

Matteo Barba

EDUCATION AND TRAINING

[Jan 2024 – Current]

Space and Astronautical Engineering

La Sapienza - University of Rome https://corsidilaurea.uniroma1.it/en/course/33484

City: Rome | Country: Italy | Field(s) of study: Engineering, manufacturing and construction | Level in EQF: EQF level 7 | Type of credits: CFU | Number of credits: 120

Strong technical background in aerospace engineering, with specialised insight in space missions and exploration.

Key competencies include:

- Orbital dynamics and interplanetary trajectory design
- Mission analysis and satellite system architecture.
- Attitude determination and control systems
- Space environment.
- Systems engineering for scientific and exploratory missions.
- Integration of payloads and instrumentation for space applications.
- Team-based conceptual design and mission planning.

An interdisciplinary approach was developed during the course on the design, simulation and execution of modern space missions to tackle the most complex challenges.

[Sep 2020 – Dec 2023] Aerospace engineering

La Sapienza - University of Rome https://corsidilaurea.uniroma1.it/en/course/33474

City: Rome | Country: Italy | Field(s) of study: Engineering, manufacturing and construction | Level in EQF: EQF level 6 | Type of credits: CFU | Number of credits: 180 | Thesis: Study of the Propfan: Efficiency, Design, and Applications

A strong foundation in mathematics, physics, and chemistry, combined with core competencies in industrial, aeronautical, and space engineering.

Key areas of skills include:

- Numerical methods
- · Solid and structural mechanics
- Materials science and technology
- Electrical engineering
- · Orbital mechanics
- Space instruments
- Applied mechanics

The ability to solve complex engineering problems is supported by an interdisciplinary and analytical approach.

PROJECTS

[Nov 2024 – Current]

BILAR

I'm currently involved in the BILAR project at S5Lab (Sapienza Space Systems and Space Surveillance Laboratory), in collaboration with a team of Ph.D. and Master's students.

The project focuses on the simulation and inversion of satellite light curves to support attitude reconstruction, contributing to the development of a service for surface brightness characterization based on virtual and experimental data.

My main responsibility lies in the virtual simulation environment, where I use software tools such as Blender and Unity to reconstruct realistic satellite observation scenarios. This includes creating digital twins of observed objects, modeling their geometry and material properties, and simulating

