

Michele Cogo

EDUCATION AND TRAINING

2009 – 2014 Bassano del Grappa, Italy

SCIENTIFIC HIGH SCHOOL QUALIFICATION Liceo scientifico Jacopo da Ponte

Final grade 85/100

10/2015 - 07/2018 Padova, Italy

BACHELOR DEGREE OF AEROSPACE ENGINEERING Università degli Studi di Padova

Final grade 98/110 | Thesis Dynamics of a sphere at high Reynolds number flows, prof. Francesco Picano

09/2018 - 15/10/2020 Padova, Italy

MASTER'S DEGREE ON AEROSPACE ENGINEERING Università degli studi di Padova

Final grade 110/100 cum laude

Thesis Large eddy simulation with wall-stress model: an application to turbulent compressible channel flow. Prof. Francesco Picano

20/12/2020 - 20/08/2021 Roma, Italy

SCOLARSHIP FOR RESEARCH ACTIVITY (BORSA DI STUDIO) Sapienza Università di Roma

Scolarship for research activity on Direct Numerical Simulation of compressible turbulent boundary layers. Supervisor: Prof. Matteo Bernardini

28/02/2021 - CURRENT Padova, Italy

TEACHING ASSISTANT (DIDATTICA INTEGRATIVA) Università degli studi di Padova

Teaching assistant for the courses of:

- Fluid Mechanics, Mechanical Engineering (Bachelor), Prof. Andrea Marion
- Aerodynamics 2, Aerospace Engineering (Master), Prof. Francesco Picano
- Laboratory of Computational Fluid Dynamics, Aerospace Engineering (Master), Prof. Federico Dalla Barba

01/10/2021 - CURRENT

PHD COURSE IN SCIENCES, TECHNOLOGIES AND MEASUREMENTS FOR SPACE Università degli Studi di Padova

Thesis High-fidelity simulations of high speed flows for aerospace problems. Supervisor Prof. Francesco Picano.

10/10/2022 - 10/02/2023

VISITING STUDENT RESEARCHER Delft University of Technology, Department of Flow Physics and Technology

Research activity on high fidelity simulations of compressible boundary layers over rough surfaces; Host supervisor: Prof. Davide Modesti

01/06/2023 - 30/11/2023

VISITING STUDENT RESEARCHER Stanford University, Center for Turbulence Research

Research activity on wall-models for hypersonic turbulent boundary layer with chemical reactions; Host Supervisor: Prof. Parviz Moin.

This experience was part of the Fulbright program and supported by Zegna Founder's scholarship (Zegna Group) and Franklin P. and Caroline M. Johnson Fellowship (Stanford University).

LANGUAGE SKILLS

Mother tongue(s): ITALIAN

Other language(s):

	UNDERSTANDING		SPEAKING		WRITING
	Listening	Reading	Spoken production Spoken interaction		
ENGLISH - IELTS CERTIFICATE (BAND 8), CEFR LEVEL C1	C2	C2	C1	C1	B2

Levels: A1 and A2: Basic user; B1 and B2: Independent user; C1 and C2: Proficient user

DIGITAL SKILLS

Linux/Unix environments, including shell scripting | Fortran for massively parallel accelerators (e.g. CUDA, MPI, OpenMp, OpenACC) | Python and relative scientific libraries (numpy, scipy, pandas, etc.) | Basic understanding of Python libraries for Machine Learning (Tensorflow, PyTorch) | Basic knowledge of C++ | Good proficiency in Matlab/ Simulink | Version control systems (git) | HPC systems and batch workflow managers (SLURM) | Visualizations tools (Paraview, Tecplot, Blender) | Engineering softwares: Ansys Fluent, Patran/Nastran, Labview, Solidworks. | Vector graphics tools (Adobe Illustrator) | Office, Latex, Markdown

PUBLICATIONS

2024

<u>Inverse-velocity transformation wall model for reacting turbulent hypersonic boundary layers</u>

Cogo, M., Williams, C. T., Griffin, K. P., Picano, F., & Moin, P. (2023). Inverse-velocity transformation wall model for reacting turbulent hypersonic boundary layers. Center for Turbulence Research Annual Research Briefs.

2023

URANOS: A GPU accelerated Navier-Stokes solver for compressible wall-bounded flows

De Vanna, F., Avanzi, F., Cogo, M., Sandrin, S., Bettencourt, M., Picano, F., & Benini, E. (2023). URANOS: A GPU accelerated Navier-Stokes solver for compressible wall-bounded flows. *Computer Physics Communications*, 287, 108717.

2023

Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers.

Cogo, M., Baù, U., Chinappi, M., Bernardini, M., & Picano, F. (2023). Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. *Journal of Fluid Mechanics*, 974, A10.

2023

<u>Large-Eddy Simulation of the unsteady supersonic flow around a Mars entry capsule at different angles of attack</u>

Placco, L., Cogo, M., Bernardini, M., Aboudan, A., Ferri, F., & Picano, F. (2023). Large-Eddy Simulation of the unsteady supersonic flow around a Mars entry capsule at different angles of attack. *Aerospace Science and Technology*, *143*, 108709.

2023

GPU-acceleration of Navier-Stokes solvers for compressible wall-bounded flows: the case of URANOS

De Vanna, F., Avanzi, F., Cogo, M., Sandrin, S., Bettencourt, M., Picano, F., & Benini, E. (2023). GPU-acceleration of Navier-Stokes solvers for compressible wall-bounded flows: the case of URANOS. In *AIAA SCITECH 2023 Forum* (p. 1129).

2022

<u>Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition</u>

Cogo, M., Salvadore, F., Picano, F., & Bernardini, M. (2022). Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. *Journal of Fluid Mechanics*, *945*, A30.

A straightforward strategy to unify WR/WMLES approaches for compressible wall-bounded flows

De Vanna, F., Cogo, M., Bernardini, M., Picano, F., & Benini, E. (2022). A straightforward strategy to unify WR/WMLES approaches for compressible wall-bounded flows. In *AIAA SCITECH 2022 Forum* (p. 0181).

2021

A Wall-Modeled/Wall-Resolved Les Method For Turbulent Wall Flows

De Vanna, F., Michele, C., Matteo, B., Picano, F., & Benini, E. (2021). A wall-modeled/wall-resolved les method for turbulent wall flows. In *ECCOMAS Congress 2020*).

2021

<u>Unified wall-resolved and wall-modeled method for large-eddy simulations of compressible wall-bounded flows</u>

De Vanna, F., Cogo, M., Bernardini, M., Picano, F., & Benini, E. (2021). Unified wall-resolved and wall-modeled method for large-eddy simulations of compressible wall-bounded flows. *Physical Review Fluids*, 6(3), 034614.

2020

Large eddy simulation with wall-stress model: an application to turbulent compressible channel flow

Aerospace Engineering Master's Thesis. Supervisor: Prof. Francesco Picano

CONFERENCES AND SEMINARS

06/05/2024 - 09/05/2024 Scopello, Italy

PhD Days 2024

Presenter of "Compressibility and wall-cooling effects on high-speed turbulent boundary layers".

10/04/2024 - 12/04/2024 Erlangen, Germany

Direct and Large-Eddy Simulation 14

Presenter of "DNS of supersonic turbulent boundary layers over rough surfaces".

16/02/2024 Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy

Invited talk at SISSA, Analysis Junior Seminar

Presenter of "Physical and modeling aspects of highly-compressible boundary layers".

19/11/2023 - 21/11/2023 Washington D.C., USA

76th Annual Meeting of the APS Division of Fluid Dynamics

Presenter of "Development of a wall model for chemically-reacting turbulent hypersonic boundary layers".

13/09/2022 - 16/09/2022 Athens, Greece

14th European Fluid Mechanics Conference

Presenter of "Compressibility effects in supersonic and hypersonic turbulent boundary layers at high Reynolds numbers".

25/05/2022 - 27/05/2022 Alba, Italy

33rd Parallel CFD International Conference

Presenter of "DNS of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers with heat transfer".

10/01/2020 - 14/01/2020 Virtual Congress

14th WCCM-ECCOMAS Congress 2020

Presenter of "A wall-modeled/wall-resolved Les method for turbulent wall flows".

30/04/2019 - 03/05/2019 Libin Redu, Belgium

Concurrent Design Engineering Workshop

Introduction and application of the concurrent engineering methodology at European Space Agency (ESA) Training and Learning Facility.

PROJECTS

09/2019 - 08/2020

Morpheus Team

Università degli studi di Padova

Students project developing a rover for planetary exploration

09/2019 - 08/2020

THRUST Team

Università degli studi di Padova Transdisciplinary Hybrid Rocket for University Students' Training

HONOURS AND AWARDS

High-performance computing research grants - CINECA, Italy

The candidate has been awarded with different computing research grants as PI (ISCRA-C calls) and co-PI (PRACE call 23, EuroHPC Extreme Scale Access) with Galileo100, Marconi100 and Leonardo Booster (CINECA).

2023

Fulbright Scholarship - The U.S.-Italy Fulbright Commission

Scholarship as Visiting Student Researcher at Center for Turbulence Research, Stanford University.

2023

Zegna Founder's scholarship - Ermenegildo Zegna Group

Supporting scholarship as Visiting Student Researcher at Center for Turbulence Research, Stanford University.

2023

Franklin P. and Caroline M. Johnson Fellowship - School of Engineering, Stanford University

Supporting scholarship as Visiting Student Researcher at Center for Turbulence Research, Stanford University.

2023

Referee for peer-reviewed journals

Referee for Peer -reviewed international journals: "Journal of Fluid Mechanics", "Physics of Fluids"

2020

Excellence award for Aerospace Engineering Master's Thesis - Università degli Studi di Padova

2018

Incentives for scientific studies - Università degli Studi di Padova