LUCA PISANO Curriculum Vitae

Place Rome Date 10/08/2024

Part I – General Information

Full Name	LUCA PISANO
Date of Birth	
Place of Birth	
CitizenshipN	
Permanent Address	
Mobile Phone Numbe	
E-mail	
Spoken Languages	ITALIAN, ENGLISH

Part II – Education

IIA – Academic Education

Туре	Year	Institution	Notes (Degree, Experience,)
PhD	2024	Sapienza - University of Rome,	Molecular design and
		Italian Institute of Technology.	characterization for the promotion
			of health and well-being: from
			drug to food (XXXVII cycle)
Master's degree	2020	Sapienza - University of Rome.	Chemistry and technologies of the
			drug

IIB - Other training course

	13/08/2024	WIPO Academy	Introduction to the Patent Cooperation Treaty
--	------------	--------------	---

Part III – Appointments

Research Experiences

Start	End	Institution	Position
01/10/2023	26/03/2024	McGill University	Synthesis and studies of 4' modified oligonucleotides

01/04/2020 31/10/2020	Sapienza Università di Roma	Study of advanced green extractive methodologies from waste matrixes
01/01/2019 31/07/2019	King's College London	Design of novel antitubercular agents targeting the MmpL3 mycolic acid transporter

Part IV - Society memberships

Year	Title
2020-2022	Member of the Italian Chemical Society (SCI), Division of Organic Chemistry.

Part V - Funding Information [grants as PI-principal investigator or I-investigator]

VA - Funding Information [grants as PI-principal investigator]

Year	Title	Program	Grant value
2023	PI in the project: "Sviluppo di bioconiugati ferritina-poliammina per la veicolazione di oligonucleotidi".	Sapienza – University Research Project 2023	1.000,00 €
2022	PI in the project: "Progettazione e sintesi di molecole a struttura chinolinica fotoresponsive e selettive per residui cisteinici".	Sapienza – University Research Project 2022	1.000,00 €

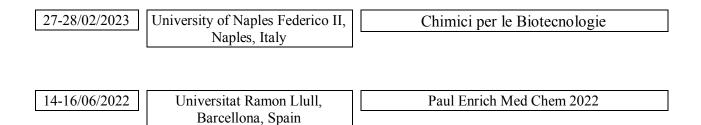
VB - Funding Information [grants as I- investigator, participant]

Year	Title	Program	Grant value
2023	I in the project "Exploring Natural	Sapienza - University Research	12.000,00 €
	Products through cutting-edge	Project 2023	
	approaches for identifying potential		
	inhibitors of Ara4N-dependent colistin		
	resistance".		

Part VI – Research Activities

Keywords	Brief Description	
Antitubercolar drugs	Structural Rigidification of N-Aryl-pyrroles into Indoles Active again	
	Intracellular and Drug-Resistant Mycobacteria. During the 6 months spent in	
	King's College London, Dr. Luca Pisano focused his research interest on	
	developing a synthetic strategy for the synthesis of a library of N-	
	alkylaminoindoles as the result of the rigidification of N-aryl-pyrroles. The	
	latter has been investigated by Dr. Castagnolo's research group extensively in	
	the previous years and computer docking analysis revealed that a more compact	
structure, such as the indole one, could fit better with the su		
	<i>MmpL3</i> , a mycolic acid transporter essential in the building of the cell wall in	
	Mycobacterium Turberculosis. The isolation and the structural elucidation of	
	every synthetic intermediate were carried out by using 1D and 2D Nuclear	
	Magnetic Resonance Spectroscopy (NMR) and High-Resolution Mass	
	Spectrometry (HR-MS) techniques. Main skills: NMR, HR-MS.	

Advanced green extraction methods	<u>Study of advanced green extractive methodologies from waste matrixes</u> . In the last years the development of sustainable techniques that can replace the traditional use of organic solvents is more and more studied by the scientific community every year. With the aim of identifying new methods for the extraction of natural compounds from waste matrixes using just green and sustainable processes, the project consisted in the application of a variety of extractive techniques to waste industrial products coming from the fruit and vegetable industry. Accordingly, Dr Pisano designed and performed different extraction methodologies (MAE, UAE) and evaluated a variety of not-organic solvents (DES) to generate a comparison in the extraction efficiency between the traditional organic solvents and the investigated ones. Main skills: NMR, MAE, UAE.
Oligonucleotides delivery	<u>Design and Synthesis of Piperazine-Based Compounds Conjugated to</u> <u>Humanized Ferritin as Delivery System of siRNA in Cancer Cells.</u> Following previous studies conducted in Professor Botta's laboratory to develop an efficient delivery system for oligonucleotides, the internal cavity of an "humanized" archaeobacterial ferritin (HumAfFt) was efficiently functionalized with piperazine-based compounds (PAs), designed and synthesized by Dr. Luca Pisano, that are positively charged at physiological pH, through chemo-selective reactions towards the thiol residues of cysteines present in the cavity. The aim of this project is to develop a new library of polyamine compounds that are positively charged at physiological pH, in order to obtain a cluster of data on the structure-interaction relationships of these compounds with the oligonucleotide cargo, thus improving their loading and delivery. Main skills: NMR, UHPLC-UV, UHPLC-MS
Caged oligonucleotides	Design and synthesis of quinoline-based photo-responsive system for the delivery of caged oligonucleotides. Caged molecules are inert molecules that possess latent biological activity and can restore it upon irradiation with light of a specific wavelength. This occurs because these systems consist of a biologically active molecule or biomolecule (e.g., any effector) and a photosensitive protecting group (PPG). In an attempt to design a delivery system composed of caged molecules with quinoline structures selective for cysteine sites, The polyamine moiety placed in position 8 of the quinoline scaffold was intended to promote the encapsulation and release of negatively charged siRNA (polynucleotides of 21-23 units) through electrostatic interactions as demonstrated by previous studies conducted in the laboratory of Prof. Botta. The project, therefore, aims to develop a synthetic strategy for the preparation of a quinoline-based caged system, functionalized with a linker capable of selectively binding the thiol residues of a protein-based delivery agent (e.g., HumAfFt). The system will be characterized by a quinoline core doubly functionalized: at position 8 with a piperazine linker attached to a pentafluorobenzenesulfonamide group to ensure selectivity in binding to cysteines. Main skills: NMR, UHPLC-UV, UHPLC-MS


Part VII - Participation to conferences, workshops, and scientific meetings

Dates Institution/place		Description
24-28/06/2024	Sapienza – University of Rome,	Second Symposium for Young Chemists
	Rome, Italy.	(SYNC 2024)

27-28/02/2023	University of Naples Federico II, Naples, Italy	Chimici per le Biotecnologie
	Tvapics, italy	
21-22/06/2022	Sapienza - University of Rome, Rome, Italy.	European Workshop in Drug Synthesis
14-16/06/2022	Universitat Ramon Llull, Barcellona, Spain	Paul Enrich Med Chem 2022

Part VIII – Oral communications

24-28/06/2024	Sapienza – University of Rome,	Second Symposium for Young Chemists
	Rome, Italy.	(SYNC 2024)

Part IX – Poster Presentation

21-22/06/2022	Sapienza - University of Rome,	European Workshop in Drug Synthesis	
	Rome, Italy.		

Part X – Summary of Scientific Achievements

Product type	Number	Data Base	Start	End
Papers [international]	4	SCOPUS	2020	2024
Posters	1		2020	2024
Conference oral	3		2020	2024
communications	-			

Total Impact factor	3.6
Total Citations	13
Average Citations per Product	3.25
Hirsch (H) index	2
Normalized H index*	0.5

*H index divided by the academic seniority.

Part XI–Publications

For each publication, authors, title, reference data, journal IF (InCites JCR) and number of citations (Scopus) are reported. IF is relative to the year of publication or, if not available, to the year closest to the year of publication.

1	2024	Articolo in rivista		
1	2024	F Liberati, S Di Russo, L Barolo, <u>L Pisano</u> et al		
		Combined Delivery of miR-15/16 through Humanized Ferritin Nanocages for the		
		Treatment of Chronic Lymphocytic Leukemia.		
		Pharmaceutics, 2024. doi: <u>10.3390/pharmaceutics16030402</u>		
		IF(2023) = 4.3, Citation (Scopus): 0		
		$11^{\circ}(2023) = 4.3$, Chation (Scopus). 0		
2	2023	Articolo in rivista		
-		D Quaglio; P Infante; S Cammarone; L Lamelza; M Conenna; F Ghirga; L. Pisano et		
		al.		
		Exploring the Potential of Anthraquinone-Based Hybrids for Identifying a Novel		
		Generation of Antagonists for the Smoothened Receptor in HH-Dependent		
		Tumour,		
		Chemistry–A European Journal, 2023.		
		doi: <u>10.1002/chem.202302237</u>		
		IF $(2023) = 3.9$; Citation (Scopus): 0		
3	2022	C Tortora, V Vergine, F Ghirga, A Iazzetti, A Calcaterra, <u>L Pisano</u> et al.		
		Synthesis, Biosythesis, and Biological Activity of Diels-Alder Adducts from Morus		
		Genus: An Update.		
		Molecules, 2022.		
		doi: 10.3390/molecules27217580		
		IF $(2022) = 1.6$; Citation (Scopus): 5		
4	2021	Articolo in rivista		
		D Semenya, M Touitou, CM Ribeiro, FR Pavan, L Pisano et al.		
		Structural Rigidification of N-Aryl-pyrroles into Indoles Active against		
		Intracellular and Drug-Resistant Mycobacteria.		
		ACS Medicinal Chemistry Letters, 2021.		
		doi: <u>10.1021/acsmedchemlett.1c00431</u>		
		IF (2021) = 4.6; Citation (Scopus): 3		

Roma 13/08/2024

Firma