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Donkey milk (DM) is an emerging foodstuff, gaining increasing attention due to its nutritional properties. As a
high value-added product, it can be subjected to adulteration with cheaper milks, e.g., cow milk. The present
work addresses the possibility of developing a fast and economic method for the authentication of pure DM using
Near Infrared (NIR) Spectroscopy. For this purpose, 147 samples (67 pure DM and 80 mixtures) were analyzed
fresh; additionally, all samples underwent successive freezing-thawing cycles. Partial Least Squares-Discriminant
Analysis (PLS-DA) was used to differentiate pure and adulterated samples. PLS-DA model built on the fresh milk
correctly classified all training and test samples (100% accuracy). When model was applied to the freeze-thawed
individuals, it showed high accuracy (79.7% after 3 cycles), suggesting that the spectroscopic signature of

adulteration prevails on that of freezing-thawing, though the impact of the latter was proved to be significant by
ANOVA-Simultaneous Component Analysis (ASCA).

1. Introduction

Donkey milk is attracting growing interest in human nutrition as a
valuable alternative in feeding infants because of its similarity with the
human one and its hypoallergenic properties (Souroullas et al., 2018).
Several authors (Guo et al., 2007; Salimei et al., 2004; Vincenzetti et al.,
2008) have proved that pH, protein content, ashes and total solids in
donkey milk are more similar to mare and human milk than those of all
the other mammals. In addition, it stimulates the immune system, reg-
ulates the gastrointestinal flora, and prevents inflammatory diseases
(Derdak et al., 2020). Coppola et al. suggested also the use of donkey
milk for probiotic purposes (Coppola et al., 2002), providing a good
growth medium for probiotic lactobacilli strains thanks to its high
content of lysozyme and lactose. Despite its unique nutrient profile and
economic potential, in Europe donkey milk can be commercialized only
since 2004, when EC Regulation n. 853/2004, included it among the
“other milk species” category (European Commission, 2004). Nowa-
days, donkey breeding is circumscribed to Asia, Africa, Eastern and
some countries of Western Europe, and it is so scattered that the milk
yield is very low. Thanks to its properties and due to its niche-product
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status, donkey milk is a high value-added product, with a relatively
high market value (around 15 € per liter); as such, it can be subjected to
adulteration with milk from other mammalian species, especially with
cheaper cow milk whose most recent average European price at the barn
has been reported to be 35.69€/100 kg (European Commission, 2021).
This is turning into a common illicit practice, involving also other
valuable kinds of milk, such as buffalo, goat and sheep milk; as a
consequence, several approaches have been proposed in literature in
order to detect and prevent these kinds of fraud (Agrimonti et al., 2015;
Pesic et al., 2011). Nevertheless, there is still a lack of methods aimed at
the authentication of donkey milk. These fraudulent practices result in
an authenticity problem, but also in a real health issue. Indeed, recent
clinical studies confirmed feeding with donkey milk as the safest and the
most valid alternative for the nutrition of infants affected by cow milk
protein intolerance (CMPI), an Ig-E mediated severe pathology affecting
3% of infants under the age of 12 months, often misdiagnosed (Ewing
and Allen, 2005).

The adulteration-detection study proposed here lays on these con-
siderations and aims at developing a non-destructive approach for
authenticating donkey milk and detecting its adulteration with cow
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milk. Near Infrared (NIR) Spectroscopy was employed to achieve this
goal, because it had proved to perform effectively in such authentication
issues (Dos Santos Pereira et al., 2021; Teixeira et al., 2021). NIR was
used to analyze 67 samples of genuine donkey milk and 80 mixtures of
donkey and cow milk (in different proportions), prepared to mimic the
adulteration. Moreover, both pure and adulterated samples were sub-
jected to successive freezing-thawing (F/T) cycles prior to being
re-analyzed by NIR. This physical sample preprocessing was included in
order to investigate whether this pretreatment alters milk specimens.
Freezing products and selling them as fresh food is a further illegal ac-
tion commonly applied, which has to be prevented (Hassoun et al.,
2020).

Partial Least Squares - Discriminant Analysis (PLS-DA) was used to
distinguish pure and adulterated donkey milk samples, before and after
freezing-thawing procedure. The choice of the classifier fell on PLS-DA
because it had proved to be a suitable tool for the authentication of
dairies (Ait-Kaddour et al., 2021; Di Donato et al., 2021; Genis et al.,
2021; Mabood et al., 2017) or in similar situations in combination with
NIR spectroscopy (Firmani et al., 2020; Haughey et al., 2015; Rios-Reina
et al., 2018).

Eventually, in order to further verify whether freezing-thawing
treatment could have a significant effect on the spectroscopic signa-
ture, data were further processed by Analysis of Variance (ANOVA)-
Simultaneous Component Analysis (ASCA) (Smilde et al., 2005).

2. Material and methods
2.1. Samples

Donkey milk samples were supplied directly from breeders settled in
Abruzzo (Central Italy). Eighty samples were artificially adulterated
mixing pure donkey milk and cow milk (purchased in local supermar-
kets). Milk samples were stored in a refrigerator at 4 °C before the
analysis, which was performed not later than 5 days from the collection.
The sophistications were performed by gradually increasing the con-
centration of adulterant (from 2% up to 17%). Four samples were pre-
pared at each level of adulteration. Data were also used to attempt the
quantification of cow milk content in donkey milk. One hundred and
forty-seven samples were available in total, sixty-seven pure and eighty
mixtures. Pure and adulterated samples were analyzed before (t0) and
after undergoing one (t1), two (t2) and three (t3) freezing-thawing (F/T)
cycles. In particular, forty pure and 80 adulterated samples, were
analyzed at t1, and 40 pure and 20 adulterated mixtures at both t2 and
t3.

2.2. NIR measurements

A Nicolet 6700 (Thermo Scientific Inc., Madison, WI) FT-NIR in-
strument equipped with an integrating sphere allowed the direct anal-
ysis of all the available samples without any further pre-treatment. A
suitable volume of each sample was introduced into a glass vial placed
on the window of the sphere and two replicate spectra were acquired.
The measurements were performed in reflectance mode in the spectral
range between 4000 em’! and 10,000 cm'l, at a nominal resolution of 4
cm™. The signals were exported from the OMNIC software (Thermo
Scientific Inc., Madison, WI) to the MATLAB environment (R2020b; The
Mathworks, Natick, MA) and converted to pseudo-absorbance (log(1/
R)) to be further processed.

2.3. Partial Least Squares (PLS) and Partial Least Squares-Discriminant
Analysis (PLS-DA)

Dealing with spectroscopic data, Partial Least Squares (PLS) (Wold
et al., 2001) is one of the most widely used regression methods.

In the present study, a PLS model was built on NIR data to quantify
the amount of cow milk in the adulterated donkey milk samples, using
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Variable Sorting for Normalization (VSN) as data pre-processing tech-
nique. The reader is addressed to (Rabatel et al., 2020) for more details
on the VSN algorithm.

The PLS algorithm can also be used to build classification models, by
encoding class-belonging into a binary-valued response variable y. The
resulting discriminant classifier is called Partial Least Squares-
Discriminant Analysis (PLS-DA) (Sjostrom et al., 1986). Since the pre-
sent study involved a two-class problem (pure/adulterated), the dummy
y was a vector, whose generic element y; was equal to 1 when corre-
sponding to a sample belonging to Class “pure” or to 0, for Class
“adulterated”.

PLS-DA relies on building a PLS regression model between the pre-
dictors and the dummy y. Since the predicted response y is real-valued, a
further step is needed to achieve classification. In the present work, the
threshold was calculated by applying Linear Discriminant Analysis
(LDA) on the predicted responses (Indahl et al., 2007).

2.4. ANOVA-Simultaneous Component Analysis (ASCA)

ANOVA-Simultaneous Component Analysis (Jansen et al., 2005;
Smilde et al., 2005) was applied in order to investigate the effect of the
time factor (as F/T cycles) on the NIR-fingerprint of the pure donkey
milk and its significance. ASCA operates by partitioning the total vari-
ance of the experimental data into the individual contributions induced
by the effect of the factors under control and their interactions. The
corresponding effect matrices derived are then analyzed by Simulta-
neous Component Analysis (SCA) (Timmerman and Kiers, 2003).

In the present study, the matrix X, (of dimensions NxM), contain-
ing the NIR experimental data after mean-centering, was partitioned
into the matrices accounting for the effect of time (Xyn.) and for the
residuals (Xps), associated to the random experimental error, according
to Eq. (1):

X, = X-1m"= Xip+X. @
where m is the grand mean, a row vector collecting the overall average
spectrum.

By calculation, X, contains the average profiles corresponding to
the four levels of factor time, i.e., t0, t1, t2 and t3. More in detail,
Xime 1s a NxM matrix in which all the rows corresponding to a
particular level of the controlled factor are filled with identical copies of
the mean spectrum of the samples collected at that level. Accordingly, to
assess the extent of the contribution of the factor, the sum of squares of
the elements of the effect matrix, i.e., its Frobenius’ norm, is calculated
as:

M
$SQune = Xuamel® =3 D~ ()’ @
=1 =1
To verify whether the effect of the factor is significant or not, the
value of SSQ;;,,. obtained according to Eq. (2) is compared with its null
distribution, which is estimated non-parametrically by means of a per-
mutation test (Vis et al., 2007). In a permutation test, the sample is
randomly reassigned to one of the factor levels (t0, t1, t2 and t3); then,
the corresponding effect matrix is recalculated and, accordingly, the
sum of squares of the matrix elements is computed as:

SO = X1 = D0 > ey’ ®

i

<
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This procedure is repeated for a sufficient number of times (here,
10,000) providing an empirical estimate of distribution of the SSQ
values under the null hypothesis.

Eventually, Simultaneous Component Analysis is applied to the ef-
fect matrix to model the variability associated to the effect of the

freezing/thawing cycles on the spectroscopic signal. Xy, is therefore
decomposed as:
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where Tiime, Pime and Egme
sidual matrices, respectively.

are the scores, the loadings and the re-

3. Results and discussion

Prior to further investigations, data were imported in MATLAB
(R2020b; The Mathworks, Natick, MA), and the two replicates acquired
on each sample were averaged, leading to the NIR profiles displayed in
Fig. 1.

As above-mentioned, the aim of the present work was to develop a
NIR-based method to identify possible adulterations made by the addi-
tion of cow milk to donkey milk, and, successively, to quantify the
amount of adulterant. In order to build and validate the classification
and regression models, t0-data were split into two (training and test)
representative sets of samples by the application of the Duplex (Snee,
1977) algorithm on each class separately. Since the model optimization
stage also involved the selection of the optimal data pre-processing, to
avoid any bias related to data splitting the division of the samples was
carried out as follows. Six matrices were obtained by pre-processing the
experimental NIR data with any of the combinations of pre-treatments to
be evaluated (mean centering (MC), SNV+MC, 1st derivative (19 points,
2nd order polynomial)+MC, 2nd derivative (33 points, 3rd order poly-
nomial)+MC, SNV+ 1st derivative+MC, SNV+ 2nd derivative+MC). A
multi-block exploratory model was built on these matrices to extract
common components which could account for the relevant variability

1% Derivative
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shared by the differently pre-treated data, using ComDim (Qannari
et al., 2001). Three common components (CCs) were calculated and the
projection of the pure and adulterated samples onto the corresponding
sub-space resulted in the two score-matrices Tpye and Toduierateds
respectively. Eventually, Duplex algorithm was run on each of these
score matrices individually to split each category in a representative
way. Of the 147 t0-milk samples, 112 (25 pure and 60 adulterated) were
selected as training set and 35 (15 pure and 20 adulterated) were
employed as test set for the validation of the models. Furthermore, with
the idea of verifying whether the model built on the fresh samples could
be also applied for the identification of adulteration in the
freezed-thawed ones, all the spectra collected at t1, t2 and t3 were
treated as further validation samples.

All the MATLAB functions employed in the present work can be
freely downloaded from the RomeChemometrics web-site (https://www.
chem.uniromal.it/romechemometrics/research/algorithms/; last accessed
March 2022).

3.1. Authentication of donkey milk: PLS-DA analysis of milk samples

The most suitable data-preprocessing approach and the optimal
number of latent variables (LVs) were chosen as those leading to the
highest average correct classification rate (CCR) in a 7-fold cross-
validation procedure. The results are shown in Table 1.

Standard Normal Variate (SNV, (Barnes et al., 1989)), first and sec-
ond derivatives (Savitzky and Golay, 1964) were tested alone or in
combination. Mean-centering was additionally performed prior to the
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Fig. 1. Raw and differently pre-processed (1st derivative, 2nd derivative, SNV, SNV+1st derivative, SNV+2nd derivative) Near infrared spectra collected on the
milk samples.
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Table 1
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Partial Least Squares-Discriminant Analysis (PLS-DA) model selection: Cross-validated results obtained on the NIR data at tO (training set). All the figures of merit are

expressed as percentages.

Pre-treatment LVs Accuracy Mean CCR Adulterated Pure
Sensitivity Specificity Sensitivity Specificity

Mean-centering (MC) 9 100.00 100.00 100.00 100.00 100.00 100.00
SNV+MC 6 100.00 100.00 100.00 100.00 100.00 100.00
1st Derivative+MC 5 99.11 99.17 98.33 100.00 100.00 98.33
2nd Derivative+MC 6 92.86 93.21 88.33 98.08 98.08 88.33
SNV+ 1st Derivative+MC 5 99.11 99.17 98.33 100.00 100.00 98.33
SNV+ 2nd Derivative+MC 4 91.96 92.24 88.33 96.15 96.15 88.33

creation of each model. Looking at Table 1, it seems that SNV (followed
by MC) is the most appropriate data pre-treatment because it guarantees
the highest mean Correct Classification Rate (CCR) (and accuracy) in
cross-validation (100%) with the minimum number of LVs (six). The
application of the chosen PLS-DA model to the test set provided 100% of
CCR for both pure and adulterated classes. In Fig. 2 the results of PLS-DA
analysis are graphically represented through the display of the predicted
y values as a function of the training/test sample index.

Variables Importance in Projection (VIP) indices (Wold et al., 1993)
were calculated to investigate of the relevance of each spectral variable
in the definition of the latent variables space. Fig. 3.

According to the “greater-than-one” criterion, variables with VIP
value higher than 1 (highlighted in Fig. 3) are considered to be rele-
vantly contributing to the model. Moreover, even if their interpretation
can suffer from the presence of several overlapping (non-orthogonal)
contributions, the regression coefficients were also examined. Indeed,
variables with a positive regression coefficient (red in Fig. 3) can be
assumed to be higher in the adulterated class, while those with a
negative coefficient (blue in Fig. 3) to be higher in the pure samples. By
inspection of Fig. 3, the spectral ranges which appear as the most
discriminant are mainly associated to moisture and fat content (Ayvaz
et al., 2021):

1. the spectral range between 4000 cm™! and 4200 cm’}, likely due to
the combination bands of C-H and C-O stretching vibrations in fats;.

2. the variables between 5050 and 5250 cm™ ascribable to moisture,
probably as a consequence of the different water content in donkey and
cow milk;.

3. a large area centered at 7020 cm™ mostly associated to the first
overtone of O-H stretching;.

4. a large area centered at 8400 cm™ where the absorptions are
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Fig. 2. PLS-DA analysis: values of the predicted response calculated on the
training (empty bars) and test (full bars) samples. The violet dashed line is the
classification threshold.
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Fig. 3. PLS-DA analysis: graphical representation of the spectral variables
identified as significant based on their corresponding VIP index. The average
NIR spectrum is represented in black, the variables with VIP > 1 and regression
coefficient > 0 are highlighted in red while those with VIP > 1 and regression
coefficient < 0 in blue.

mainly due to the second overtone of the C-H stretching in fats;.

5. around 9200 and 10,000 cm™, ascribable to the second overtones
of O-H and C-H stretching modes.

Eventually, the optimal PLS-DA model (SNV+MC, 6 LVs) was used to
predict the class-membership of the samples after the different F/T cy-
cles. The results are displayed in Table 2, in terms of total classification
accuracy, mean correct classification rate and class-sensitivities and
specificities, and graphically in Fig. 4.

Among these further predictions, the highest accuracy was obtained
for the samples which only underwent a single F/T cycle (t1). When the
model was applied to the spectra collected after more F/T cycles (t2 and
t3), results were identical and slightly worse than those for t1, the total
accuracy was 79.66%, especially due to a significantly lower sensitivity
for the pure class. In general, it is possible to observe that the developed
model efficiently classified pure and adulterated samples, keeping a very
good accuracy also after up to three freezing-thawing cycles, revealing a
good robustness with respect to the F/T process. Moreover, even after
three F/T cycles, the correct classification rate on the adulterated sam-
ples is 100.0%.

3.2. Quantification of cow milk content in donkey milk samples

After having assessed the potential of the NIR spectroscopic finger-
print for the detection of the adulteration of donkey milk samples, the
possibility of building a model for the quantification of cow milk added
as adulterant was investigated. For this purpose, a PLS model was built
on the tO-spectroscopic data of the training set (which was the same as
for PLS-DA) preprocessed by VSN followed by mean centering. The
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Table 2
Predictions of the optimal PLS-DA model on the validation samples (at t0, t1, t2 and t3). All the figures of merit are expressed as percentages.
LVs Accuracy Mean CCR Adulterated Pure
Sensitivity Specificity Sensitivity Specificity
t0 6 100.00 100.00 100.00 100.00 100.00 100.00
tl 6 85.71 84.78 87.50 82.05 82.05 87.50
t2 6 79.66 84.62 100.00 69.23 69.23 100.00
t3 6 79.66 84.62 100.00 69.23 69.23 100.00
1 cycle of freeze/thaw 2 cycles of freeze/thaw 3 cycles of freeze/thaw
14 - 1.2 - -
I / dulterated (1 F/T) I - dulterated (2 F/T) I A dulterated (3 F/T)
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Fig. 4. PLS-DA predictions on the freeze/thawed samples. The violet dashed line represents the classification threshold.

optimal model complexity was identified as the one leading to the lowest
value of the root mean square error in a 7-fold cross-validation
(RMSECV) and it was found to be 5 LVs (RMSECV=3.9%). When the
model was applied to the test set, the results presented a negligible bias
(0.2%) and a comparable value of the RMSEP (4.0%). Fig. 5 shows the
plot of the predicted vs actual concentration (%) of cow milk in donkey
milk, both for calibration (red) and validation samples (black). The in-
spection of the figure reveals that, for the majority of the samples, the
absolute quantification error is lower than 1.5%; nevertheless, for few
samples it exceeds 10%.

3.3. ASCA

The ANOVA-like decomposition was applied on the NIR spectra of
the pure samples at consecutive F/T cycles (adulterated milk samples
are excluded from ASCA calculation) as described in Eq.2 after SNV or
VSN-+weighted-SNV correction and mean-centering. The design is
balanced because the different levels (t0, t1, t2 and t3) of the considered

factor (time as freezing/thawing cycles) have the same number of rep-
licates (40 samples).

3.3.1. Estimation of the effect and its significance

In the condition of mutual orthogonality of the effect estimates, the
variation in ||X.||> can be split in independent parts (| Xc|* = || Xemel|* +
| Xres||?). The different contributions are given by the term accounting
for the freezing/thawing transformation (X;m.) and the residual varia-
tion (Xr.s), i.e., the random variation that is not accounted for by the
mean contribution of the factor levels. In particular, the amount of
variance explained by the terms Xy, and X,.s were 61% and 39% for
the SNV-model and 6% and 94% for the VSN ones, respectively,
revealing that the use of the VSN pretreatment can efficiently remove
differences in the signals due to the effect of the F/T cycles, while this
factor still has a relevant impact on the spectra pre-treated by SNV. To
assess if the effect of the factor of interest is statistically significant, a
strategy based on permutation test was adopted, as described in Section
2.4. Fig. 6 shows the comparison between the value of the SSQ of the
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tures with donkey milk. See Section 2.1 for more details of composition.

effect matrix for the experimental data pre-treated either with SNV or
VSN and the corresponding null distribution estimated by permutation
testing.

Looking at Fig. 6, it is apparent how the effect of freezing/thawing
cycles is statistically significant (p(SNV)< 0.0001, p(VSN)= 0.0066)
irrespectively of the pre-treatment adopted, i.e., the F/T procedure af-
fects the NIR spectral fingerprint of pure donkey milk.

3.3.2. SCA models

Simultaneous Component Analysis was applied to extract the sys-
tematic information from the effect matrix derived from the ANOVA-
decomposition. The factor “time” was studied at four levels (t0, t1, t2
and t3); therefore, three components accounted for 100% of the effect
variance. For the sake of a more straightforward visual interpretation of
the significance of the overall factor effect and of the differences be-
tween factor level means, scores plot were built after projecting the
residual matrix onto the effect subspace defined by the loadings Pyme,
according to (Zwanenburg et al., 2011):
Tye = Kiime + Xres)Pime %)

time

P, being the loading matrix calculated from X, only, as in Eq.

4.

500
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The resulting scores plots are displayed in Fig. 7, both for the SNV-
and VSN-pretreated NIR spectra.

In both cases, the largest part of the effect variance is captured by the
first component (98.06% in the case of SNV and 80.61%, for VSN). In-
spection of the scores plot confirms how the impact of the F/T cycles on
the spectroscopic data is higher in the case of the spectra pre-treated
with SNV, while for VSN the differences among the factor levels are
more subtle. To relate the observed trends with variations in the spectral
signal, the loadings on SC1 are reported in Fig. 8.

A bootstrap procedure was employed to estimate their confidence
intervals at 95%. Visual inspection of the figure shows that the whole
NIR-spectrum is affected by the variation in the “freshness” of the milk,
additional F/T cycles will result in an increase of the intensity of signals
with positive loadings and in a decrease of spectral signals associated
with negative ones.

4. Conclusions

In this work, NIR Spectroscopy coupled with PLS-DA classification
was employed as a non-destructive, rapid, and green approach to
authenticate donkey milk and to detect its possible adulteration with
cow milk. After having verified that the proposed strategy could allow
the discrimination between pure and adulterated fresh specimens with
100% accuracy on both the training and the test sets, the study was
extended to investigate whether the approach could be suitable to
identify the adulteration also when samples had undergone different F/T
cycles. In this respect, the results have demonstrated that the model built
on fresh sample can still discriminate with reasonable accuracy pure
from adulterated samples after 1, 2 or 3 F/T cycles (85.71%, 79.66% and
79.66%, respectively). Moreover, when considering the individual cat-
egories, it was demonstrated that the class of adulterated samples can be
recognized with 100% sensitivity even after repeated freezing/thawing.

Successively, PLS regression was used to quantify the percentage of
cow milk used as adulterant, obtaining, for most of the samples, absolute
prediction errors lower than 1.5%.

Finally, the effect of freezing/thawing on the spectroscopic signals of
pure samples was further investigated by ASCA. The results indicated
that the F/T treatment has a statistically significant effect on the spec-
troscopic fingerprint.

These results indicate that the proposed method is suitable to be
applied for the quality control of donkey milk samples and potentially
for the quantification of cow milk as adulterant, irrespectively of the

Effect of term Freezing/Thawing cycles (VSN pretreatment) - p <0.0066
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Fig. 6. ASCA. Validation of the main effect of the factor Freezing/Thawing Cycles on pure samples: comparison between the value of the sum of squares obtained for
the experimental data (red vertical line) and the corresponding null distribution estimated by permutation test (blue histogram); left: SNV pre-treated data, right:

VSN pre-treated data.
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empty symbols represent the scores after back-projection of the residuals.
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conditions used for its storage.
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