variable 
in the definition of the latent variables space. Fig. 3. 

According to the “greater-than-one” criterion, variables with VIP 
value higher than 1 (highlighted in Fig. 3) are considered to be rele
vantly contributing to the model. Moreover, even if their interpretation 
can suffer from the presence of several overlapping (non-orthogonal) 
contributions, the regression coefficients were also examined. Indeed, 
variables with a positive regression coefficient (red in Fig. 3) can be 
assumed to be higher in the adulterated class, while those with a 
negative coefficient (blue in Fig. 3) to be higher in the pure samples. By 
inspection of Fig. 3, the spectral ranges which appear as the most 
discriminant are mainly associated to moisture and fat content (Ayvaz 
et al., 2021): 

1. the spectral range between 4000 cm-1 and 4200 cm-1, likely due to 
the combination bands of C–H and C–O stretching vibrations in fats;. 

2. the variables between 5050 and 5250 cm-1 ascribable to moisture, 
probably as a consequence of the different water content in donkey and 
cow milk;. 

3. a large area centered at 7020 cm-1 mostly associated to the first 
overtone of O-H stretching;. 

4. a large area centered at 8400 cm-1 where the absorptions are 

mainly due to the second overtone of the C–H stretching in fats;. 
5. around 9200 and 10,000 cm-1, ascribable to the second overtones 

of O-H and C-H stretching modes. 
Eventually, the optimal PLS-DA model (SNV+MC, 6 LVs) was used to 

predict the class-membership of the samples after the different F/T cy
cles. The results are displayed in Table 2, in terms of total classification 
accuracy, mean correct classification rate and class-sensitivities and 
specificities, and graphically in Fig. 4. 

Among these further predictions, the highest accuracy was obtained 
for the samples which only underwent a single F/T cycle (t1). When the 
model was applied to the spectra collected after more F/T cycles (t2 and 
t3), results were identical and slightly worse than those for t1, the total 
accuracy was 79.66%, especially due to a significantly lower sensitivity 
for the pure class. In general, it is possible to observe that the developed 
model efficiently classified pure and adulterated samples, keeping a very 
good accuracy also after up to three freezing-thawing cycles, revealing a 
good robustness with respect to the F/T process. Moreover, even after 
three F/T cycles, the correct classification rate on the adulterated sam
ples is 100.0%. 

3.2. Quantification of cow milk content in donkey milk samples 

After having assessed the potential of the NIR spectroscopic finger
print for the detection of the adulteration of donkey milk samples, the 
possibility of building a model for the quantification of cow milk added 
as adulterant was investigated. For this purpose, a PLS model was built 
on the t0-spectroscopic data of the training set (which was the same as 
for PLS-DA) preprocessed by VSN followed by mean centering. The 

Table 1 
Partial Least Squares-Discriminant Analysis (PLS-DA) model selection: Cross-validated results obtained on the NIR data at t0 (training set). All the figures of merit are 
expressed as percentages.  

Pre-treatment LVs Accuracy Mean CCR Adulterated Pure 

Sensitivity Specificity Sensitivity Specificity 

Mean-centering (MC)  9  100.00  100.00  100.00  100.00  100.00  100.00 
SNVþMC  6  100.00  100.00  100.00  100.00  100.00  100.00 
1st Derivative+MC  5  99.11  99.17  98.33  100.00  100.00  98.33 
2nd Derivative+MC  6  92.86  93.21  88.33  98.08  98.08  88.33 
SNV+ 1st Derivative+MC  5  99.11  99.17  98.33  100.00  100.00  98.33 
SNV+ 2nd Derivative+MC  4  91.96  92.24  88.33  96.15  96.15  88.33  

Fig. 2. PLS-DA analysis: values of the predicted response calculated on the 
training (empty bars) and test (full bars) samples. The violet dashed line is the 
classification threshold. 

Fig. 3. PLS-DA analysis: graphical representation of the spectral variables 
identified as significant based on their corresponding VIP index. The average 
NIR spectrum is represented in black, the variables with VIP > 1 and regression 
coefficient > 0 are highlighted in red while those with VIP > 1 and regression 
coefficient < 0 in blue. 
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optimal model complexity was identified as the one leading to the lowest 
value of the root mean square error in a 7-fold cross-validation 
(RMSECV) and it was found to be 5 LVs (RMSECV=3.9%). When the 
model was applied to the test set, the results presented a negligible bias 
(0.2%) and a comparable value of the RMSEP (4.0%). Fig. 5 shows the 
plot of the predicted vs actual concentration (%) of cow milk in donkey 
milk, both for calibration (red) and validation samples (black). The in
spection of the figure reveals that, for the majority of the samples, the 
absolute quantification error is lower than 1.5%; nevertheless, for few 
samples it exceeds 10%. 

3.3. ASCA 

The ANOVA-like decomposition was applied on the NIR spectra of 
the pure samples at consecutive F/T cycles (adulterated milk samples 
are excluded from ASCA calculation) as described in Eq.2 after SNV or 
VSN+weighted-SNV correction and mean-centering. The design is 
balanced because the different levels (t0, t1, t2 and t3) of the considered 

factor (time as freezing/thawing cycles) have the same number of rep
licates (40 samples). 

3.3.1. Estimation of the effect and its significance 
In the condition of mutual orthogonality of the effect estimates, the 

variation in ‖Xc‖
2 can be split in independent parts (‖Xc‖

2
= ‖Xtime‖

2
+

‖Xres‖
2). The different contributions are given by the term accounting 

for the freezing/thawing transformation (Xtime) and the residual varia
tion (Xres), i.e., the random variation that is not accounted for by the 
mean contribution of the factor levels. In particular, the amount of 
variance explained by the terms Xtime and Xres were 61% and 39% for 
the SNV-model and 6% and 94% for the VSN ones, respectively, 
revealing that the use of the VSN pretreatment can efficiently remove 
differences in the signals due to the effect of the F/T cycles, while this 
factor still has a relevant impact on the spectra pre-treated by SNV. To 
assess if the effect of the factor of interest is statistically significant, a 
strategy based on permutation test was adopted, as described in Section 
2.4. Fig. 6 shows the comparison between the value of the SSQ of the 

Table 2 
Predictions of the optimal PLS-DA model on the validation samples (at t0, t1, t2 and t3). All the figures of merit are expressed as percentages.   

LVs Accuracy Mean CCR Adulterated Pure 

Sensitivity Specificity Sensitivity Specificity 

t0  6  100.00  100.00  100.00  100.00  100.00  100.00 
t1  6  85.71  84.78  87.50  82.05  82.05  87.50 
t2  6  79.66  84.62  100.00  69.23  69.23  100.00 
t3  6  79.66  84.62  100.00  69.23  69.23  100.00  

Fig. 4. PLS-DA predictions on the freeze/thawed samples. The violet dashed line represents the classification threshold.  
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effect matrix for the experimental data pre-treated either with SNV or 
VSN and the corresponding null distribution estimated by permutation 
testing. 

Looking at Fig. 6, it is apparent how the effect of freezing/thawing 
cycles is statistically significant (p(SNV)< 0.0001, p(VSN)= 0.0066) 
irrespectively of the pre-treatment adopted, i.e., the F/T procedure af
fects the NIR spectral fingerprint of pure donkey milk. 

3.3.2. SCA models 
Simultaneous Component Analysis was applied to extract the sys

tematic information from the effect matrix derived from the ANOVA- 
decomposition. The factor “time” was studied at four levels (t0, t1, t2 
and t3); therefore, three components accounted for 100% of the effect 
variance. For the sake of a more straightforward visual interpretation of 
the significance of the overall factor effect and of the differences be
tween factor level means, scores plot were built after projecting the 
residual matrix onto the effect subspace defined by the loadings Ptime, 
according to (Zwanenburg et al., 2011): 

T ′

time = (Xtime +Xres)Ptime (7) 

Ptime being the loading matrix calculated from Xtime only, as in Eq. 
(4). 

The resulting scores plots are displayed in Fig. 7, both for the SNV- 
and VSN-pretreated NIR spectra. 

In both cases, the largest part of the effect variance is captured by the 
first component (98.06% in the case of SNV and 80.61%, for VSN). In
spection of the scores plot confirms how the impact of the F/T cycles on 
the spectroscopic data is higher in the case of the spectra pre-treated 
with SNV, while for VSN the differences among the factor levels are 
more subtle. To relate the observed trends with variations in the spectral 
signal, the loadings on SC1 are reported in Fig. 8. 

A bootstrap procedure was employed to estimate their confidence 
intervals at 95%. Visual inspection of the figure shows that the whole 
NIR-spectrum is affected by the variation in the “freshness” of the milk, 
additional F/T cycles will result in an increase of the intensity of signals 
with positive loadings and in a decrease of spectral signals associated 
with negative ones. 

4. Conclusions 

In this work, NIR Spectroscopy coupled with PLS-DA classification 
was employed as a non-destructive, rapid, and green approach to 
authenticate donkey milk and to detect its possible adulteration with 
cow milk. After having verified that the proposed strategy could allow 
the discrimination between pure and adulterated fresh specimens with 
100% accuracy on both the training and the test sets, the study was 
extended to investigate whether the approach could be suitable to 
identify the adulteration also when samples had undergone different F/T 
cycles. In this respect, the results have demonstrated that the model built 
on fresh sample can still discriminate with reasonable accuracy pure 
from adulterated samples after 1, 2 or 3 F/T cycles (85.71%, 79.66% and 
79.66%, respectively). Moreover, when considering the individual cat
egories, it was demonstrated that the class of adulterated samples can be 
recognized with 100% sensitivity even after repeated freezing/thawing. 

Successively, PLS regression was used to quantify the percentage of 
cow milk used as adulterant, obtaining, for most of the samples, absolute 
prediction errors lower than 1.5%. 

Finally, the effect of freezing/thawing on the spectroscopic signals of 
pure samples was further investigated by ASCA. The results indicated 
that the F/T treatment has a statistically significant effect on the spec
troscopic fingerprint. 

These results indicate that the proposed method is suitable to be 
applied for the quality control of donkey milk samples and potentially 
for the quantification of cow milk as adulterant, irrespectively of the 

Fig. 5. PLS regression. Predicted percentage of cow milk in the different mix
tures with donkey milk. See Section 2.1 for more details of composition. 

Fig. 6. ASCA. Validation of the main effect of the factor Freezing/Thawing Cycles on pure samples: comparison between the value of the sum of squares obtained for 
the experimental data (red vertical line) and the corresponding null distribution estimated by permutation test (blue histogram); left: SNV pre-treated data, right: 
VSN pre-treated data. 
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conditions used for its storage. 
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